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Abstract 

Many natural categories vary along multiple dimensions.  
The present studies address two ma in questions 
underlying categorization with multiple dimensions.  
First, how well can humans perform in a categorization 
task consisting of five categories varying along nine 
continuously valued dimensions?  Second, what are the 
properties of the cues preferred by humans if not all the 
available cues are used?  Remarkably, participants not 
only learned to distinguish among the five categories, but 
they also learned to do so using only the relevant 
dimensions.  A satisficing model of categorization was 
best able to account for participants’ responses. In 
addition, in a cue preference task, the results showed that 
nearly all participants preferred to use the dimension 
with the greatest variance when the number of 
dimensions available was restricted, in accord with 
predictions made by the satisficing model. 

Introduction 
Categorization has been studied by many disciplines 
including psychology and machine learning. In the area 
of psychology, the psychological processes underlying 
human categorization have been investigated.  One 
common approach to determining these processes has 
been to teach humans to learn novel categories based on 
very simple stimuli that vary along only a few 
dimensions.  In such simple situations, the complex 
calculations involved in some of the popular models of 
categorization (e.g., Nosofsky’s (1986) generalized 
context model; Ashby’s (Ashby & Gott, 1988; Ashby & 
Perrin, 1988) decision bound theory) may be 
psychologically plausible.  However, the results of 
these experiments are then assumed to be generalizable 
to categories whose members vary along many 
dimensions.  It seems unreasonable to assume that 
humans are capable of the even more complex 
calculations required with an increase in category 
dimensionality.  For example, Nosofsky, Palmeri, and 
McKinley (1994) “question the plausibility of exemplar 
storage processes and the vast memory resources that 
they seem to require” (p.53). 
Machine learning, on the other hand, has been primarily 
concerned with developing algorithms based on experts 
in specific domains (Quinlan, 1986) -- although the 
algorithms themselves tend to be general-purpose 
algorithms (i.e., the algorithms are intended to apply to 
any categorization task).  These algorithms have been 
developed using large data sets that vary along many 

dimensions.  Therefore, an important step in such 
algorithms is determining which dimensions from the 
set of possible dimensions should be used.  However, 
the different methods used to model this step usually 
involve complex computations and thus are also not 
psychologically plausible. 
What follows is a brief review of two popular 
categorization models (exemplar models and decision 
bound theory), as well as a review of a satisficing 
model of categorization (categorization by elimination).  
Next, a multi-dimension, multi-category task is 
described, including a discussion of how well the above 
three models can account for human responses in such a 
task. The paper concludes with a brief discussion on the 
learning of relevant cues in the multi-dimension, multi-
category task. 

Review of Models 

Exemplar Models 
Exemplar models (Brooks, 1978; Estes, 1986; Medin & 
Schaffer, 1978; Nosofsky, 1986) assume that when 
presented with a novel object, humans compute the 
similarity between that object and all exemplars of 
every category in which the novel object could be 
placed.  In theory, the object is placed into the category 
with which it is most similar, however most exemplar 
models assume probability matching. Nosofsky’s 
(1986) generalized context model (GCM) allows for 
variation in the amount of attention given to different 
features during categorization (see also Medin & 
Schaffer, 1978).  Therefore, it is possible that different 
cues will be used in different tasks.  However, this 
attention weight remains the same for the entire 
stimulus set for each particular categorization task, 
rather than varying across different objects belonging to 
the same category.  GCM uses a probabilistic response 
rule based on the Luce-Shepard choice model.  The 
probability of placing stimulus i into category j is 
computed by summing the similarity between stimulus i 
and all objects in category j along every dimension and 
then weighting the summed similarity by the bias to 
respond with category j.  The weighted summed 
similarity is divided by the sum of the weighted 
summed similarity of stimulus i to each category. 
Similarity is usually either an exponential (for separable 
stimuli) or gaussian (for integral stimuli) function of 
psychological distance (Shepard, 1964).  Psychological 



distance is computed by the Minkowski r-metric with 
the addition of two parameters, c and wk, where c is the 
discriminability parameter which takes into account that 
stimuli will look more distinct as experience is gained 
and wk is the attention weight for the kth dimension.  

