
Categorical Description of Gauge Theory

Christian Sämann

School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh

Categories, Logic, and Physics, Scotland, 14.4.2016

Based on:
arXiv:1604.01639 with Brano Jurčo and Martin Wolf



Motivation 2/24

Future progress in string theory seems to depend on more mathematical input.

String-/M-theory as it used to be

Every 10 years a “string revolution”
Every 2-3 years one new big fashionable topic to work on

This changed: No more revolutions or really big fashionable topics.

My explanation
We need more input from maths, in particular category theory:

2-form gauge potential B-field: Gerbes or principal 2-bundles
String Field Theory: L∞-algebras or semistrict Lie ∞-algebras
Double Field Theory: Courant algebroids or

symplectic Lie 2-algebroids
(2,0)-theory: parallel transport of string-like objects

full non-abelian higher gauge theory
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We will need to use some very simple notions of
category theory, an esoteric subject noted for its
difficulty and irrelevance.
G. Moore and N. Seiberg, 1989

What does categorification mean?
One of Jeff Harvey’s questions to identify
the “generation PhD>1999” at Strings 2013.
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Motivation: The Dynamics of Multiple M5-Branes 4/24

To understand M-theory, an effective description of M5-branes would be very useful.

D-branes
D-branes interact via strings.
Effective description: theory of endpoints
Parallel transport of these: Gauge theory
Study string theory via gauge theory

M5-branes
M5-branes interact via M2-branes.
Eff. description: theory of self-dual strings
Parallel transport: Higher gauge theory
Holy grail: (2,0)-theory (conjectured 1995)
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Lightning Review: Gauge Theory 5/24

Gauge theory describes interactions in the presence of internal symmetries.

For a physicist

Some particles/quantum fields: posses local symmetries
problem: φ(x)→ g(x)φ(x), but ∂

∂xµφ(x) 9 g(x) ∂
∂xµφ(x)

solution: gauge field ∂
∂xµφ(x)→ ( ∂

∂xµ +Aµ(x))φ(x)

For a mathematician
local symmetry: principal fibre bundle, representation
fields are sections of associated vector bundle
derivative becomes connection on the vector bundle

For calculations in physics: cocycles
open cover of manifold taUa →M

principal G-bundle: gab : C∞(Ua ∩ Ub,G) with gabgbc = gac

connection: Aa : Ω1(Ua, Lie(G)) with Aa = g−1
ab (d +Ab)gab
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Parallel Transport of Strings is Problematic 6/24

The lack of surface ordering renders a parallel transport of strings problematic.

Parallel transport of particles in representation of gauge group G:
holonomy functor hol : path γ 7→ hol(γ) ∈ G

hol(γ) = P exp(
∫
γ A), P : path ordering, trivial for U(1).

Parallel transport of strings with gauge group U(1):
map hol : surface σ 7→ hol(σ) ∈ U(1)

hol(σ) = exp(
∫
σ B), B: connective structure on gerbe.

Nonabelian case:
much more involved!
no straightforward definition of surface ordering
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Naïve No-Go Theorem 7/24

Naively, there is no non-abelian parallel transport of strings.

Imagine parallel transport of string with gauge degrees in Lie(G):

•
�� oo
^^

g1��

g′1��

•�� oo ]]
g2��

g′2��

Consistency of parallel transport requires:

(g′1g
′
2)(g1g2) = (g′1g1)(g′2g2)

This renders group G abelian. Eckmann and Hilton, 1962
Physicists 80’ies and 90’ies

Way out: 2-categories, Higher Gauge Theory.

Two operations ◦ and ⊗ satisfying Interchange Law:

(g′1 ⊗ g′2) ◦ (g1 ⊗ g2) = (g′1 ◦ g1)⊗ (g′2 ◦ g2) .
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We want to categorify gauge theory

Need: suitable descriptions/definitions



Gauge Theory from Parallel Transport Functors 9/24

A straightforward way to describe gauge theory is in terms of parallel transport functors.

Encode gauge theory in parallel transport functor
Mackaay, Picken, 2000

Every manifold comes with path groupoid PM = (PM ⇒M)

x
γ
)) y

Gauge group gives rise to delooping groupoid BG = (G⇒ ∗)
parallel transport functor hol : PM → BG:

assigns to each path a group element
composition of paths: multiplication of group elements

Readily categorifies:
use path 2-groupoid with homotopies between paths
use delooping of categorified group

Problem: Need to differentiate to get to cocycles
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Higher Lie Algebras from NQ-Manifolds 10/24

Semistrict Lie n-algebras are readily constructed as NQ-manifolds.

