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Abstract

It is proposed that learning a language (or more gener-
ally, a sequence of symbols) is formally equivalent to
reconstructing the state-space of a non-linear dynamical
system. Given this, a set of results from the study of
nonlinear dynamical systems may be especially relevant
for an understanding of the mechanisms underlying lan-
guage processing. These results demonstrate that a dy-
namical system can be reconstructed on the basis of the
data that it emits. They imply that with minimal assump-
tions the structure of an arbitrary language can be inferred
entirely from a corpus of data.State-Space reconstruc-
tion can implemented in a straightforward manner in a
model neural system. Simulations of a recurrent neural
network, trained on a large corpus of natural language,
are described. Results imply that the network sucessfully
recognizes temporal patterns in this corpus.

Introduction
Complex pattern recognition is often characterized by
means of a simple geometric analogy. Any object or
pattern may be described as a single point in a high-
dimensional space. For example, a square grayscale im-
age that is 256 pixels in length, may be described as a
point in the 2562 dimensional space of all possible im-
ages. A collection of such images is a set of points in
this space. If these patterns are not entirely random, this
set will reside in a subspace of lower dimensionality. To
learn the structure of these images, an organism or ma-
chine must discover a compact parametric representation
of this subspace. This might take the form of, for exam-
ple, finding a reasonably small set of basis vectors that
will span the subspace and projecting each image onto
these vectors. Having done this, each image can be clas-
sified in terms of a new and more meaningful coordinate
system. You effectively describe ’what is there’ in terms
of ’what is known’.

This geometric approach is routinely employed in the
study of visual object recognition, but may easily be
extended to a wide range of categorization and classi-
fication tasks. In almost all cases, however, the pat-
terns under study have been multi-dimensionalstaticpat-
terns. In contrast, the study oftemporalpattern recogn-
tion using this or related approaches has not been well-
developed. For example, one of the most widely em-
ployed techniques for temporal pattern recognition, Hid-

den Markov Models are limited in their generality due
to their fundamental inability to handle patterns above a
certain complexity. This absence of general models for
temporal pattern recognition is evident in the study of
human language processing, which traditionally has es-
chewed serious consideration of statistical learning and
pattern recognition.

This paper aims to introduce a general framework for
the study of temporal pattern recognition. This is devel-
oped in the context to language processing, but it could
be extended in a straightforward manner to most other
cases of temporal patterns. First, a general characteriza-
tion of the problem of language learning and language
processingis proposed. Then, some recent results in
the study of nonlinear dynamical systems are described.
These are seen as being especially relevant for an under-
standing of the mechanisms underlying temporal pattern
recognition, especially with regard to language process-
ing. Finally, simulations with a recurrent neural network
are described, which suggest successful pattern recogni-
tion of English sentences.

The processing of symbol sequences

A paradigm for the study temporal pattern processing,
especially language processing, has developed as a re-
sult of the deep relationship between formal languages
and abstract automata (Chomsky 1963)1. Any language
(or more generally, any sequence of symbols), can be de-
scribed as the product of a particular automaton. By this
account, learning a language is equivalent to identifying
a particular automaton on the basis of a sample of the
language that it generates. More formally, an automa-
ton A is specified by the quadruplehX ;Y ;F ;Gi. X and
Y are sets known as the state and the output spaces, re-
spectively. The functionsF : X 7! X andG : X 7! Y

1The correspondence between formal languages and ab-
stract automata can be summarized by the so-called Chomsky
hierarchy: Classes of automata that are increasingly restrictive
versions of the Turing machine produce classes of languages
described by increasingly restrictive generative grammars. The
regular languagesR are produced by strictly finite automata,
thecontext-freelanguagesCF are produced by pushdown stack
automata, thecontext-sensitivelanguagesCSare produced by
linear bounded automata and therecursively enumerablelan-
guagesRNare produced by unrestricted Turing machines.R�
CF�CS�RN, and likewise for their corresponding automata.



are the state-transition and the output functions, respec-
tively. Beginning at timet0 and continuing untilt∞, the
sentence-generatorA constantly changes from one state
in X to the next, according to its state-transition func-
tion F . At each transition, a symbol from the setY is
emitted, according to its output functionG .

