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Abstract The remainder of the paper casts the learning prob-

_ _ o lem in terms of two interacting processes, construction
\é\éerlgegigmi:ti(c:glmc%untgttﬁﬁgﬁgrrgoggtoé;&%i?s? %ﬁf'ggge%f hypothesis and construction reorganization, and presents
tial features of the human grammar learner: significant an algorithm based on'BayeS|an mode| merging ('Stolcke,
prior conceptual and lexical knowledge, and sensitivity ~1994) that attempts to induce the set of constructions that
to the statistical properties of the input data. Such prin-  bestfits previously seen data and generalizes to new data.
ciples are shown to be useful and necessary for learn- \We conclude by discussing some of the broader implica-

ing the structured mappings between form and meaning tjons of the model for language learning and use.
needed to represent phrasal and clausal constructions. We

describe an algorithm based on Bayesian model merg- . ..
ing that can induce a set of grammatical constructions Conceptual and lexical prerequisites

based on simpler previously learned constructions (in the . . . . S .
base case, lexical constructions) in combination with new ~Children learning their earliest word combinations bring

utterance-situation pairs. The resulting model shows how considerable prior knowledge to the task. Our model of
cognitive and computational considerations can intersect grammar learning makes several assumptions intended
to produce a course of learning consistent with data from 4 capture this knowledge, falling into two broad cat-
studies of child language acquisition. egories: representational requirements for ontological
knowledge; and the ability to acquire lexical mappings.
Introduction Infants inhabit a dynamic world of continuous per-
This paper describes a model of grammar learning inggﬁtssaitigﬂg rfé%:vaitr?seyOrg;)lcisnsd:psttiogprgset?wtetzriseetggId
which linguistic representations are grounded both in the boorly 4 y

conceptual world of the learner and in the statistical prop-are learning grammar, however, they have amassed a

erties of the input. Precocity on both fronts has preVi_substantial repertoire of concepts corresponding to peo-

ously been exploited in models of lexical acquisition; weple’ objects, settings and actions (Bloom, 1973; Bloom,

focus here on the shift from single words to word combi—%iooo)‘ They are also competent event participants who

nations and investigate the extent to which larger phras ave acquired richly structured knowledge about how

and clausal constructions can be learned using principle ngesr;an;:rxgﬁsagasr; Irﬁltii?:c:tgor?glsﬁl:t’iclsglzﬁé tsr:g?g’_
similar to those employed in word learning. Our model ’ P prag

makes strong assumptions about prior knowledge — bothovl\;them to dettetrmlnle refgrtlentl?l mtc(ajnlt (quom,hZOOO)a
ontological and linguistic — on the part of the learner, ewg(zhmpu a 'On? moble S ofvxor earkrl\lng ave at-
taking as both inspiration and constraint the course Ofdresse € general problem of how Such sensorimotor

development observed in crosslinguistic studies of chikﬂ”d soualr;cultutralk?agvt)k/] IS acqtljlred. Severafl E‘Od?ls'
language acquisition. owever, have tackled the simpler problem of how la-

After describing our assumptions, we address the repbels (either speech or text) become statistically associ-

resentational complexities associated with larger gram2t€d With concepts in restricted semantic domains, such
matical constructions. In the framework of Construc- 23S spatial relations (Regier, 1996), ObJeCtS anq attributes
tion Grammar (Goldberg, 1995), these constructions carjgg%_asndk.':gngggg’ 1899%1), ar:jd Iactlons (Bqltlr?y et "’}I
like single-word constructions, be viewed as mapping » SISKind, ). Such models assume either explic-
between the two domains éérm and meaning where itly or [mpllc!tly that lexical ltems can be represented as
form typically refers to the speech or text stream and"'aPS(i-€., bidirectional associations) between represen-
meaning refers to a rich conceptual ontology. In partic-t"’;t!onS tofform e}ntt;imegal\r/lnn%he;ttﬁre acqluwed 03 the baS|ds
ular, they also involve relations among multiple entities©' INPUt associations.Most ol these also produce word
in both form (e.g., multiple words and/or phonological senses whose meanings exhibit category and similarity

units) and meaning (multiple participants in a scene), & ITypically, supervised or unsupervised training is used to

We”. as mappings across rele.ltlons in these two doma.'”%nduce word categories from sensorimotor input, which is de-
We introduce a simple formalism capable of representingcribed using continuous or discrete features; models vary in
such relational constraints. the degree of inductive bias present in the input feature space.