N-manifolds, NQ-manifold
N-graded manifold with coordinates of degree 0, 1, 2, . . .

M0 ←M1 ←M2 ← . . .

manifold
���

linear spaces
@@IH

HHY

Morphisms φ : M → N are maps φ∗ : C∞(N)→ C∞(M)

NQ-manifold: vector field Q of degree 1, Q2 = 0

Physicists: think ghost numbers, BRST charge, SFT

Examples:
Tangent algebroid T [1]M , C∞(T [1]M) ∼= Ω•(M), Q = d
Lie algebra g[1], coordinates ξa of degree 1:

Q = −1
2f

c
abξ

aξb
∂

∂ξc

Condition Q2 = 0 is equivalent to Jacobi identity for f cab
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L∞-Algebras, Lie 2-Algebras 11/24

NQ-manifolds provide an easy definition of L∞-algebras.

Lie n-algebroid or n-term L∞-algebroid:

M0 ←M1 ←M2 ← . . .←Mn ← ∗ ← ∗ ← . . .

Lie n-algebra, n-term L∞-algebra or Lie n-algebra:

∗ ←M1 ←M2 ← . . .←Mn ← ∗ ← ∗ ← . . .

Example: Lie 2-algebra as 2-term L∞-algebra
NQ-manifold: ∗ ←W [1]← V [2]← ∗ ← . . ., coords. wa, vi

Homological vector field:

Q = −ma
i v
i ∂

∂wa
− 1

2m
c
abw

awb
∂

∂wc
−mj

aiw
avi

∂

∂vj
− 1

3!m
i
abcw

awbwc
∂

∂vi

Structure constants: higher products µi on W ← V [1]

µ1(τi) = ma
i τa , µ2(τa, τb) = mc

abτc , . . . , µ3(τa, τb, τc) = mi
abcτi

Q2 = 0: Higher or homotopy Jacobi identity, e.g.
µ2(w1, µ2(w2, w3)) + cycl. = µ1(µ3(w1, w2, w3))
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Atiyah Algebroid Sequence 12/24

A straightforward way to describe gauge theory is in terms of parallel transport functors.

(Flat) connection: splitting of Atiyah algebroid sequence

0 −→ P ×G Lie(G) −→ TP/G −→ TM −→ 0

Atiyah, 1957

Related approach: Kotov, Strobl, Schreiber, ...

Gauge potential from morphism of N -manifolds:

a : T [1]M → g[1] −→ Aaµdxµ := a∗(ξa)

Curvature: failure of a to be morphism of NQ-manifold:

F a := (d ◦ a∗ − a∗ ◦Q)(ξa) = dAa + 1
2f

a
bcA

b ∧Ac

Infinitesimal gauge transformations: flat homotopies
Readily categorifies, but integration an issue
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Categorical Description of Principal Bundles 13/24

Descent data for principal bundles is encoded in a functor.

Čech groupoid of surjective submersion Y �M , e.g. Y = taUa:

Č (U) :
⊔
a,b

Uab ⇒
⊔
a

Ua , Uab ◦ Ubc = Uac .

Principal G-bundle

Transition functions are nothing but a functor g : Č (U)→ (G⇒ ∗)

tUab
gab //

�� ��

G

�� ��
tUa ∗ // ∗

gabgbc = gac

Equivalence relations: natural isomorphisms.

For categorification: want generalized spaces, higher Lie groups
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Kan simplicial sets 14/24

Kan simplicial sets form a convenient model for (∞, 1)-categories.

Recall: nerve of category C = (C1 ⇒ C0) is simplicial set{
· · · −→−→−→−→ C1 ×s,t

C0
C1
−→−→−→ C1

−→−→ C0

}
faces: source/target or compositions/dropping morphisms
degeneracies: inject identity morphisms
Any inner horn can be filled, outer horns for groupoids:

0

1

2
(0, 2)

(0, 1) (1, 2)
(0, 1, 2)

0

1

2
(0, 2)

(1, 2)

0

1

2

(0, 1) (1, 2)

0

1

2
(0, 2)

(0, 1)

Horn fillers are unique.
Functors: simplicial maps
Natural transformations: simplicial homotopies
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Quasi-Categories and Quasi-Groupoids 15/24

Kan simplicial sets form a convenient model for (∞, 1)-categories.