A langage learner attempts to identify the nature of
this automaton on the basis of a sample of the language
that it generates. That is to say, the language learner is
exposed to a finite sequence ofY and from this must
attempt to identifyA = hX ;Y ;F ;Gi. Having attained
knowledge ofA , the learner is said to have full knowl-
edge of the structure of the language. The learner has
the capability to produce all the sentences of the lan-
guage, including the infinite number of sentences that
were never seen. Likewise, the learner has the capability
to parse the syntactic form of any sentence of the lan-
guage. This ability also extends to the infinite number of
never-encountered sentences. As syntactic parsing is a
necessary precondition for the interpretation of language,
it is said that the language has been learned once knowl-
edge of its grammar has been attained.

While the correspondence between formal languages
and automata has allowed the problem of language learn-
ing to be given an explicit characterization, these au-
tomataA = hX ;Y ;F ;Gi have always been taken to be
discrete parameter systems. To continue this paradigm
it is useful to demonstrate the correspondence between
generative grammars and continuous as well as discrete
automata. Within nonlinear dynamical systems theory,
the study ofsymbolic dynamicshas made apparent the re-
lationships between formal languages, generative gram-
mars and continuous dynamical systems. Symbolic dy-
namics refers to the practice of coarse-coding the ambi-
ent state-space of a dynamical system into a finite set of
subspaces and assigning a symbol to each. Whenever the
system enters a partition, the assigned symbol is emitted.
In this way, the trajectories of the dynamical system can
be represented as strings of symbols. Unless the system
is entirely stochastic, only a certain subset of strings will
occur. It can be shown that these strings define a lan-
guage and the system producing them can be described
by a generative grammar (Bai-Lin & Wei-Mou 1998).

The relationship between languages, grammars and
dynamical systems has been further described by Tabor
(1998). In that work, and in Tabor (2000), the compu-
tational capacities of a pushdown stack automaton were
identified with those of a stochastic dynamical system,
based on aniterated function system. This was used to
demonstrate the recognition of context-free languages by
a simple 2�dimensional dynamical system. Following
Tabor’s approach, it is reasonable to propose that any
language (or any symbol sequence) generating process
may be legitimately described as acontinuousas well as
a discretesystem. Accordingly, and by keeping a strict
analogy with the automatonA = hX ;Y ;F ;Gi described
above, it is possible to introduce the corresponding con-
tinuous system,A 0 defined by the quadrupleh~x;y; f ;gi
.

By introducingA 0 = h~x;y; f ;gi, the language gener-
ating process is being explicitly defined as a nonlinear
dynamical system. For example, the system may be de-
scribed by a set of coupled differential equations

ẋi = f (~x;δ)

where~x is the system’s state and ˙xi is a vector-field de-
fined on anm-dimensional manifoldM . δ is a unspec-
ified stochastic element in the system. Thelanguage
being produced by this system is a result of the coarse-
coding function

y= g(~x);

wherey is a variable representing thesymbolsof the lan-
guage. However, there are still formal similarities be-
tween the discrete automatonA = hX ;Y ;F ;Gi and its
continuous counterpartA 0 = h~x;y; f ;gi. ~x is the state-
space ofA 0 andy is a variable representing its output.
The function f : ~x 7! ~x describes the state evolution of
the system whileg: ~x 7! y is an output function. In fact,
the only essential distinction betweenA = hX ;Y ;F ;Gi
andA= h~x;y; f ;gi is that in the latter case the state-space
~x is continuous, rather than discrete, and the evolution of
the system described byf is smooth, preventing discon-
tinuous leaps through space.