effects like those known to be pervasive in human cognifrom the meaning of its parts; the syntactic pattern it-
tion (Lakoff, 1987): concepts cluster into categories withself may also contribute a particular conceptual fram-
prototype structure and graded category membership. ing. For example, th€ AuSED-MOTION construction

For our current spotlight on the acquisition of gram- underlyingPat sneezed the napkin off the tabtgoses
matical structures, we will make a similar set of simpli- a causative reading on the typically non-causative verb
fying assumptions. We do not attempt to model the comsneezgeand the need for an agentive recipient in e
plex reasoning and inference processes needed to infaRANSITIVE construction rendeidarry kicked the door
the appropriate intended meaning of an utterance in cornthe ballsomewhat anomalous.
text; rather, we take as input a representation of the in- On this account, syntactic patterns are inextricably
ferred meaning in a given situational context. We also astinked with meaning, and grammaticality judgments are
sume that lexical maps like those produced by the wordrightly influenced by semantic and pragmatic factors.
learning models described above are available as input t®he interpretation and acceptability of an utterance thus
the grammar-learning process. depends not only on well-formedness conditions but also

For present purposes, the precise variant of worcbn the structure of the language user’s conceptual ontol-
learning is not at issue, as long as several representagy and on the situational and discourse context.
tional requirements are met. Lexical maps should facil- The main representational complexity introduced with
itate the identification of similar concepts and providethese multiword constructions is the possibility of struc-
some basis for generalization. They must also be able teure in the form pole. As mentioned above, although
capture the kinds of event-based knowledge mentioneéhdividual lexical items can evoke complex frames with
above: the meanings of many early words and construcmultiple participant roles (e.ghye-bye basebal), the
tions involve multiple entities interacting within the con- actual mapping between the form and meaning pole
text of some unified event (Bloom, 1973) or basic scends necessarily straightforward.  With multiple form
(Slobin, 1985). Fortunately, these representational deunits available, however, additional structures arise, both
mands have long been recognized in the context of adullithin the form pole itself and, more significantly, in the
constructions, and semantic descriptions basdthomes  relational correlationsbetween the form and meaning
relating various participamvleshave been developed by, poles? That is, a multiword construction may involve
e.g., the Berkeley FrameNet project (Baker et al., 1998)a more complexstructured magbetween its form and
Frame-based representations can capture the relationaleaning poles, with maps between form and meaning
structure of many concepts, including not only early sen+elations whose arguments are also mapped.
sorimotor knowledge but also aspects of the surrounding In addition to the sound patterns of individual words,
social and cultural context. the form pole includes intonational contours, morpholog-

It will be convenient to represent frames in termsical inflections and word order. As with single words, the
of individual role bindings: Throw.thrower:Human and  meaning pole encompasses the much larger set of frame-
Throw.throwee: Object together bind ahrow frame with a  based conceptual knowledge. The constructional map-
Human thrower acting on arobject throwee. Note that al-  ping between the two domains typically consists of a set
though this representation highlights relational structureof form relations (such as word order) corresponding to
and obscures lower-level features of the underlying cona set of meaning relations (such as role-filler bindings).
cepts, both aspects of conceptual knowledge will be cru-
cial to our approach to language learning.

In the current model, ontological knowledge is rep-
resented with an inheritance hierarchy in which frames 5z~ ! = s
are represented as feature structures (i.e., attribute-value !
matrices) and role bindings are handled by unification;
Our initial set of constructions contains a number of lex-: 1
ical form-meaning maps, where for simplicity we further | frov =+
constrain these to be mappings from orthographic forms !
to feature-structure meanings, as in Bailey (1997). ; the bal

We now turn to the representationally more complex

case of grammatical constructions, before addre:ssingigure 1: A constructional analysis of the senterice

how such constructions are learned. throw the bal] with form elements at left, meaning ele-

Grammatical Constructions ments at right and some constituent constructions linking
the two domains in the center.

We base our representations of grammatical knowledge ) ) L )

on ideas from Construction Grammar (Goldberg, 1995)\S an example, Figure 1 gives an iconic representation of
and Cognitive Grammar (Langacker, 1987). In these apS°Me of the possible constructions involved in an analy-

proaches, larger phrasal and clausal units are, like Iexicalzir nd Colunaa (2000) for arquments that the abil-
ConStr.UCt'QnS’ pairings of f.orm and meaning. .A kgy Ob'ity tos;ggrce;gzﬁ?r:}ago(r:lal cogrre(lation)s unde?lies infants’ reputed

servation in the Construction Grammar tradition is thataptitude for statistically driven learning of concrete and abstract

the meaning of a sentence may not be strictly predictableatterns.

