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Abstract 

Recently, there has been a resurgence of interest in the 
role of the Age of Acquisiti on (AoA) of an item in 
determining subjects’ reaction time in naming words, 
objects, and faces. Using the number of epochs 
required to learn an item as a direct measure of AoA 
in connectionist networks, Smith, Cottrell & Anderson 
(in press) have shown that AoA is a stronger predictor 
of final Sum Squared Error than frequency. In this 
paper, we repli cate Smith et al. using more reali stic 
frequency distributions for the items, and examine 
why some patterns may be learned earlier than others. 
First, we have found that the same patterns tend to be 
learned early and late by networks differing in their 
initi al random weights; hence, the issue is, what 
property of the patterns determines AoA? We have 
found that even very weak pattern similarity structure 
is a strong predictor of AoA when frequency is 
controlled for.  Also, we have found evidence that 
such a similarity structure may still be an important 
factor in determining AoA even when pattern 
frequency is varied. 

Introduction 
Ever since Carroll & White (1973) reanalyzed 
Oldfield & Wingfield' s (1965) naming latency data 
and discovered that frequency was not significant 
when AoA was considered, controversy has 
surrounded discussions of the import of the two 
variables. Technological and methodological 
refinements have led to agreement that both 
frequency and AoA play significant roles.  Hence, 
interest has returned to the pursuit of understanding 
the mechanisms underlying AoA effects.   

It had been proposed recently (Morrison & Elli s, 
1995; Moore & Valentine, 1998) that connectionist 
networks would be incapable of exhibiting AoA 
effects because training on late patterns would cause 
“catastrophic interference” resulting in the unlearning 
of early patterns. However, this sort of interference is 
only found if training on early patterns ceases. Elli s 
& Lambon Ralph (2000) demonstrated AoA effects 
in a neural network by training the net on an “early” 
set of patterns and then simply adding a second set of 
“ late” patterns halfway through training. 

Smith et al. (in press) independently demonstrated 
AoA effects in networks. In contrast to the staging 
method of Elli s & Lambon Ralph (2000), where AoA 
is assumed to correspond to the time at which 
patterns are presented to the network (early or late), 
all patterns were presented to the model from the 
outset. AoA can then be measured for each pattern 
individually as the time during training when the 
pattern is learned. Using this more natural definition, 
Smith et al. reported significant effects of AoA on 
naming latency (defined as the residual error on a 
pattern after training is completed, a measure of the 
network’s uncertainty). 

What we would li ke to know is why certain 
patterns are learned earlier than others, and how early 
learning of a pattern comes to affect the network' s 
performance. Elli s & Lambon Ralph’s (2000) 
approach cannot be used to find out why patterns are 
acquired in a particular order as it imposes an order 
by staging pattern presentation. Instead, we vary 
properties of the patterns and then measure AoA, as 
in Smith et al. Elli s & Lambon Ralph (2000), do 
suggest why early AoA is important for final 
performance – the network is more “plastic” earlier 
in training, so items that are learned first have the 
opportunity to make the biggest impression on the 
weights. 

We also want to know whether our finding that 
AoA is a stronger predictor of final error than 
frequency survives a more reali stic version of Zipf’s 
(1935) frequency distribution than was used by Smith 
et al.  Here we show that it does. 

Methods 
Our investigation is organized around a series of 
experiments in which we repli cate and extend 
network simulations and analyses previously reported 
by Smith et al. (in press). We begin with one of the 
simplest connectionist models of lexical access, an 
autoencoder network. This kind of network simply 
reproduces its input on its output through a set of 
hidden units, and has seen surprisingly wide 
application in cogniti ve modeling. We then extend 
our simulations to more complex mappings. 