State-Space Reconstruction
A language learner can be said to be attempting to iden-
tify the process generating the language. If this generat-
ing process is described as a continuous dynamical sys-
tem, the objective is to model the dynamical system ˙x=
f (~x) on the basis of the language it outputs,yt0; : : : ;yt .
Prima facie, this problem is widely intractable. The sym-
bols to which the learner is exposed do not identify the
state of the system. They are a product of the composi-
tion of two unknown and probably non-linear functions,
f andg. However, it may be fruitful to consider the anal-
ogy between this problem and a more general problem
encountered in the experimental analysis of complex sys-
tems. For example, a scientist observing a sequence of
individual measurements from a complex physical pro-
cess (e.g. a fluid in turbulent motion) may be interested
in understanding the properties of the underlying sys-
tem. In the absence of prior knowledge and without loss
in generality, the system can be taken to be a stochastic
dynamical system, whose functional form is completely
unknown. The scientist must infer its functional form
on the basis of the measurement data alone. One of the
more remarkable outcomes of dynamical systems theory
is that in many general cases this problem is tractable. In
virtue of the analogy, the manner by which this is done
may also elucidate the problem of language learning.

Packard, Crutchfield, Farmer & Shaw (1980) were first
to demonstrate that a dynamical system could be recon-
structed entirely on the basis of its output. They pro-
posed thatanytime-series of quantities measured from a
dynamical system may be sufficient to construct a model



that preserves its essential structure. Takens (1981) de-
veloped and clarified the mathematical evidence for this
proposal. This was considerably generalized by Sauer,
Yorke & Casdagli (1991), and more recently Stark,
Broomhead, Davies & Huke (1997) have extended these
results to the more general case of stochastic dynamical
systems.

Sauer et al. (1991) have suggested that the foundations
of these ideas are to be found in differential topology. For
example, a seminal theorem in this field (Whitney 1936)
is that anym-dimensional manifoldM can be mapped
by a diffeomorphism2 into Euclidean spaceRd if d >
2m+1. Moreover, the subset of all possible smooth maps
from M to R2m+1 that are also diffeomorphisms is both
open and dense in the function space. As Sauer et al.
(1991) point out a single measurement of a dynamical
system is a map from the system’s state to the real line.
As such, the significance of Whitney’s result is thatal-
most every3 set of 2m+1 independent measurements of
a dynamical taken simultaneously is sufficent to recon-
struct the dynamical system in the measurement-space.
The manifoldM and its vector-field ˙x areembeddedin
the measurement-space.

The more recent result by Takens (1981) may be un-
derstood in in terms of this embedding theorem. Takens
considers the case of a dynamical systemf (~x;δ) : M 7!
M and thedelay-coordinatemap,D : M 7!R

2m+1. This
mapD is defined as simply a time-series of scalar mea-
surementsz = fyt ;yt+1; : : : ;yt+2mg obtained from this
system, wherey= g(~x). It is clear that

z= fyt ;yt+1; : : : ;yt+2mg= fg(~xt);gÆ f (~xt); : : : ;gÆ f 2m(~xt);g

wheref n is the composition off n-times. In other words,
the sequencezof 2m+1 measurementsy= g(~x) is in fact
a function of a single point or state~x of the hidden dy-
namical system. Thedelay-coordinatemapD maps each
state~x of the hidden system to a point inR2m+1. Tak-
ens (1981) demonstrated that with minimal assumptions
about the hidden dynamical system4 , the set ofdelay-
coordinatemapsD that are also diffeomorphisms is both
open and dense in the space of mapsD. In almost every
case, the hidden dynamical system isembeddedwithin
the delay-coordinate measurement space.

Sauer et al. (1991) have considerably elaborated the
Takens (1981) embedding theorem. They define both a

2A diffeomorphismfrom M to N is a one to one map,
where the map and its inverse are diferentiable.