Decision Bound Theory 
Decision Bound Theory (or DBT--see Ashby & Gott, 
1988) assumes that there is a multidimensional region 
associated with each category, and therefore, that 
categories are separated by bounds.   DBT uses a 
deterministic response rule.  An object is categorized 
according to the region of perceptual space in which it 
lies.  The perceptual space is divided into regions by 
decision bounds.   For two categories (A and B) each 
composed of two dimensions (x and y), an object will 
be placed into category A if the estimated likelihood 
ratio is greater than some bias, where the likelihood 
ratio refers to the ratio between the likelihood that 
stimulus i comes from category A and the likelihood 
that stimulus i comes from category B.  The parameters 
of this model are b, a response bias; a mean and 
variance for each dimension (which are usually 
absorbed into the bound parameters); correlations 
between pairs of dimensions; as well as parameters to 
define the decision bound. 
Both of these psychological models categorize by 
integrating cues and using all the cues available (except 
in exemplar models if a cue has an attention weight of 
zero).  But the memory requirements of these models 
do differ.  GCM assumes that all exemplars ever 
encountered are stored and used when categorizing a 
novel object, while DBT only needs to store the bound-
determining parameters of each category.  In 
comparison, the Categorization by Elimination 
algorithm (described below) typically requires as little 
memory as DBT but it does not integrate all available 
cues. 

Categorization by Elimination 
Categorization by Elimination (CBE) was originally 
developed to describe people’s categorization 
judgments in an animate motion task (see Blythe, 
Miller, & Todd, 1996). CBE is closely related to 
Tversky’s (1972) Elimination by Aspects model of 
choice. CBE is a noncompensatory model of 
categorization, in that it uses cues in a particular order, 
and categorization decisions made by earlier cues 
cannot be altered (or compensated for) by later cues.  In 
CBE, cues are ordered and used according to their 
probability of success.  For the present purpose 
probability of success is defined as a measure of how 
accurately a single cue categorizes some set of stimuli 
(i.e., percent correct).  This is calculated by running 
CBE only using the single cue in question, and seeing 

how many correct categorizations the algorithm is able 
to make.  (If using the single cue results in CBE being 
unable to decide between multiple categories for a 
particular stimulus, as will often be the case, the 
algorithm chooses one of those categories at random--in 
this case, probability of success will be related to a 
cue’s discriminatory power.)   
CBE assumes that cue values are divided up into bins 
(either nominal or continuous) which correspond to 
certain categories.  To build up the appropriate bin 
structures, the relevant cue dimensions to use must be 
determined ahead of time.  At present, complete bin 
structures are constructed before testing CBE’s 
categorization performance.  Bins can be constructed in 
a variety of ways from the training examples by 
determining low and high cue value boundaries for each 
category on each dimension.  These boundaries are then 
used to divide up each dimension into the cue-value 
ranges that form the bins.  Thus, CBE only needs to 
store two values per category per cue dimension, 
independent of the number of objects encountered. 

Categorization with Multiple Dimensions 
The majority of psychological studies of categorization 
have used simple artificial stimuli (e.g., semicircles in 
two-dimensional space -- Nosofsky, 1986) that vary on 
only a few (two to four) dimensions1.  This is in 
contrast to the more natural high-dimensionality 
machine learning applications, such as wine tasting 
(Aeberhard, Coomans, & Devel, 1994) or handwriting 
recognition (Martin & Pittman, 1991).  It remains to be 
demonstrated how optimal humans can be when 
categorizing objects using many continuously valued 
dimensions.  In addition, the predominant psychological 
models of categorization have not addressed the issue 
of how people can categorize a multidimensional object 
when they are constrained by limited information. 
Berretty and her colleagues (Berretty, Todd, & 
Martignon, 1999; Berretty, Todd, & Blythe, 1997) have 
illustrated that it is possible for a satisficing model that 
does not use all the available cues to categorize objects, 
to perform comparably to integrative models on natural 
data sets.  The purpose of the first experiment in this 
paper is to investigate whether such a satisficing model 
is able to account for human categorization data from a 
multi-dimensional, multi-category task.  In Experiment 
1a, humans are trained to learn categories that vary 
along nine dimensions. The generalized context model, 
categorization by elimination, and a form of decision 
bound theory will be tested to determine how well each 
model fits the participants’ responses.  The purpose of 
the second experiment is to determine how well humans 