THROW-TRANSITIVE
constructional

Buiuesw

3

form

form

THROW

Buiuesw

THE- BALL

form

Buiueaw
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;PHROW;M THE'BAI]B“L,[ t?" %avetrs]lmpije %Olef’ of 2°th We can now specify our construction learning task:
ormand meaning. But besides Ine Inaividualworas ants;yan g injtial set of constructior and a sequence
concepts involved in the utterance, we have several wor

. X e X ; f new training examples, find the best set of construc-
order relationships (nqt explicitly shown n the d|agra_m) tionsC' to fit the seen data and generalize to new data. In
that can be detected in the form domain, and binding

. . %ccord with our discussion of conceptual prerequisites, a
?nea:\évt(iafgnttri]t?e;c}l:ss daessgggtgd t‘émgo"" g’lmfjh otr:jer dse- training example is taken to consist of an utterance paired
o X d Dy (n€ double-neaded arroWg;,, 5 representation of a situation, where the former is
within the meaning domain). Finally, the larger clausal ;' soence of familiar and novel forms, and the latter a
construction (in this case, a verb-specific one) has conget of frame-hased conceptual entities and role bindings
stituent constructions, each of which is filled by a differ-

nt lexical constructiof Grucially. the cl | Construc. representing the corresponding scene.
ent lexical constructiofiLrucialy, the clausal construc % Previous work on Bayesian model merging (Stolcke,

H?gsseé\éﬁ;;gogzz%%at(?;g?isr?secwﬁgrgotrr?; r::agmesn\f[\gt 994; Bailey et al., 1997) provides a suitable starting
P 9 ’ 9 oint. In that framework, training data is first incor-

tmhng rgé?té?(g?na[g age%ciB{tggﬁgm?étféggnnqsgclgrxr'rfal)porated, with each example stored as an independent
pS. Pe, model. Similar models are then merged (and thereby

rpnoelgriz:tmhZ?tﬁfeorrﬁéhaenrfr?gRgg‘lfe(I:c%n:m:ﬁgosnpse;(lj(reTimlhee gengralized); the res_ulting drpp in Iikel_ihood is. balance(_j
situation) fills thethrower role in théT.r;row frame against an increase in the prior. Merging continues until
i ' the posterior probability of the model given the data de-
A more formal representation of th’HROW-  creases. In the case of probabilistic grammars (Stolcke
TRANSITIVE construction is given in Figure 2. For cur- and Omohundro, 1994), structural priors favor grammars
rent purposes, it is sufficient to note that this represenwith shorter descriptions, and likelihood is based on the
tation captures the constituent constructions, as well agrobability of generating the data using the grammar.
constraints on its formal, semantic and constructional el- e apply a similar strategy to our current task by cast-
ements. ) Each ConStit-Uent has an alias used IOca”y tﬁ]g it as a search through the space of possib|e grammars
refer to it, and subscripté andm are used to denote (or sets of constructions), where the grammars are evalu-
the constituent’s form and meaning poles, respectivelyated using Bayesian criteria. The operations on the set of
A designation constraint (in Langacker’s (1987) sensekonstructions (merging and composition, described be-
specifies a meaning type for the overall construction.  |ow asreorganization processes) extend previous oper-
ations to handle relational structures. Similarly, the eval-

construction THROW-TRANSITIVE
constituents:
construct t1 of meaning type Human
construct t2 of type THROW
construct t3 of meaning type Object
formal constraints:
t1s beforet2¢
t2+ beforet3¢
semantic constraints:
t2m.thrower +— tlm
t2m.throwee +— t3
designates t2n,

uation criteria need not change significantly for the con-
struction learning case: structural priors favor grammars
with fewer, more general constructions that compactly
encode seen data; this measure combats the inevitable
corresponding drop in the likelihood of generating the
seen data using the grammar. Again, the learning algo-
rithm attempts to maximize the posterior probability of
the set of constructions given the data.