Experiment 1  
Smith et al. (in press) report finding a strong 
correlation between AoA and SSE in their first 
experiment in which they trained ten autoencoders on 
the same set of equally frequent patterns.  Training 
all networks on the same set of patterns ignores the 
possibilit y that the order in which the patterns in the 
set will be acquired by the network may depend on 
some property of the training set.  To examine this 
possibilit y, we repli cated Smith et al.'s first 
experiment in two ways: first, using the same set of 
randomly generated patterns (an exact repli cation) 
and, second, using a different pattern set for each 
network. The first repli cation allowed us to perform 
an analysis of the AoA rank order correlation of 
patterns between pairs of networks – if networks 
trained on the same pattern set tend to acquire 
patterns in the same order then the rank order 
correlations between pairs of networks should be 
significant, implicating a property of the training set 
in driving acquisition order. The second repli cation 
allowed us to see whether Smith et al.'s finding 
concerning the correlation between AoA and SSE 

maintained across a larger set of patterns. 

Methods For the first repli cation, ten groups of ten 
networks were trained with all of the networks in a 
group using the same pattern set.  In the second 
repli cation, a single group of ten networks were 
trained with each network using a different pattern 
set.  For both repli cations, the pattern sets consisted 
of 200 randomly generated 20-bit patterns in which 
each bit had a 50% chance of being on.  All networks 
were 20-15-20 autoencoders trained via 
backpropagation, using learning rates of .001, 
momentums of .9, and initial random weights 
between 0.1 and -0.1. All patterns were presented 
every epoch. Training was continued until 98% of the 
patterns were acquired (where “acquired” means its 
SSE went below 2.0).  The AoA of a pattern was 
taken to be the first epoch in which it was acquired. 

Results Smith et al. (in press) reported a correlation 
coeff icient of 0.749 between SSE and AoA averaged 
over all 10 networks.  For both repli cations, we found 
similar mean correlations: 0.773 (0.038) and 0.756 
(0.050), for a randomly chosen group in the first 
(same pattern) repli cation and the group in the second 
(different patterns) repli cation, respectively. Thus, 
our repli cation supports the finding of Smith et al. 
that AoA and SSE are strongly correlated. 

Although we arrived at that same result in the first 
repli cation, our second repli cation does not support 
the conclusion that AoA is independent of properties 
of the training set.  Our examination of the AoA rank 
order correlation between groups of networks trained 
on the same pattern set revealed that networks trained 
from different initial weights tend to learn the 
patterns in a set in a similar order.  The pair-wise 
AoA rank order correlations between networks in the 
same group averaged over all pairs in all groups 
(N=450) were found to be 0.485 (σ=0.061), using 
Kendall 's τ, and 0.665 (σ=0.071), using Spearman's 
ρ. Figure 1 ill ustrates this relationship. Both graphs 

 AoA 
Mean 
Cosine 

Mean R2 Density 
Mean 

Distance 

AoA 1.0000     

Mean 
Cosine 

0.0487 1.0000    

Mean R2 -0.4751 -0.0399 1.0000   

Density 0.0806 0.9886 -0.0412 1.0000  

Mean 
Distance 

0.1069 -0.3058 -0.0437 -0.1825 1.0000 

 

Table 1:  Average correlations between pattern 
similarity measures and AoA. 

Figure 1:  Comparison of pattern AoA variance between experiments using the same pattern set for all 
simulations (left) and 10 different pattern sets (right). 
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in the figure plot the mean AoA values for each 
pattern on both axes.  The graph on the left is for 10 
networks in one of the groups in the first repli cation 
using the same pattern set for each network.  In order 
to estimate how chance behavior would look, we 
simply aligned the different pattern sets used in the 
second simulation based on pattern numbers and, in 
the graph on the right in Figure 1, we plot the means 
and standard deviation for all patterns with the same 
number. Note how the means in the plot on the left 
do not cluster about the center as do those in the plot 
on the right, and that those on the left have smaller 
standard deviations. 

 Having found that some property of the training 
set contributes to the AoA of the patterns in the set, 
our next goal was to attempt to identify what that 
property might be.  Note that in choosing random 20 
bit patterns, we are selecting vectors randomly from a 
20 dimensional space. Since the maximum number of 
vectors that can be mutually orthogonal in such a 
space is 20, and we are selecting 200 vectors, each 
vector in the set will necessaril y be closer to some 
vectors in the set than to others.  This unavoidable 
clustering of patterns in the vector space is what we 
refer to when we speak of the similarity structure of a 
randomly chosen set of training patterns.  Since the 
patterns are randomly chosen, the average pair-wise 
correlation between patterns is small (0.0581, σ = 
0.0056 for an exemplary set), but non-zero. 