                                                                 
1 Posner and Keele (1968) have used random dot stimuli to 
test human classification, however, the number of dimensions 
is indeterminable. 



are able to categorize when information is limited.  In 
addition, Experiment 1b investigates the properties of 
the dimensions people prefer to use when information is 
limited. 

Participants 
Four graduate students from the University of 
California, Santa Barbara participated in Experiment 1a 
and 1b.  All participants had normal or corrected vision.  
Each participant was paid $8 per hour. 

Method 
Design The design consisted of five different categories 
that vary along nine dimensions, where only three of 
the dimensions are necessary for accurate 
categorization.  The values for each category were 
generated from a multivariate normal distribution where 
variance(dim 1) > variance(dim 3) > variance(dim 2), 
with the variance for the remaining 6 dimensions equal 
to the variance along dimension 3.  All uni-dimensional 
rules that best separate two categories with the same 
mean on the other two relevant dimensions have an 
accuracy of 90% (i.e., category overlap along each pair 
of dimensions was set to 10%). 
 
Procedure Participants were told that they were to 
learn five different categories that were equally 
represented during each learning session.  Participants 
were instructed that they may or may not need to use all 
the dimensions available to them.  Participants were run 
over consecutive days until learning curves leveled off.  
Each day consisted of 20 blocks with 50 trials per block 
(for a total of 1000 trials per day).  Stimulus display 
was response terminated and corrective feedback was 
given after every trial.  Thus, if a subject responded ‘A’ 
to an exemplar from category B, a low tone sounded 
followed by a ‘B’ appearing on the screen.  In addition, 
overall percent correct was given after every learning 
block.  
A cue preference task (Experiment 1b) was 
administered to participants the day after learning 
ended.  The cue preference day began with a practice 
block in which participants simply categorized 50 
stimuli as they had done on previous days.  The practice 
block was followed by twelve blocks, each consisting 
of 50 trials.  Each trial began with the presentation of 
one of the three relevant dimensions.  Participants then 
made a categorization judgment based on only that one 
dimension.  After making a judgment, participants 
chose another dimension and then made another 
categorization judgment.  Thus, two judgments were 
made for the same stimulus.  The first judgment was 
based on only one experimenter-chosen dimension, 
while the second judgment was based on two 
dimensions.  No feedback was given during the last 
twelve blocks of the test day.  

Stimuli and Materials Stimuli were generated using 
the GRT Toolbox (Alfonso-Reese, 1995).  Values along 
every dimension were transformed from number of dots 
per square into actual screen coordinates.  Each 
dimension was represented as a texture in one of nine 
possible squares on a computer screen.  The location of 
the three relevant dimensions was different for each 
subject with the constraint that the center square (in a 
3x3 grid) will never be one of the relevant dimensions.  
Stimuli were presented on a SuperMac Technology 17T 
Color Display driven by a Power Macintosh G3 running 
a Psychophysics Toolbox (Brainard, 1997) and low-
level VideoToolbox (Pelli, 1997) within MATLAB 
(The MathWorks, Inc., 1998).  Each participant sat 18 
inches from the monitor.  The height of the center 
square of the stimuli was constrained such that visual 
angle was less than 2°. 