Quasi-categories, ∞-categories Boardman, Vogt, Joyal, Lurie

Simplicial set
Any inner horn can be filled, not necessarily uniquely

0

1

2
(0, 2)

(0, 1) (1, 2)
(0, 1, 2)

0

1

2
(0, 2)

(1, 2)

0

1

2

(0, 1) (1, 2)

0

1

2
(0, 2)

(0, 1)

Quasi-groupoid: all horns can be filled
n-category/n-groupoid: k-horns with k ≥ n have unique fillers
transfors much easier than in bi- or tricategories:

Functors: simplicial maps
Natural transformations: simplicial homotopies

model for (∞, 1)-categories
readily internalize: Lie quasi-groupoids via simplicial manifolds
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Higher Principal Bundles 16/24

Using Kan simplicial manifolds, we readily define higher principal bundles.

Č (U→ X) of open cover U replaced by nerve N(Č (U→ X)):{
· · · −→−→−→−→ ta,b,c∈AUa ∩ Ub ∩ Uc

−→−→−→ ta,b∈AUa ∩ Ub −→−→ ta∈AUa
}

Higher Lie group: Kan simplicial manifold G with 1 0-simplex
Principal bundle: simplicial map g : N(Č (U→ X))→ G

Isomorphisms: simplicial homotopies
Further generalization to higher spaces:

Motivation: orbifolds, regarded as Lie groupoids
Replace manifold with quasi-groupoid
Everything becomes bisimplicial, but works straightforwardly
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Example: Ordinary Principal G-Bundle 17/24

Using Kan simplicial manifolds, we readily define higher principal bundles.

Simplicial map g from N(Č (U→ X)) to N(BG)

· · · ta,b,c∈A Ua ∩ Ub ∩ Uc
//
////

g2abc(x)

��

ta,b∈AUa ∩ Ub ////

g1ab(x)

��

ta∈AUa
g0a(x)

��
G× G

//
//// G //// ∗

Compatibility with face maps:
g2
abc,1(x) = g1

ab(x) , g2
abc,2(x) = g1

bc(x) , g2
abc,1(x)g2

abc,2(x) = g1
ac(x)

Homotopy between g, g̃: h : N(Č (U→ X))×∆1 → N(BG)

h0((x, a), 0) = ∗ = h0((x, a), 1) ,

gab(x) = h1((x, a, b), (0, 0)) and g̃ab(x) = h1((x, a, b), (1, 1)) ,

hab,01(x) := h1((x, a, b), (0, 1))

Compatibility yields here g1
abh

1
bb,01 = h1

aa,01g̃
1
ab
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Towards Connections: Differentiation 18/24

There is a differentiation procedure of quasi-groupoids due to Ševera.

Recall: Connection on principal G-bundle: Lie(G)-valued 1-forms

Lie functor as suggested by Ševera, 2006
Functors: supermanifolds to certain principal G -bundles

X 7→ (X ×R0|1 � X) 7→ descent data

Moduli: Lie(G ) as an n-term complex of vector spaces
Carries Hom(R0|1,R0|1)-action → L∞-algebra structure

Example: Differentiation of Lie group G.
g : X ×R0|2 → G, g(θ0, θ1, x)g(θ1, θ2, x) = g(θ0, θ2, x)

implies g(θ0, θ1, x) = g(θ0, 0, x)(g(θ1, 0, x))−1

expand trivializ. cobdry: g(θ0, 0, x) = 1+ αθ0, α ∈ Lie(G)[1]

compute g(θ0, θ1) = 1+ α(θ0 − θ1) + 1
2 [α, α]θ0θ1

Qg(θ0, θ1, x) := d
dεg(θ0 + ε, θ1 + ε, x) with Qα = −1

2 [α, α]
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Finite Gauge Transformations 19/24

The differentiation method can be extended to read off finite gauge transformations.

First approach:
We have: Lie algebra element in terms of descent data g
Perform a coboundary transformation to g̃
Trivialize g̃, establish relation between moduli of g, g̃, e.g.

α̃ = p−1αp+ p−1Qp , p ∈ C∞(X,G)

Replace Q by de Rham differential on patches.

B Jurco, CS, M Wolf, 1403.7185
Better approach:

Recall: functions on T [1]X yield de Rham complex
Replace X ×R0|1 � X by T [1]X ×R0|1 � T [1]X
Replace Q by Q+ dX

Yields higher connections and their finite gauge trafos

B Jurco, CS, M Wolf, 1604.01639
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All this is quite powerful... 20/24

We readily define Deligne cohomology for semistrict Lie 2-group bundles.

