# Indefinite causal structures using diagrammatic methods

Aleks Kissinger & Sander Uijlen

Radboud Universiteit, Nijmegen

Aleks Kissinger & Sander Uijlen Indefinite causal structures using diagrammatic methods



- 2 Causal processes
- O Probabilities
- 4 Second order causality
- 5 W processmatrix
- 6 Diagrammatic W

# Setting

### • We work in a self-dual compact closed category

# Setting

- We work in a self-dual compact closed category
- For every object A there is a cup  $\eta_A: I \to A \otimes A$
- and a cap  $\eta_A : A \otimes A \rightarrow I$

# Setting

- We work in a self-dual compact closed category
- For every object A there is a cup  $\eta_A: I \to A \otimes A$
- and a cap  $\eta_A : A \otimes A \rightarrow I$  which satisfy

• Processes are morphisms  $\Phi$ 

∃ ► < Ξ.</p>

Processes are morphisms 
We have special morphisms from and to the trivial system I

states := 
$$\frac{1}{\sqrt{\psi}}$$
 effects :=  $\frac{\sqrt{\pi}}{1}$ 

- Processes are morphisms  $\Phi$
- We have special morphisms from and to the trivial system I

states := 
$$\frac{1}{\sqrt{\psi}}$$
 effects :=  $\frac{\sqrt{\pi}}{1}$ 

• Want a special effect discard

$$d_A := -$$

compatible with monoidal structure

#### • Work in **FHilb**

<ロ> <同> <同> < 同> < 同>

æ

- Work in FHilb
- $H \otimes H \cong B(H)$

同 ト イ ヨ ト イ ヨ ト

э



for a map f and its adjoint



• corresponds to pure map via  $\Phi_f(\rho) = f \rho f^{\dagger}$ 





< ∃ →

э

æ





э

• Discard: 
$$\overline{T}$$
 :=  $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ 

• Discard: 
$$\overline{T}$$
 :=  $\begin{bmatrix} & & & \\ & & & \\ & & \\ & & \\ \end{bmatrix}$  Encode:  $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array}$  Measure:  $\begin{array}{c} & & \\ & & \\ & & \\ \end{array}$  :=  $\begin{bmatrix} & & & \\ & & \\ & & \\ & & \\ \end{array}$ 

• This gives a subcategory of **FHilb** 

Image: A = 1

- This gives a subcategory of **FHilb**
- "doubling = quantum"

Image: A = 1

• Spiders with both classical and quantum wires are bastards



• Spiders with both classical and quantum wires are bastards





• Decoherence: first measure, then encode





- 2 Causal processes
- 3 Probabilities
- 4 Second order causality
- 5 W processmatrix
- 6 Diagrammatic W



#### Definition

## A process $\Psi : A \to B$ is called causal if $d_B \circ \Psi = d_A$ . That is:

同 ト イ ヨ ト イ ヨ ト

э



#### Definition

A process  $\Psi : A \rightarrow B$  is called causal if  $d_B \circ \Psi = d_A$ . That is:



伺 ト く ヨ ト く ヨ ト

э

# Signaling

• Imagine two observers Alice and Bob acting on a system



∃ → < ∃</p>

# Signaling

• Imagine two observers Alice and Bob acting on a system







## • If $A \leq B$ then Bob cannot signal to Alice

Image: A = 1

#### • If $A \leq B$ then Bob cannot signal to Alice



#### • If $A \leq B$ then Bob cannot signal to Alice



• No signaling if  $\Phi$  admits both factorisations  $A \preceq B$  and  $B \preceq A$ 

## Example

• A shared state is non signaling



## Example

• A shared state is non signaling





- 2 Causal processes
- O Probabilities
- 4 Second order causality
- 5 W processmatrix
- 6 Diagrammatic W

• Alice and Bob get input x, y

- Alice and Bob get input x, y
- Possibly they get a system once

- Alice and Bob get input x, y
- Possibly they get a system once
- Produce outcome *a*, *b*

- Alice and Bob get input x, y
- Possibly they get a system once
- Produce outcome *a*, *b*
- We obtain probabilities p(a, b|x, y)
## Device independant probabilities