Results and Discussion 
Experiment 1A Learning for three of the four 
participants reached asymptote after five days, while 
the fourth participant required six days.  Participants 1, 
2, and 3 achieved an overall accuracy of approximately 
70% by the last day, while Participant 4 only achieved 
an overall accuracy of approximately 60% on the last 
day. The optimal percent correct was 81.9%.  
Participants’ responses for the last day (without the first 
block) were randomly split into two halves (training 
and testing sets) five times.  Each split was constrained 
to contain approximately the same number of stimuli 
from each category.  
The Categorization by Elimination algorithm, the 
Deterministic Generalized Context Model (see Ashby 
& Maddox, 1993), and six versions of Decision Bound 
Theory were fit to each participant’s training set 
responses.  For CBE, low and high values of each bin 
along each dimension, as well as the cue order, were 
estimated from the responses in the training set.  The 
parameters estimated for GCM were the sensitivity 
parameter, an attention weight for each dimension, the 
bias towards each category, and the gamma parameter 
(which is a measure of response selection).  For fitting 
the GCM, a Euclidean-Gaussian distance-similarity 
metric was used (see Maddox & Ashby, 1998). 
The six versions of DBT were all Independent 
Decisions Classifiers, which is a special case of 
Decision Bound Theory in which each dimension is 
assumed to be independent of the other dimensions (see 
Ashby & Gott, 1988; Ashby & Maddox, 1990).  This 
version of DBT was used since the best fitting bound 
(to separate the categories) is perpendicular to each of 
the three relevant dimensions.  In the versions of the 
Independent Decisions Classifier tested here, one 
criterion is placed along one dimension.  Two criteria 
are then placed along a second dimension and four 
criteria are placed along the third dimension.  All



Table 1: AIC Scores for Experiment 1A 

 P1 
Train 

P1 
Test 

P2 
Train 

P2 
Test 

P3 
Train 

P3 
Test 

P4 
Train 

P4 
Test 

GCM 585.4 633.6 739.42 823.08 647.33 687.14 814.4 835.24 
DBT 594.74 638.16 742.63 780.87 645.32 665.22 809.55 824.54 
CBE 646.28 643.59 638.32 640.36 624.5 634.86 656.04 646.85 

 
possible combinations of the three relevant dimensions 
were tested. 
As mentioned earlier, all three models were fit to part 
of the data set (the training set) and the best fitting 
parameters estimates were obtained.  These parameters 
were then used to determine the mo dels’ accuracy on 
the remaining data (the testing set).  A potential 
problem with multi-parameter models is that these 
models may be prone to overfit the data.  That is, they 
actually fit the noise present in the data in order to 
achieve high accuracy.  Training the model on a subset 
of the data and testing the model on the rest of the data 
may assess a model’s “true” performance. 
The AIC goodness-of-fit statistic was used to compare 
the fits of the three models. 

AIC(Mi) = -2lnLi + 2vi  
Where lnLI refers to the negative log likelihood value 
for model Mi obtained through maximum likelihood 
estimation and vi refers to the number of free 
parameters in model Mi.  The smaller the AIC score, 
the closer the model is to the “true” model (Ashby, 
1992).  
Goodness-of-fit values for each participant (averaged 
over the five training and five testing sets) are shown in 
Table 1.  Each row corresponds to one of the three 
models while each column refers to each participant’s 
training and testing sets.  The generalized context  
model was best able to account for Participant 1’s 
training and testing data.  Categorization by elimination 
was best able to account for Participant 2, Participant 3, 
and Participant 4’s training and testing data. 
 
Experiment 1B Experiment 1b was designed to answer 
two questions.  First, how well can humans perform in a 
categorization task when dimensionality is reduced?  
Second, what are the properties of the dimensions 
preferred by humans?  Obviously, one of the most 
important features of a cue is how accurate that cue is 
in categorizing objects when used alone.  Another 
property of cues is the range of values possible, that is, 
the variance of a cue.  It seems reasonable to assume 
that humans are able to learn the accuracy of various 
cues and would use those cues that are more accurate.  
Given this assumption, all three of the relevant 
dimensions are equally accurate when used alone.  
However, the question of whether humans prefer to use 
cues with more or less variance is addressed by having 
different variances for the three relevant dimensions.   