For one of the pattern sets used in the first 
repli cation, we computed for each pattern the mean 
cosine, R2, and Euclidean distance between the 
pattern and all others, and the pattern density (% bits 
"on").  The correlations between these measures and 
the patterns' AoA values were computed for each 
network and then averaged together.  As Table 1 
shows, the negative mean R2 between a pattern and 
all others in the network is on average the best 
predictor of the pattern's AoA.  We performed a 
repeated measures multiple regression analysis 
(Lorch & Myers, 1990) using mean R2, mean 
Euclidean distance and density as predictors of AoA, 
and found that the null hypotheses that the mean 
regression coeff icients are equal to 0 can be rejected 
with p<<0.000001, p=0.000013, and p=.020976 for 
mean R2, mean Euclidean distance, and density, 
respectively.  Thus, we are led to believe that the 
small and subtle structure reflected by the inter-
pattern correlations among the patterns in even a 
randomly chosen set has a strong role in determining 
the order in which those patterns will be learned. 

Experiment 2 
In this experiment we again repli cate and extend 
Smith et al. (in press). Like Smith et al., we aim to 
show that AoA effects persist in our model when 

frequency is added as a variable, and to compare the 
strengths of these effects to those found in human 
studies. We improve upon Smith et al. by first, using 
more reali stic frequency distributions and second, by 
examining the role the shape of the frequency 
distribution has on the relative contributions of 
frequency and AoA to naming latency. 
 
Methods We again use ten autoencoders with 
differing pattern sets, but we vary the frequency of 
presentation of the patterns within each set.  In 
manipulating pattern frequency, we aim to simulate 
the well -known Zipf distribution, where a small 
number of words occur very frequently – that is, the 
frequency of a word is proportional to the reciprocal 
of the word's frequency rank. We took two 
approaches to simulating this distribution.  In the first 
approach, we randomly assign ranks to patterns and 
train on each pattern with probabilit y 1/rank in each 
epoch.  In the second approach, we take account of 
the fact that the most frequent words tend to be 
function words (li ke "a", "the", "and", etc.) and that 
human naming studies seldom use such words.  
Hence, a more accurate model of the frequency 
distribution of words used for naming stimuli should 
start lower on the Zipf curve.  In order to determine a 
reasonable starting point, we needed to make an 
estimate of the frequency ranking of the most 
frequent word li kely to be used in a naming study. To 
do so, we examined the Celex database (Baayen, 
Piepenbrock & Gulikers, 1985), and found the rank 
of the most frequent noun with an imageabilit y rating 
of 500 or greater in the MRC Psycholinguistic 
database (Coltheart, 1981). The 500+ imageabilit y 
criterion was chosen somewhat arbitraril y (the mean 
rating for words in the MRC database is 450), but 
was intended to find roughly where concrete nouns 
show up on the Zipf’s curve. The noun selected by 
this process was "man" with a rank of 78.  Hence, our 
second repli cation of this experiment randomly 

Figure 2:  Comparison of training probabilit y 
distributions. 
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assigned a rank, r, between 1 and 200 to each pattern 
and then presented that pattern with probabilit y 
(79/78+i) for training on each epoch.1 

Our central motivation for using more than one 
frequency distribution in this (and subsequent) 
experiments is to determine how the shape of the 
distribution might influence the relative contributions 
of AoA and frequency to SSE.  We hypothesized that 
training with a frequency distribution from the 
beginning of Zipf's curve would tend to make the 
frequency of a word a stronger determinant of its 
final SSE than would training with a distribution that 
started after the curve began to flatten.  We were also 
interested in verifying the results obtained by Smith 
et al., since they used only a single pattern set and 
just a Zipf-like frequency distribution. In particular, 
they presented pattern r for training each epoch with 
a probabilit y given by: 

P(r) = 0.05 + 0.95*((1-(1/200)*r)+0.05)10) 
Figure 2 shows a graph comparing all three 
distributions.  Note that the Smith et al. distribution 
has many more “high-frequency” words than does the 
1/r distribution, and that it spans a larger range of 
probabiliti es than does the 79/(78+r) distribution. 
 