3The fact that the set of maps that are also diffeomorphisms
is anopensubset of the function space means that any arbitrar-
ily small perturbation of a diffeomorphism is also a diffeomor-
phism. The fact that the set isdensemeans that every point
in the function space is arbitrarily close to a diffeomorphism.
In addition, Sauer et al. (1991) have shown thatalmost every
map in the function space is a diffeomorphism, in that the com-
plement to this subset is of measure zero. In other words, the
likelihood of an arbitrary map also being a diffeomorphism is
probability one, or infinitely likely.

4In particular, it is assumed that the dynamical does not con-
tain periodic orbits that are exactly equal to (or exactly twice)
the sampling rate of the measurement functiony= g(~x).

delay coordinate mapD 0 : M 7!R
s, wheres is an integer

arbitrarily greater than 2m+1, and a smooth transforma-
tion of this map,φ : D 0 7! R

2m+1. In the spirit of Takens
(1981), Sauer et al. (1991) demonstrate that the set of
these composite functionsφ ÆD 0 : M 7! R

2m+1 that are
also diffeomorphism is open and dense in the function
space.

The theorems of Takens (1981) and Sauer et al. (1991)
apply to deterministic dynamical systems. These are sys-
tems whose entire future evolution can be be determined
from precise knowledge of the system’s state. As real
world systems are inevitably coupled with sources of ex-
ternal noise, the generality of these theorems may seem
limited. Stark et al. (1997) have shown, however, that the
embedding theorems can be generalized to a much less
restricted class of stochastic dynamical systems. They
consider a discrete time system where at each time step
one of k different discrete-time mapsfω : M 7! M is
chosen, whereω = 1; : : : ;k. As in Takens (1981), they
define thedelay-coordinatemap,D : M 7! R

2m+1 and
show that in the stochastic systems under consideration
the set of mapsD that are also diffeomorphism is open
and dense in the function space.

State-Space reconstruction in neural
systems

While these results are obviously important for the gen-
eral problem of nonlinear time-series analysis, their rele-
vance for the problem of language learning may be lim-
ited. The problem of language learning does not fit neatly
into the scenarios considered by Takens (1981), Sauer
et al. (1991) and Stark et al. (1997). This is primarily
due to the fact that the output of the language generat-
ing dynamical system is a sequence of symbols rather
than a real-valued scalar. In addition, the stochastic sys-
tem considered by Stark et al. (1997) might not be gen-
eral enough to describe the arbitrary stochastic dynami-
cal system that is here taken to be the language generator.
More importantly, these theorems consider and explain
certainsufficientconditions and do not lead naturally to
a general algorithmic procedure for reconstructing state-
space. For example, Taken’s theorem demonstrates that
the coordinate space of 2m+ 1 scalar measurements is
sufficient to embed the generating dynamical system of
dimensionalitym. Practically, however, this just means
that the coordinate space of afinitenumber of scalar mea-
surements is sufficient for the embedding. It does not in-
dicate how it can be known that an embedding has in fact
occurred. What is necessary, therefore, is anobjective
functionthat may be optimized to produce a reconstruc-
tion of the dynamical systems from its outputs.

Crutchfield & Young (1989) introduceε-machines as
a general procedure for state-space reconstruction. They
propose that the state of theε-machine uniquely corre-
sponds to the state of a dynamical system emiting a sym-
bol sequence if it can be shown that its state renders the
future of the symbol sequence conditionally independent
of its past. In other words, if the probability distribu-



tion over future sequences of symbols is independent of
the past symbolsgiven the state of theε-machine, then
theε-machine uniquely labels the state of the dynamical
system generating the symbols. Theε-machine can then
be taken as a model of the unseen symbol generating dy-
namical system5.