In Experiment 1b (conducted after performance 
asymptotes) participants were given one dimension and 
asked for a categorization judgment.2  Participants then 
chose a second dimension (from the remaining eight 
dimensions) and made a categorization judgment based 
on only those two dimensions. Only the three relevant 
dimensions for the categorization task were used in 
Experiment 1b as the first cue presented to the 
participant.  Both high and low values of these 
dimensions were given to the participants.  Dimension 
values were selected from the categories such that the 
values were always less than (or greater than) the best 
fitting criteria values for that dimension (i.e., only 
dimensional values from nonoverlapping category 
regions were presented). 
The first major result to notice from this experiment is 
the overall percent correct participants achieved, which 
is shown in Table 2.  The optimal percent correct 
possible with only two categories is 51.6%. Participant 
3 was very close to optimal, while Participants 2 and 4 
actually performed better than would be expected.  In 
addition, Participant 4 actually performed better in 
Experiment 1b than in Experiment 1a!   

 
Table 2: Overall Percent Correct in Experiment 1B 

 
 Participant 
 1 2 3 4 

Percent 
Correct 

 

42.67 
 

55.23 
 

49.83 
 

64.5 

 
The results from Experiment 1b indicate that 
participants did indeed learn which of the cues in 
Experiment 1a were relevant.  All four participants 
chose (nearly always, if not always) one of the three 
relevant dimensions as their second cue in Experiment 
1b (see Table 3).  This indicates that participants were 
not using any of the other dimensions during 
Experiment 1a3.   

                                                                 
2 Participants were given the first cue to insure that all three of 
the relevant dimensions would be chosen.  If participants were 
allowed to choose the first cue to use, it is possible that the 
same cue would be used first for each trial. 
3 This does not rule out the possibility that participants were 
using other dimensions in Experiment 1a, but preferred to use 
one of the three relevant dimensions when limited in the 
number of dimensions available to them.  However, verbal 



Table 3: Dimension Preference for Participants 1-4 
 

Dimension Chosen by Participant 1 Dimension 
Presented 1 2 3 4-9 

1 23 150 25 0 
2 188 9 2 0 
3 186 11 0 0 
 Dimension Chosen by Participant 2 
 1 2 3 4-9 
1 9 80 103 1 
2 86 3 100 5 
3 91 88 7 7 
 Dimension Chosen by Participant 3 
 1 2 3 4-9 
1 16 162 22 0 
2 162 5 27 0 
3 186 9 4 0 
 Dimension Chosen by Participant 4 
 1 2 3 4-9 
1 15 45 134 0 
2 113 0 87 0 
3 133 59 8 0 

 
According to CBE when dimension 1 is presented, 
dimension 3 should be chosen and when dimension 2 or 
3 is presented, dimension 1 should be chosen.  When 
dimension 1 was presented first two of the participants 
preferred the dimension with the highest probability of 
success (dimension 3).  When dimension 2 was 
presented first, three of the participants preferred the 
dimension with the highest probability of success 
(dimension1). All four participants preferred the 
dimension with the highest probability of success 
(dimension 1) when dimension 3 was presented first. 
Overall, the participants generally chose the second 
dimension in accord with predictions made by CBE. 

Learning Relevant Cues 
Given the difficulty of the task in Experiment 1a, it is 
remarkable that the participants were able to learn the 
relevant cues.  As shown above, all four participants 
chose (nearly always, if not always) the three relevant 
dimensions as their second cue in Experiment 1b.  But 
how did cue use progress as the participants learned the 
different categories in Experiment 1a?  To answer this 
question three different versions of MDS were fit to the 
participants’ category confusion matrices from each 
half of each day in order to determine how many cues 
were used by each participant for a particular data set.  
MDS1 uses only one dimension, MDS2 uses two 
dimensions, and MDS3 uses three dimensions to 

                                                                                                     
protocol collected at the end of the experiment indicated that 
participants were only using three dimensions during 
Experiment 1a. 