Results Table 2 shows the correlation coeff icients 
obtained from the three network models, as well as 
regression coeff icients obtained from human object 
and word naming studies.  The results show that the 
network model correlations look much more similar 
to the object naming data than to the word naming 
data. This is a bit counter-intuiti ve given that the 
networks are being trained to autoencode -- word 
naming is a less arbitrary mapping than object 
naming and, hence, seems li ke a better match to the 
autoencoding task. The results of our next experiment 
suggest a reason for this discrepancy. We put off 
further discussion until then. 

The main difference between the network models' 

                                                        
1 The scale factor of 79 is used only to minimize the 
number of epochs required for learning the set – it simply 
guarantees that the most frequent pattern is presented 
exactly once every epoch, while the relative frequencies of 
the patterns remain unchanged. 

correlations is that Smith et al.'s r(logf,sse) is much 
greater than both the other two network models and 
the human data. Examining Figure 3, we might 
suppose that the 79/(78+r) distribution has a weaker 
frequency effect than Smith's distribution since the 
frequency differences among patterns are not as 
pronounced. The 1/r distribution may be weaker than 
Smith's for a similar reason -- while it covers a 
maximal range of frequencies li ke Smith's, it has 
relatively few at the high frequencies and, so, littl e 
differentiation in terms of frequency for the vast 
majority of its patterns.  As both the models with 1/r 
and 79/(78+r) are closer to the human data than the 
model with Smith's curve, though both are at 
somewhat opposite extremes in terms of frequency 
distribution, support is lent to the notion of using a 
true Zipf based distribution. Furthermore, the slight 
weakening of the effect of frequency on SSE in the 
79/(78+r) model compared to the 1/r model suggests 
that the choice of data set used in human naming 
experiments (object names will not be at the top of 
the Zipf curve) could influence the observed strength 
of correlation between naming latency and frequency 
and, possibly, explain some of the differences in 
findings reported in these studies. 

Experiment 3 
Having demonstrated AoA effects in the presence of 
frequency in networks trained to perform an 
autoencoding task, Smith et al. (in press) then 
examined how different levels of consistency in the 
mapping task represented by the pattern set 
influenced AoA and frequency effects. While 
spelli ng to sound is reasonably consistent mapping, 
spelli ng to meaning or faces to names are not. Again, 
we were interested in repli cating Smith et al. to see 
whether their results still held when using the more 
reali stic 1/r and 79/(78+r) frequency distributions and 
unique training pattern sets for each simulation.  
 
Methods The networks were modified compared to 
the previous experiments in order to make learning 
the less consistent pattern sets possible: the number 
of hidden units was increased to 50, and the objective 
function was changed from SSE to cross-entropy. 

 Networks Object Naming  Word Naming 
 Smith et al. 1/r 79/(78+r) E&M S&Y BM&E C&W M&E 
r(aoa, sse)   0.749  0.727   0.763  0.626  0.683  0.700 0.77 ? 
r(logf,sse) -0.730 -0.462 -0.324 -0.405 -0.456 -0.455 ? -0.388 
r(aoa,logf)  -0.283 -0.259 -0.212 -0.377 ? ? ? ? 
r(log-aoa, sse) ?  0.755   0.826 ? ? ? ?  0.244 
r(log-aoa, logf) ? -0.524 -0.273 ? ? ? ? -0.414 
(E&M = Elli s & Morrison, 2000; S&Y = Snodgrass & Yuditsky, 1998; BM&E = Barry, Morrison & Elli s, 

1997; C&W = Carroll & White, 1973; M&E = Morrison & Elli s, 2000) 
 
 

 
Table 2:  Network and human naming study correlation data. 