On the basis of the embedding theorems and theε-
machine of Crutchfield & Young (1989), an objective
function for state-space reconstruction may be intro-
duced. The objective is tomodelthe dynamical system
f (~x;δ) : M 7! M , and this can be defined as learning a
structure-preserving map from the manifoldM to a sec-
ond topologicalmodel-spaceN . If the probability dis-
tribution over sequences of symbols emitted by the dy-
namical system defined onM is independent of its past
symbolsgiven the state of themodel-spaceN , thenN
smoothly and uniquely labels the state of the dynamical
system generating the symbols. The trajectory of states
on N can then be taken as a model of the unseen sym-
bol generating dynamical systemN . This idea may be
illustrated by means of a neural system.

A system of cortical neurons can be minimally mod-
eled by a set ofn coupled nonlinear differential equa-
tions,

ẏi =�yi +
j=n

∑
j=1

wi j σ(yi)+ Ii;

whereσ is a smooth and monotonic transfer function,
yi is the soma potential of neuroni, resulting from a
weighted sum of its inhibitory and excitatory inputs.I
is the external input to the system. Clearly, this system is
a dynamical system defined on an-dimensional manifold
N . In addition, the state of this system~yt at a given time
t is a function of both its present inputIt and, through
the action of its recurrent synapses, the history of pre-
vious input,fIt0; : : : ; Itg. In other words, the system’s
state at any given time is a smooth function of an entire
sequence of inputs. This can be represented by the cor-
respondence~yt =ψ(It0; : : : ; It). If the sequence of inputs
fIt0; : : : ; Itg represents the outputIt = g(~xt) of dynamical

5In a dynamical system, the entire evolution of the system
is described by its trajectory fromt

�∞ throught0 to t∞. The
future trajectories of the system are conditionally independent
of the past,given the present state of the system. In the ideal
case of a deterministic and autonomous system, the future tra-
jectory of the system,X[t0;t∞), can in principle be determined
from the present state of the system,X(t0). Absolute knowl-
edge of the system’s stateX at t0 provides absolute knowledge
of the future trajectoryX[t0;t∞). No information about the sys-
tem’s prior trajectoryX(t

�∞;t0] is necessary. In a stochastic
dynamical system (where, for example, at irregular points in
time there is coin toss of ank-sided coin to choose betweenk
different set of differential equations), a similar situation oc-
curs. While the future is not entirely predictable on the basis
of the present state in this system, noincreasein information
about the future is gained by knowing the past. In other words,
the future trajectory of the system is stochastically independent
of the past,giventhe state of the system. The case of a stochas-
tic system can be seen to generalize to the case of a dynamical
system driven by external input.

systemf (~x;δ) then it is clear that

~yt = ψ(It0; : : : ; It) = ψ
�
g(~xt0);gÆ f (~xt0); : : : ;gÆ f t(~xt0)

�
;

where f t is the composition off t times. The state~y of
the neural system is a function of the state~x of the hidden
dynamical system.

The neural system ˙yi on N is a diffeomorphism of the
dynamical system ˙x on M , if the state~y smoothly and
uniquely labels the state~x. If the future inputs to the
neural system are stochastically independent of the past
inputs,given the state~y of the system thenN andM
are diffeomorphically equivalent. If the probability of
the future inputs to the neural system, conditioned on its
state~y, is not further sharpened by acquiring information
about the previous inputs to the system then there is a
structure preserving map between the two systems.

Network simulations
In this paper, it is taken that a language (or a sequence
of symbols) is produced by a continuous dynamical sys-
tem. To learn this dynamical is to learn the statistical
structure of the language. By hypothesis, this can be ac-
complished by embedding the hidden dynamical system
in a second model space. To maximize prediction of fu-
ture states given present ones is effectively to seek such
an embedding. As such, it should be the case that if a
recurrent neural network is trained on a corpus of natural
language (in the now familiar style introduced initially
by Elman (1990)) it should develop a state space that is
a model of the generating process of the language. One
manifestation of this would be that sentences, judged (by
human observers) to be structurally similar, should also
be clustered in the state space of the neural system.