- Alice and Bob get input x, y
- Possibly they get a system once
- Produce outcome *a*, *b*
- We obtain probabilities p(a, b|x, y)
- A probability distribution  $q^{A \leq B}$  is non signaling from A to B if

$$\sum_{b} q(a, b|x, y) = q(a|x)$$
$$\sum_{a} q(a, b|x, y) = q(b|x, y)$$

• Similar:  $r^{B \preceq A}$ 

## Device independant probabilities

- Alice and Bob get input x, y
- Possibly they get a system once
- Produce outcome *a*, *b*
- We obtain probabilities p(a, b|x, y)
- A probability distribution  $q^{A \leq B}$  is non signaling from A to B if

$$\sum_{b} q(a, b|x, y) = q(a|x)$$
$$\sum_{a} q(a, b|x, y) = q(b|x, y)$$

- Similar: r<sup>B</sup> ≤ A
- Question: is p of the form  $p = \lambda q^{A \preceq B} + (1 \lambda) r^{B \preceq A}$ ?

# Local QM

### • What is the most general way to obtain these probabilities?

# Local QM

- What is the most general way to obtain these probabilities?
- No assumption of a fixed causal structure: *local QM*.

3 N

# Local QM

- What is the most general way to obtain these probabilities?
- No assumption of a fixed causal structure: local QM.
- Alice and Bob have a lab where they act on a system which enters once

ヨト イヨト

## Choi-Jamiołkowski isomorphism

• 
$$\eta \to \hat{\eta} \in B(H_{A_I} \otimes H_{A_O}), \qquad \xi \to \hat{\xi} \in B(H_{B_I} \otimes H_{B_O})$$

Diagrams and processes Causal processes Probabilities Second

## Choi-Jamiołkowski isomorphism

• 
$$\eta \to \hat{\eta} \in B(H_{A_I} \otimes H_{A_O}),$$
  
•  $\hat{\eta} = (1 \otimes \eta) \sum_i |i\rangle |i\rangle \langle i|\langle i|$ 

$$\xi \to \hat{\xi} \in B(H_{B_I} \otimes H_{B_O})$$

∃ ▶ ∢

## Choi-Jamiołkowski isomorphism

• 
$$\eta \to \hat{\eta} \in B(H_{A_I} \otimes H_{A_O}),$$

$$\xi \to \hat{\xi} \in B(H_{B_I} \otimes H_{B_O})$$

• 
$$\hat{\eta} = (1 \otimes \eta) \sum_{i} |i\rangle |i\rangle \langle i|\langle i|$$

• Diagrammatically this amounts to

## Choi-Jamiołkowski isomorphism

• 
$$\eta \to \hat{\eta} \in B(H_{A_I} \otimes H_{A_O}),$$

$$\xi \rightarrow \hat{\xi} \in B(H_{B_I} \otimes H_{B_O})$$

- $\hat{\eta} = (1 \otimes \eta) \sum_{i} |i\rangle |i\rangle \langle i|\langle i|$
- Diagrammatically this amounts to



Process-State duality

• 
$$p(a, b|x, y) = Tr((\hat{\eta}_{a|x}^A \otimes \hat{\xi}_{b|y}^B) \cdot W)$$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

• 
$$p(a, b|x, y) = Tr((\hat{\eta}^{A}_{a|x} \otimes \hat{\xi}^{B}_{b|y}) \cdot W)$$

•  $W \in B(H_{A_I} \otimes H_{A_O} \otimes H_{B_I} \otimes H_{B_O})$ , "generalized state"

Image: A Image: A

- $p(a, b|x, y) = Tr((\hat{\eta}^{A}_{a|x} \otimes \hat{\xi}^{B}_{b|y}) \cdot W)$
- $W \in B(H_{A_I} \otimes H_{A_O} \otimes H_{B_I} \otimes H_{B_O})$ , "generalized state"
- Probabilities must be positive  $\Rightarrow W \ge 0$