 



Ten pattern sets were randomly created, as before. 
From this set of ten, eleven sets of ten were created 
by randomly flipping bits of the target patterns with 
eleven levels of probability evenly distributed 
between 0.0 and 0.50 �
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sets, the target patterns were exactly the same as the 
input patterns (autoencoding); in the 0% consistent 
case, each bit in the target pattern had a 50% chance 
of being flipped from the input setting (a completely 
random mapping, like sound to meaning). 
 
Results The graphs in Figure 3 plot for each level of 
mapping consistency the mean correlation 
coefficients and the mean coefficient p values of 
multiple regressions (N=10 for each point) on 
network SSE with AoA and frequency as the 
independent variables. The plots reveal that AoA is a 
stronger and more significant predictor of naming 
latency than is frequency in our model across all 
levels of consistency. As we previously noted, these 
charts may help explain why the data from 
Experiment 2 look more like object naming than 
word naming.  Even though word naming is a more 
consistent mapping than object naming, it is still not 
100% consistent, as was the task used in Experiment 

2.  From the graphs of variable significance on the 
bottom in Figure 3, it is obvious that the case of 
100% consistency is somewhat of a discontinuity, 
resembling 0% consistency more than it does 90% 
consistency. Autoencoding is not a good model of 
word naming tasks. 

Experiment 4 
We view the mean pair-wise AoA rank order 
correlation between simulations trained using the 
same pattern set as a measure of the contribution of 
pattern set similarity structure to determining the 
order in which words are acquired. In analysis of the 
AoA effects observed in the networks of experiment 
1, we computed this measure for several groups of 
simulations and found it to be significant.  Since 
experiment 1 was concerned only with autoencoding 
networks, we wondered whether the effect of pattern 
structure has as much influence on pattern AoA in 
networks trained to perform less consistent mapping 
tasks. We were also curious as to whether the order in 
which patterns were presented for training would 
have much effect on the ordering of AoA among the 
patterns. To answer these questions, we designed our 
final experiment.  

Figure 3: Comparison of the effect of consistency on correlation strength (top) and significance (bottom) 
between models trained with a 1/r frequency distribution (left) and a 79/(78+r) frequency distribution (right). 
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Methods One pattern set was arbitrarily selected 
from each consistency group used in experiment 3, to 
create a set of eleven training sets with varying levels 
of consistency ranging between 0% and 100%. For 
each level of consistency, two sets of ten networks 
were trained from different random initial weights. 
The first set was trained with every pattern presented 
for training in the same order on every epoch. For the 
second set of ten, all patterns were presented in a new 
and random order each epoch.  Because we were 
interested only in observing the influence of pattern 
set similarity structure across training set consistency 
levels, all patterns in all sets were trained with a 
uniform frequency distribution. Otherwise, the 
networks were the same as those in experiment 3. 
 
Results The graphs in Figure 4 plot the mean rank 
order correlations for each level of consistency. They 
reveal that, not only is pattern set similarity structure 
important at all levels of consistency, but that it is 
also mostly independent of pattern presentation order. 
The one notable difference between random and non-
random presentation ordering occurs at 0 consistency, 
showing up as a large standard deviation in the plot 
on the right in Figure 4. This experiment also reveals 
that similarity structure is generally more influential 
on AoA at higher levels of consistency. 

Conclusion 
We have shown that the similarity structure among 
items is an important determinant of  AoA across a 
variety of mapping tasks. Future work will 
concentrate on more realistic similarity structures 
within the domains and ranges of the mappings, such 
as similarities between words, between faces, and 
between meanings. On the issue of frequency vs. 
AoA, the regressions performed in experiment 3 
reveal that AoA is a stronger predictor of naming 
latency in our models than frequency. While AoA 
and frequency are clearly correlated, there appears to 

be a fundamental effect of an item becoming encoded 
in the network weights before other items. Frequency 
may be the key, but AoA is the  door to performance.  
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Figure 4: Comparison of pairwise pattern AoA rank order correlations across consistency levels between sets of 
networks trained with (right) and without (left) randomized pattern presentation order. 
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