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Outline

I Compact closed categories and diagrammatic calculi

I Some ad-hoc procedures for constructing new compact closed
categories, using variations on the notion of binary relation

I A parameterized theory of categories of generalized relations



Motivation
Graphical Languages I

Pictures of morphisms in symmetric monoidal categories.
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Motivation
Standard Settings

Some examples of compact closed categories

I The category of finite dimensional Hilbert spaces and linear
maps, FdHilb - Pure state QM

I The category of finite dimensional Hilbert spaces and
completely positive maps, CPM(FdHilb) - Mixed state QM

I The category of sets and binary relations, Rel -
Non-deterministic computation

I Cospans - Networks

I Corelations - Networks

I Spans - ?

Where do we find more?



Motivations
Options

CPM
Selinger’s CPM construction and relatives of it generate new
compact closed categories. They are 1 parameter constructions,
but what exactly does CPM do?

Decorated Corelations and Cospans

These constructions, due to Brendan Fong, are parameterized by
various “technical” parameters such as factorization systems and
lax monoidal functors.

I The corelation construction is completely generic

I Constructing particular examples involves clever choices of the
technical parameters. Can we make things easier?
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Motivation
Convexity

Mathematical models of cognition (Gärdenfors) emphasize
convexity, how can we address this in a compact closed setting?

I The finite distribution monad D

X 7→ {d : X → [0, 1] | d has finite support and
∑

d(x) = 1}

I Algebras in EM(D) are sets with a “convex mixing
operation” D(X )→ X

I EM(D) is regular so we can form a compact closed
category Rel(D) in which morphisms are binary
relations R : A→ B such that

R(a1, b1) ∧ ... ∧ R(an, bn)⇒ R(
∑
i

piai ,
∑
i

pibi )
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Motivation
Metrics I

Cognition also requires metrics, but categories of metric spaces are
not regular so we cannot use the previous trick. What to do?

Definition
A (unital) quantale Q is a complete join semilattice with a monoid
structure ⊗, k such that

x⊗
[∨

U
]

= {x⊗u | u ∈ U} and
[∨

U
]
⊗x = {u⊗x | x ∈ U}

We can define a category of relations Rel(Q) with relations
maps A× B → Q and

(S ◦ R)(a, c) =
∨

R(a, b)⊗ S(b, c)

We refer to these relations as Q-relations. If Q is a commutative
quantale, this category is compact closed.
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Motivation
Metrics II

As Rel(Q) is poset enriched via

R ⊆ R ′ if ∀a, b.R(a, b) ≤ R(a′, b′)

Therefore, we can talk about Rel(Q)-internal monads. These are
endomorphisms satisfying

1 ⊆ R and R ◦ R ⊆ R

Paralleling the usual notion of a monad on a category being an
endofunctor T : C → C with

η : 1⇒ T and T ◦ T → T



Motivation
Metrics III

Example (Internal monads in Rel(Q))

I For quantale B = {0, 1}

R(a, a) and R(a, b) ∧ R(b, c)⇒ R(a, c)

I For quantale I = [0, 1]

R(a, a) = 1 and R(a, b) ∧ R(b, c) ≤ R(a, c)

I For quantale C = ([0,∞],
∨

= inf, k = 0,⊗ = +)

R(a, a) = 0 and R(a, b) + R(b, c) ≥ R(a, c)

I For quantale F = ([0,∞],
∨

= inf, k = 0,⊗ = max)

R(a, a) = 0 and max(R(a, b),R(b, c)) ≥ R(a, c)



Motivation
From the ad-hoc to theory

I We used a couple of ad-hoc tricks
I Relations in regular categories, particularly from algebraic

structure
I Relations with truth values in a commutative quantale

I Questions
I Can we relate / combine these two schemes?
I Can relations be varied in other ways to generate yet more

examples?
I How can we relate constructions with different parameters?



Motivation
Hypergraph Categories (Kissinger, Fong)

Commutative monoid:

η
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Cocommutative comonoid:
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Frobenius axiom:
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Example

The categories Rel, Rel(EM(D)) and Rel(Q) are hypergraph
categories.
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Motivation
From Hypergraph to Compact Closure

Every hypergraph category is †-compact closed.
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Generalized Relations
Algebraic Structure and Generalized Truth

Starting with Q-relations, we aim to incorporate algebraic
structure.

Algebraic Structure for Q-relations

To incorporate algebraic structure, we fix a signature of operation
symbols Σ, and a set of equations over that signature. We need to
generalize the condition

R(a1, b1) ∧ ... ∧ R(an, bn)⇒ R(σ(a1, ..., an), σ(b1, ..., bn))

We exploit the operations of our quantale, leading to the following
condition for each σ ∈ Σ

R(a1, b1)⊗ ...⊗ R(an, bn) ≤ R(σ(a1, ..., an), σ(b1, ..., bn))

We refer to such a Q-relation as algebraic.



Generalized Relations
Identities and Composition

We define our identities as

1(a, a′) =

{
k if a = a′

⊥ otherwise

Composition of relations as before

(S ◦ R)(a, c) =
∨
b

R(a, b)⊗ S(b, c)



Generalized Relations
Varying the Ambient Topos

We can generalize further by allowing our ambient topos to vary.
To do this we consider quantales internal to our chosen topos. A
tweak to the identities is required

1(a, a′) =
∨
{k | a = a′}



Generalized Relations
The General Construction

Theorem
If E is a topos, Q an internal commutative quantale, and (Σ,E ) an
algebraic variety in E then

I There is a category Rel(Σ,E)(Q) with objects (Σ,E )-algebras,
and morphisms algebraic Q-relations.