To explore this hypothesis further, a simulation of an
idealized neural system was performed by implementing
the system of coupled equations,

ẏi =�yi +∑
j

wi j σ(yi)+θi +∑
k

wikIk;

Ol = σ

 
∑
i

wli (yi

!
;

σ(ζ) =
�

1+e�ζ
�
�1

;

whereyi is the state of the neuron and can be viewed as
representing its mean soma potential,θi is a bias term
and Ii is external input.Ol is the output of the system
which ”reads off” the recurrent network. There were 120
neurons in the recurrent network. The input was a 250
dimensional bit vector, described below. The output was
likewise a 250 dimensional vector. For the purposes of
computer simulation, a difference equation was used,

yt+∆t
i = (1�∆t)yt

i +∆t ∑
j

wi j σ(yi)+∆tθt
i +∆t ∑

k

wikI t
k;



This was obtained by an approximation of its contin-
uous counterpart.∆t was a variable parameter which
could be manipulated for finer approximations of the un-
derlying continuous system.

The data-set used for network learning was a cor-
pus of natural language amounting to over 10 million
words. The corpus comprised 14,000 documents, the av-
erage length of each document being approximately 700
words. All documents were in a plain-text and untagged
format. They were obtained from publicly available elec-
tronic text archives on the internet6. No explicit crite-
ria were used when selecting documents other than that
cover a wide range of subject matters such as science,
social science, literature, children’s stories, history, law
and politics.

Altogether, the entire corpus contained a vocabulary
of 115,000 words. Of these, a set of 50,000 accounted
for over 99% of the total number of words in the cor-
pus. Only the members of this set were used for training
the network, the infrequent words having been deleted.
Each of these 50,000 words was coded by being ran-
domly assigned to a unique bit vector of 247 zeros and
3 ones (there are over 2.5 million possible combinations
to choose from). While this random coding scheme in-
troduced some spurious correlations between words, the
average correlation between words was close to zero7.

The network was presented with the entire corpus as
a sequence of words, one word at a time. The net-
work was trained to predict its future word-input given
its present word-input. The synaptic weight parame-
ters were adapted using the continuous version of back-
propagation through time due to Pearlmutter (1989). In
this procedure, the minimum of the cross-entropy objec-
tive function was sought by calculating the derivatives
of this function with respect to each weight parameter at
each time ”tick”∆t of the 50 previous time steps.

With a learning rate parameter of .01, and a∆t param-
eter of .25, the network was trained for 46 passes through
the corpus. At this time, the learning rate parameter was
annealed to .001, and the∆t parameter was lowered to .1.
Training was continued for another five passes through
the entire corpus. The performance of the network at pre-
dicting future words could be adequately assessed using
the a method of ratios between squared errors,

Ri =
∑t (d

t
i �yt

i)
2

∑t

�
dt

i �dt�1
i

�2 ;

wheredt
i is the target or to-be-predicted outcome for neu-

ron i at timet. The denominator of this ratio specifies the
sum squared differences between the target outcome and
the target at the previous step. This ratio is useful as the
best prediction a random-walk model can make would

6The main sources of the electronic texts were, Project
Gutenberg, the Etext Archives, and archives.org.

7A more valid distributed code based the actual orthogra-
phy of English words has been used by the author in previous
simulations, but these will be reported here.

be to predict the same value for the future as is obtained
at the present. Thus, if the ratio is greater than 1.0 the
network is performing worse than a chance model. At
values less the 1.0, the network is performing better than
a chance model. A value approaching 0, would indicate
perfect predictive accuracy.

On the final pass through the corpus, the mean perfor-
mance ratio for the training data was .4767. Furthermore,
a validation set which comprised 1000 unseen documents
was prepared. The mean performance ratio on this set
was .4989. These values indicate substantial predictive
performance and generalization abilities by the network.
They compare very favorably to mean performance ra-
tios usually obtained in non-linear time series prediction
tasks (Weigend & Gershenfeld 1993).