account for the participants’ confusions .  A χ2 analysis 
was performed on the differences between the fit values 
for models differing in one dimension.  These results 
are reported in Table 4.   
For participant 1, an MDS choice model using two 
dimensions did fit the responses better than an MDS 
choice model using only one dimension for day 2.  By 
day 4, an MDS choice model using three dimensions 
did obtain a significantly higher fit value than an MDS 
choice model using only two dimensions.  These results 
indicate that participant 1 used only one dimension on 
day 1, two dimensions on days 2 and 3, and three 
dimensions on days 4 and 5.4  Similarly, the MDS 
analysis indicates that participants 2 and 3 used only 
one dimension on the first half of day 1, two 
dimensions on the second half of day 1, and three 
dimensions after day 1.  Participant 4 appeared to use 
only one dimension on the first half of day 1, two 
dimensions on days 2 and 3, and three dimensions on 
days 4 through 6. Taken with the results from 
Experiment 1b, it appears that participants not only 
increased over days the number of cues used when 
categorizing, but also learned the correct (or relevant) 
cues to use to accurately categorize. 
Given a task consisting of many dimensions, it is clear 
that participants begin by using only one dimension.  
Additional dimensions are then learned in a sequential 
fashion.  What is remarkable from these data, is that 
participants learned to use all three dimensions.  
Dimension 1 had more variance than any of the other 
eight dimensions while dimension 2 had less variance 
than any of the other eight dimensions.  Therefore, it is 
not surprising that participants were able to learn these 
two dimensions (i.e., the two dimensions out of nine 
that had differing variances).  Dimension 3 on the other 
hand, had the same amount of variance as the six 
irrelevant dimensions, yet participants learned by the 
end of the experiment that this dimension was 
necessary for accurate categorization.  

Conclusion 
In conclusion, the studies reported here show that 
humans are able to learn artificial multidimensional 
categories.  It was also shown that people are able to 
distinguish relevant from irrelevant dimensions in 
multidimensional categorization tasks.  Results from 
such a task indicate that a satisficing model is best able 
to account for the participants’ responses.  In addition, 
the predictions made by the satisficing model regarding 
cue preference were shown to be in accord with the cue 

                                                                 
4 Note, that on the last half of day 5, the increase in 
parameters used by and MDS choice model with three 
dimensions did not fit the data significantly better than an 
MDS choice model with less parameters (i.e., less 
dimensions). 



Table 7: Χ2 
diff

 Values for Participants 1 
 

 Participant 1 Participant 2 Participant 3 Participant 4 

Day/Half MDS1-
MDS2 

MDS2-
MDS3 

MDS1-
MDS2 

MDS2-
MDS3 

MDS1-
MDS2 

MDS2-
MDS3 

MDS1-
MDS2 

MDS2-
MDS3 

1/1 8.34  0.08 3.26 0.3 8.62 3.6 1.02 2.84 

1/2 6.56 6.76 27.18* 12.3 102.9* 18.84* 35.7* 5.08 

2/1 83.3* 13.8 71.28* 18.96* 92.78* 9.94 86.16* 0.64 

2/2 140.44* 2.56 69.94* 6.54 136.76* 30.16* 117.28* 3.62 

3/1 214.98* 9.42 78.76* 22.04* 183.38* 29.14* 109.98* 0.38 

3/2 174* 11.14 98.18* 35.86* 140.16* 21.1* 80.2* 4.8 

4/1 244.36* 28.54* 116.86* 37.6* 155.02* 35.3* 74.56* 11.92* 

4/2 146.22* 22.7* 149.28* 30.82* 196.44* 33.72* 80.36* 22.78* 

5/1 151.78* 23.48* 116.8* 38.18* 113.6* 41.34* 80.48* 30.94* 

5/2 201.98* 14.5 147.96* 34.34* 193.02* 39.92* 143.76* 18* 

6/1 -- -- -- -- -- -- 132.96* 37.92* 

6/2 -- -- -- -- -- -- 155.54* 33.08* 

 
preferences of the participants.  Finally, the new 
experimental design proposed provides a method for 
further testing the properties of dimensions (cues) that 
humans prefer (or are constrained?) to use. 
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