I Rel(Σ,E)(Q) has a symmetric monoidal structure given by
products in E .

I Rel(Σ,E)(Q) is poset enriched with respect to the ordering

R ⊆ R ′ if ∀a, b.R(a, b) ≤ R ′(a, b)

I Rel(Σ,E)(Q) is a hypergraph category



Generalized Relations
The General Construction

Details of the Structure

I Tensors

(R ⊗ S)(a, a′, b, b′) = R(a, b)⊗ S(a′, b′)

I Graphs

(−)◦ : Alg(Σ,E )→ Rel(Σ,E)(Q)

f◦(a, b) =
∨
{k | f (a) = b}

I Hypergraph structure from cartesian structure in E

εA = !◦ δA = ∆◦
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Generalized Relations
Examples

The following examples can be constructed using this procedure.

I Rel

I Rel(C ) giving a category of relations with internal monads the
generalized metric spaces

I Rel(F ) giving a category of relations with internal monads the
generalized ultrametric spaces

I The category Rel(EM(D)) of convex relations arises for a
suitable choice of (Σ,E ) and Q

I The category of linear relations used in models of linear
dynamical systems

We get new examples worthy of further investigation

I C -valued convex relations, blending both convexity and
metrics

I Models varying with context using presheaf toposes



Spans
Spans are Constructive Relations I

A span of sets consists of the data

X

A B

f g

Interpretation - Constructive Relations

Elements of the apex X are proof witnesses for relatedness, we
write

x

a b
if f (x) = a and g(x) = b



Spans
Spans are Constructive Relations I

Spans are composed using pullbacks

X

A B

Y

C

X ×B Y

f g h k

p1 p2

We recall that

X ×B Y ∼= {(x , y) | x ∈ X , y ∈ Y , g(x) = h(y)}

So

a

(x , y)

c
if

a

x

b

y

c



Spans
Incorporating Truth Values

We introduce a monoid Q = (Q,⊗, k) of truth values, and a
characteristic morphism

X

A B

Q
f g

χ

We call such a span a Q-span, and write

xq

a b
if f (x) = a and g(x) = b and χ(x) = q



Spans
Composing Spans with Truth Values

Q-spans compose via pullbacks as before. We must also define the
resulting characteristic function

a

(x , y)p⊗q

c
if

a

xp

b

yq

c

Theorem
For a finitely complete category E and internal monoid Q, Q-spans
form a category Span(Q). If Q is commutative, Span(Q) is a
hypergraph category.



Spans
Algebraic Structure

We fix variety (Σ,E ). An algebraic Q-span is a Q-span with
domain and codomain (Σ,E )-algebras, satisfying the condition
that if for every σ ∈ Σ

xq1
1

a1 b1

∧ ... ∧
xqnn

an bn

Then there exists x such that

xq

σ(a1, ..., an) σ(b1, ..., bn)

and q1 ⊗ ...⊗ qn ≤ q

Note the need for order structure on the truth values.



Spans
Algebraic Q-spans

Theorem
If E is a topos, (Σ,E ) a variety in E , and Q an internal partially
ordered commutative monoid then

I Algebraic Q-spans form a category Span(Σ,E)(Q)

I The category Span(Σ,E)(Q) is a hypergraph category



Spans
Algebraic Q-spans

Details of the Structure

I Tensors given by products in Alg(Σ,E ) and monoid
multiplication

I Graphs

(−)◦ : Alg(Σ,E )→ Span(Σ,E)(Q)

f◦ =

A

A B

1 Q
1 f

! k

I Hypergraph structure given by graphs of diagonals and
terminal maps in the base.



Spans
Order Structure

We say that
(X1, f1, g1, χ1) ⊆ (X2, f2, g2, χ2)

if there is a E-monomorphism m : X1 → X2 such that

f1 = f2 ◦m and g1 = g2 ◦m and ∀a, b.χ1(x) ≤ χ2(m(x))

This relation makes Span(Σ,E)(Q) a preordered monoidal category.



Relations and Spans
Collapsing Witnesses

If Q is a commutative quantale, we can turn an algebraic Q-span
into an algebraic Q-relation via

V (X , f , g , χ)(a, b) =
∨
{χ(x) | f (x) = a ∧ g(x) = b}



Relations and Spans
Collapsing Witnesses

Theorem
Let E be a topos, (Σ,E ) a variety in E and Q an internal
commutative quantale. There is a strict monoidal, identity and
surjective on objects, preorder-functor

V : Span(Σ,E)(Q)→ Rel(Σ,E)(Q)

This functor “commutes with graphs”

Alg(Σ,E )

Span(Σ,E)(Q) Rel(Σ,E)(Q)

(−)◦ (−)◦

V



Parameterized Constructions

We have shown a procedure for constructing preordered
hypergraph categories. These categories can be customized along
4 axes of variation

1. The ambient mathematical universe

2. The truth values

3. The relevant algebraic structure

4. Proof relevance versus provability



Conclusion

I Conceptually motivated parameterized construction of
hypergraph categories (today’s talk)

I This construction is functorial in the choice of truth values
(done)

I It is also functorial in the algebraic structure in interesting
ways (done)

I Structure of generalized categories of relations, zero objects,
biproducts etc. (ongoing)

I The construction should also be functorial in the choice of
topos (ongoing)

I Our category of spans should really be a symmetric monoidal
bicategory (future work)

I We can take truth values in monoidal categories - unify the
span and relation constructions (future work)