Discriminant function analysis
If a neural network learns the statistical structure of the
language , its state space should have topological orga-
nization based on a similarity principle. For example,
sentences that are similar in content should cluster in
compact neighborhoods of the state space. An ideal ex-
perimental test of this would be to have reliable human
judges classify a large set of sentences on the basis of
their content, and then to compare this with a network’s
classification of the same set of sentences. To the extent
that the network’s classifications are close to those of hu-
man judges, the network would have met a behavioral
criterion for language comprehension.

To adequately assess generalization abilities, a large
set of sentences would be required. Such an experiment
would be laborious to conduct. Fortunately, however,
data-sets of labeled or categorized documents (rather
than sentences) are readily obtainable, as these are regu-
larly used as benchmark tests of text categorization tech-
niques. In the experiment conducted here, sentences
were extracted from labeled documents. Sentences were
then assigned to the semantic class of the document from
which they came. For example, sentences taken from
a document assigned to the class ’motorcycling’ would
themselves be assigned to the semantic class ’motorcy-
cling’. In this way, a large set of sentences could as-
signed a plausible, although somewhat limited, interpre-
tation. The data-sets were the Reuters-21578 newswire
data-set, the 20 newsgroups data-set8 , and then a third
set which was compiled for the purpose of this experi-
ment from 6000 documents obtained from the Library of
Congress, which had been previously classified by their
Dewey Decimal categories

An appropriate test of the network’s representational
capacities would be to assess the probability that a sen-
tence from a given semantic class would be assigned
correctly to that class. To do this a linear discriminant
function was used to divide the state space into (sim-
ply connected and convex) sub-regions based on seman-
tic class. The discriminant function is a straightforward

8The two data sets are available on the inter-
net. See http://www.cs.cmu.edu/ textlearning and
http://www.research.att.com/ lewis



Table 1: Accuracy of sentence classification.

Data Set Accuracy
Library 83%
Reuters 75%

Newsgroups 69%
Mean 76%

linear transformation of the state space, such that the
centroids of ”training” sentences labeled by their class
are made maximally distant from one another. The net-
work’s ability to categorize by semantic class can be as-
sessed for a ”test” set of sentences by assessing the prob-
ability that a given sentence from a certain semantic class
would be correctly assigned to that class. The measure
used was Mahalanobis distance. This measure is approx-
imately proportional to an estimate of the posterior prob-
ability that a given sentence will correctly assigned to its
appropriate class. 5000 sentences from each of the three
data-set were used in this test. The results are illustrated
in Table 1.

These accuracy rates are suitably high, and in fact
compare favorably to state-of-the-art text categorization
methods which use similar or identical data-sets (Nigam,
Mccallum, Thrun & Mitchell 2000). It is reasonable to
conclude from this that the state space of a recurrent neu-
ral network trained to predict word sequences becomes
organized on basis on semantic similarity. Sentences and
texts that are semantically similar are clustered into com-
pact neighborhoods which can be discriminated by a sim-
ple linear function.

Conclusion
Temporal pattern recognition is not as theoretically so-
phisticated as its multidimensional and static counter-
part. Here, an approach to temporal pattern learning is
introduced that is based on recent results from dynami-
cal systems theory. It is proposed that the reconstruction
of system generating a language (or symbol sequence)
is adequate for learning the statistical structure of tem-
poral data. It is proposed that state-space reconstruction
can be carried out in a straightforward manner in a recur-
rent neural network. Results showing pattern recogni-
tion of English sentences by the network are provided.
These results are similar in kind to those obtained by
Elman (1990) and in the many works that followed this
paradigm. It is believed that the appropriate explanation
of these now familar sets of results, is that the recurrent
neural network has reconstructed the language generat-
ing process. Sentences that were produced by similar
trajectories in the original systems are now modelled by
similar trajectories in the recurrent neural network. It is
clear, however, that this is not a definitive demonstration
of state-space reconstruction and a more detailed analy-
sis of temporal pattern learning using formal grammars
is being currently undertaken (Andrews 2001).
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