• 
$$p(a, b|x, y) = Tr((\hat{\eta}^A_{a|x} \otimes \hat{\xi}^B_{b|y}) \cdot W)$$

- $W \in B(H_{A_I} \otimes H_{A_O} \otimes H_{B_I} \otimes H_{B_O})$ , "generalized state"
- Probabilities must be positive  $\Rightarrow W \ge 0$
- Probabilities must sum up to one:

$${\it Tr}ig((\hat\eta_{\it cptp}\otimes\hat\xi_{\it cptp})\cdot Wig)=1$$

for all cptp  $\hat{\eta}_{cptp}, \hat{\xi}_{cptp}$ 

• 
$$p(a, b|x, y) = Tr((\hat{\eta}^A_{a|x} \otimes \hat{\xi}^B_{b|y}) \cdot W)$$

- $W \in B(H_{A_I} \otimes H_{A_O} \otimes H_{B_I} \otimes H_{B_O})$ , "generalized state"
- Probabilities must be positive  $\Rightarrow W \ge 0$
- Probabilities must sum up to one:

$$\mathit{Tr}ig((\hat{\eta}_{\mathit{cptp}}\otimes\hat{\xi}_{\mathit{cptp}})\cdot Wig)=1$$

for all cptp  $\hat{\eta}_{cptp}, \hat{\xi}_{cptp}$ 

• Think of  $\hat{\eta}_{cptp} = \sum_{a} \hat{\eta}^{A}_{a|x}$ 

•  $W \in B(H_{A_I} \otimes H_{A_O} \otimes H_{B_I} \otimes H_{B_O})$  $\Leftrightarrow W: B(H_{A_{I}} \otimes H_{A_{O}}) \rightarrow B(H_{B_{I}} \otimes H_{B_{O}})$ 

.⊒ . ►

э

- $W \in B(H_{A_{l}} \otimes H_{A_{O}} \otimes H_{B_{l}} \otimes H_{B_{O}})$  $\Leftrightarrow W : B(H_{A_{l}} \otimes H_{A_{O}}) \rightarrow B(H_{B_{l}} \otimes H_{B_{O}})$
- Diagrammatically:



#### • Quantum combs



- 2 Causal processes
- 3 Probabilities
- 4 Second order causality
- 5 W processmatrix
- 6 Diagrammatic W

## Secon order causality

### Definition

A map W is second order causal if it sends causal processes to causal processes. That is:

## Secon order causality

### Definition

A map W is second order causal if it sends causal processes to causal processes. That is:



## • Consider $W: (A_I \otimes A_O) \otimes (B_I \otimes B_O) \rightarrow C_I \otimes C_O$

∃ → < ∃</p>

- Consider  $W : (A_I \otimes A_O) \otimes (B_I \otimes B_O) \rightarrow C_I \otimes C_O$
- W is bipartitie second order causal (SOC<sub>2</sub>) if



is causal for all causal  $\Phi_A$  and  $\Phi_B$ 

### • Example: connect Alice to Bob or vice versa

(E)

٩

• Example: connect Alice to Bob or vice versa



• Example: connect Alice to Bob or vice versa



• Fixed causal order

٥

### $\bullet~{\rm Note~SOC}_2$ only has to hold for seperable processes

- Note  $\mathrm{SOC}_2$  only has to hold for seperable processes
- Example: swap



• What if A and B have ancilla systems



• What if A and B have ancilla systems



#### Theorem

 $\mathit{SOC}_2 \Rightarrow \mathit{CompletelySOC}_2$ 

Aleks Kissinger & Sander Uijlen Indefinite causal structures using diagrammatic methods



### • Enough causal states if



伺 ト イヨト イヨト



• Enough causal states if



• This is the case for operator algebras with cp maps

• For causal states  $\rho_A$ ,  $\rho_B$ 



are causal

э

• For causal states  $\rho_A$ ,  $\rho_B$ 



```
are causal
```



but also



□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ





#### • Hence



.⊒ . ►



- 2 Causal processes
- 3 Probabilities
- 4 Second order causality
- **5** W processmatrix

### 6 Diagrammatic W

### • We investigate W when the system is a qubit

∃ → < ∃</p>
- We investigate W when the system is a qubit
- Write W in Pauli basis

$$W = \sum_{i,j,k,l} \lambda_{i,j,k,l} \,\sigma_k \,\sigma_i \,\sigma_l \,\sigma_j$$

∃ → < ∃</p>

- We investigate W when the system is a qubit
- Write W in Pauli basis

$$W = \sum_{i,j,k,l} \lambda_{i,j,k,l} \,\sigma_k \,\sigma_i \,\sigma_l \,\sigma_j$$



•  $W \geq 0$  and  $Tr((\hat{\eta}\otimes\hat{\xi})W) = 1$  are equivalent to:

∃ >

# • $W \geq 0$ and $Tr((\hat{\eta}\otimes\hat{\xi})W) = 1$ are equivalent to:

 $W \ge 0$ 

∃ >

# • $W \geq 0$ and $Tr((\hat{\eta} \otimes \hat{\xi})W) = 1$ are equivalent to:

 $W \ge 0$ 

$$Tr(W) = d_{A_O} d_{B_O}$$

∃ >

• 
$$W\geq 0$$
 and  ${\it Tr}((\hat\eta\otimes\hat\xi)W)=1$  are equivalent to:

 $W \ge 0$ 

$$Tr(W) = d_{A_O} d_{B_O}$$

$$B_{I}B_{O}W = A_{O}B_{I}B_{O}W \qquad A_{I}A_{O}W = B_{O}A_{I}A_{O}W$$
$$W = B_{O}W + A_{O}W - A_{O}B_{O}W$$
where  $_{X}W = \frac{\mathbf{1}^{\mathbf{X}}}{d_{X}} \otimes tr_{X}W$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

•  $W \geq 0$  and  $Tr((\hat{\eta}\otimes\hat{\xi})W) = 1$  are equivalent to:

 $W \ge 0$ 

$$Tr(W) = d_{A_O} d_{B_O}$$

$$B_{I}B_{O}W = A_{O}B_{I}B_{O}W \qquad A_{I}A_{O}W = B_{O}A_{I}A_{O}W$$
$$W = B_{O}W + A_{O}W - A_{O}B_{O}W$$

where  $_X W = \frac{\mathbf{1}^{\mathbf{X}}}{d_X} \otimes tr_X W$ 

• Consider all possible terms in W

Diagrams and processes Causal processes Probabilities Second



伺 ト く ヨ ト く ヨ ト



3

э

э





• Similarly 
$$i = k = 0 \Rightarrow j = 0$$



• Similarly 
$$i = k = 0 \Rightarrow j = 0$$

• 
$$W = {}_{B_O}W + {}_{A_O}W - {}_{A_OB_O}W$$

• At least one of *i*,*j* equals 0 (trace)



・ 同 ト ・ ヨ ト ・ ヨ ト …

3

• 
$$Tr(W) = d_{A_O}d_{B_O} = 4 \Rightarrow \lambda_{0,0,0,0} = \frac{1}{4}$$

・ロト ・日・・日・・日・・ つくの

• 
$$Tr(W) = d_{A_O}d_{B_O} = 4 \Rightarrow \lambda_{0,0,0,0} = \frac{1}{4}$$

・ロト ・日・・日・・日・・ つくの

#### Diagrams and processes Causal processes Probabilities Second

• 
$$Tr(W) = d_{A_O}d_{B_O} = 4 \Rightarrow \lambda_{0,0,0,0} = \frac{1}{4}$$

- $W \ge 0$  restricts to positive cone
- Example:  $W = \frac{1}{4} \left[ 1111 + \frac{1}{\sqrt{2}} (1ZZ1 + Z1XZ) \right]$

- $Tr(W) = d_{A_O}d_{B_O} = 4 \Rightarrow \lambda_{0,0,0,0} = \frac{1}{4}$
- W ≥ 0 restricts to positive cone
- Example:  $W = \frac{1}{4} \left[ 1111 + \frac{1}{\sqrt{2}} (1ZZ1 + Z1XZ) \right]$
- Can show this W breaks causal inequality bound for Guess Your Neighbours Input game

We obtain probabilities incompatible with a fixed causal order



- 2 Causal processes
- 3 Probabilities
- 4 Second order causality
- 5 W processmatrix

### 6 Diagrammatic W

• Consider again 
$$W = \frac{1}{4} \left[ 1111 + \frac{1}{\sqrt{2}} (1ZZ1 + Z1XZ) \right]$$

・ロト ・日・・日・・日・・ つくの

• Consider again  $W = \frac{1}{4} \left[ 1111 + \frac{1}{\sqrt{2}} (1ZZ1 + Z1XZ) \right]$ 



• Consider very simpel W



• Consider very simpel W



• Not valid due to constrains on Pauli matrices (one term fails)

• Consider very simpel W



- Not valid due to constrains on Pauli matrices (one term fails)
- d kills precisely this Pauli term

## Open questions

#### • What are diagrammatic building block for general W?

# Open questions

- What are diagrammatic building block for general W?
- Is there a universal set?

# Open questions

- What are diagrammatic building block for general W?
- Is there a universal set?
- What is W physically?