Example: principal G -bundle with G semistrict Lie 2-group:

Cocycle data: (mab, nabc, Aa,Λab, Ba). Cocycle relations:

nabc : mab ⊗mbc ⇒ mac

nacd ◦ (nabc ⊗ idmcd) ◦ a
−1
mab,mbc,mcd

= nabd ◦ (idmab ⊗ nbcd)
dAa +Aa ⊗Aa + s(Ba) = 0

Λab : Ab ⊗mab ⇒ mab ⊗Aa − dmab

Λcb ◦ (idAb ⊗ nbac) ◦ aAb,mba,mac =

= (nbac ⊗ idAc − dnbac) ◦
[
a−1
mba,mac,Ac

− idd(mba⊗mac)
]
◦

◦ (idmba ⊗ Λca − iddmba⊗mac) ◦ (amba,Ac,mac − iddmba⊗mac) ◦ (Λab ⊗ idmac)

Bb ⊗ idmab = µ(Ab, Ab,mab) +
[
idmab ⊗Ba + µ(mab, Aa, Aa)

]
◦

◦
[
− dΛab − Λab ⊗ idAa − µ(Ab,mab, Aa)

]
◦

◦
[
− ids(dΛab) − idAb ⊗ (Λab + iddmab)

]
We can now start to calculate and look for applications.
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Important Problem: Fake Curvature Constraints 21/24

One additional equation of motion causes various problems.

In gauge transformations, one encounters fake curvatures:

F := dA+ 1
2 [A,A]− t(B) = 0

“Lower curvatures determined by higher potentials”
3 Renders parallel transport reparameterization-invariant
3 In (2,0)-theory: eliminates unwanted freedom in fields
7 Obstacle to non-trivial examples of higher bundles:

E.g. String 2-group, model by Schommer-Pries, 2009:
Roughly: U(1)× G⇒ G, fallback to abelian case
The same for all obvious examples of Lie 2-groups
Obvious lift of ’t Hooft-Polyakov monopoles: F 6= 0

Any ideas?
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Applications and Open Issues 22/24

There are many applications of our framework and important open problems.

Applications of very general description of higher gauge theory:
Many existing models are higher gauge theories (HGTs)

Tensor hierarchy models are HGTs S Palmer&CS, 1308.2622
M2-brane models are HGTs S Palmer&CS, 1311.1997

Twistor constructions of (2,0)-theories/M5-brane models:
Input: (Higher) spacetime, twistor space, higher gauge group
Output: (2,0)-model via Penrose-Ward transform

Higher versions of monopole equations: self-dual strings

Open problems:
Find “good” higher gauge groups (String groups?)
Clarify meaning of fake curvature conditions
Study more general spaces: orbifolds, ...
Find truly non-abelian higher principal bundle + connection
Construct a higher version of ’t Hooft-Polyakov monopole
Find (2, 0)-theory
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Review: The ’t Hooft-Polyakov Monopole 23/24

The ’t Hooft-Polyakov Monopole is a non-singular solution with charge 1.

Recall ’t Hooft-Polyakov monopole (ei generate su(2), ξ = v|x|):

Φ =
eix

i

|x|2
(
ξ coth(ξ)− 1

)
, A = εijk

eix
j

|x|2

(
1− ξ

sinh(ξ)

)
dxk

At S2
∞: Φ ∼ g(θ)e3g(θ)−1.

g(θ) : S2
∞ → SU(2)/U(1): winding 1

Charge q = 1 with

2πq = 1
2

∫
S2
∞

tr (F †Φ)

||Φ||
with ||Φ|| :=

√
1
2 tr (Φ†Φ)

Higgs field non-singular:
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Elementary Solutions: A Non-Abelian Self-Dual String 24/24

We can write down a non-abelian self-dual string with winding number 1.

Self-Dual String (Lie 2-algebra su(2)× su(2)
µ1←− R4, ξ = v|x|2):

Φ =
eµx

µ

|x|3
f(ξ) , Bµν = εµνκλ

eκx
λ

|x|3
g(ξ) , Aµ = εµνκλD(eν , eκ)

xλ

|x|2
h(ξ)

Solves indeed H = ?∇Φ for right f(ξ), g(ξ), h(ξ)

At S∞3 : Φ ∼ g(θ) B e4. g(θ) : S3
∞ → SU(2) has winding 1.

Charge q = 1:

(2π)3q = 1
2

∫
S3
∞

(H,Φ)

||Φ||
with ||Φ|| :=

√
1
2(Φ,Φ) ,

Higgs field non-singular:

Christian Sämann Categorical Description of Gauge Theory



Categorical Description of Gauge Theory

Christian Sämann

School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh

Categories, Logic, and Physics, Scotland, 14.4.2016

Christian Sämann Categorical Description of Gauge Theory