The main complication requiring a departure from pre-
vious work is the need to hypothesize structured maps

between form and meaning like those described in the
: . revious section. Essentially, incorporating new data in-
Figure 2:  Formal rgprese_ntatmn of tHEHROW'. \F/)olves both theanalysis of gn utterpance e?ccording to
TRAN.SITIVE construgtlon, with separate .blocks listing known constructions and tHeypothesisof a new con-
constituent constructions, formal constraints (e.g., Worcsrction to account for any new mappings present in
order) and semantic constraints (role bindings). the data. These processes, described below, are based
on the assumption that the learner expects correlations
Although this brief discussion necessarily fails to do petween what is heard (the utterance) and what is per-
justice to Construction Grammar and related work, weceijved (the situation).Some of these correlations have

hope that it nevertheless conveys the essential represegiiready been encoded and thus accounted for by previ-
tational demands on the structures to be learned.

SModel merging conducts a best-first search through the hy-

_— pothesis space based on available merges. Itis thus is not guar-

3The definite determinehe explicitly depends on a repre- anteed to find the best model, which would require searching
sentation of the situational and discourse context that supportgrough an exponential number of possible grammars.
reference resolution. For simplicity, we will ignore the internal  6The task as defined here casts the learner as primarily com-
structure of “the ball” and treat it as an unstructured unit. prehending (and not producing) grammatical utterances. The

4This example, like the rest of those in the paper, is basedurrent model does not address production-based means of hy-
on utterances from the CHILDES corpus (MacWhinney, 1991)pothesizing and reinforcing constructions, which would be in-
of child-language interaction. cluded in a more complete model.



ously learned constructions; the tendency to try to acNext, the constraints specified by these constructions

count for the remaining ones leads to the formation ofmust be matched against the input utterance and situa-
new constructions. In other words, what is learned detijon. The form constraints for all the lexical construc-

pends directly on what remains to be explained. Thgjons are trivially satisfied, and in this case each also hap-
|de'rt1t|f|;:'at|c;rr11 Otf the madpptlndgsé)bitween an uttter?nce aNfens to map to a meaning element preseSinCheck-
asituation that are predicted by known constructions Cay, , he form and meaning constraints of thEROW-
be seen as a precursor to language comprehension, In L S . .
which the same mappings actively evoke meanings n ALL construction is also trivial: all relations of inter-
present in the situation. Both require the learner to havé’St are directly available in the input utterance and situa-
an analysis procedure that determines which construdion-
tions are potentially relevant, given the utterance, and;
by checking their constraints in context, finds the best
fitting subset of those.
Once the predictable mappings have been explaingd 1. Extract the set Fnownof familiar form units from U, and

away, the learner must have a procedure for determin-  Use them to cue the set Ceueq of constructions.
ing which new mappings may best account for new data, 2- Find the bestit analysis A = < Ca,Fa,Ma >, where
The mappings we target here are, as described in the pre- A 1S the best-fitting subset of Coyeq for utterance U in

. pp, g ? 9 - TS p situation S Fp is the set of form units and relations in U
vious section, rglatlonal. It is important to note that a used in Ca, and M is the set of meaning elements and
relational mapping must hold across arguments that are  bindings in Saccounted for by Ca.
themselvezonstructionally correlated That is, map- A has associated cost Cosf, providing a quantitative
pings between arguments must be in place before highef-  measure of how well A accounts for U in S
order mappings can be acquired. Thus the primary can- 3. Reward constructions in Ca; penalize cued but unused

Analyze utterance . Given utterance U in situation Sand
current constructions C, produce best-fitting analysis A:

didates for relational mappings will be relations over el- constructions, i.e., those in Ceyed'\ Ca.
ements whose form-meaning mapping has already been _ _ _
established. This requirement may also be viewed as Figure 3: Construction analysis.

narrowing the search space to those relations that are
deemedelevantto the current situation, as indicated by
their connection to already recognized forms and thei
mapped meanings.

Details of these procedures are best illustrated by ex
ample. Consider the utterante = “you throw a ball”
spoken to a child throwing a ball. The situatiSrcon-
sists of entities; and relation&; the latter includes role
bindings between pairs of entities, as well as attribute
of individual entities. In this cas&; includes the child,
the thrown ball and the throwing action, as well as po
tentially many other entities, such as other objects in th
immediate context or the parent making the statemen
S = {self,Ball,Block, Throw,Mother,. .. }. Relational bind-
ings include those encoded by thieow frame, as well

as other properties and relatior®:= { Throw.thrower:Self, . ;
prop =1 in the analysis areFem = {before(you,throw),

Throw.throwee:Ball, Ball.Color:Yellow, . . }
. : . before(you,ball) } and Mrem = {Throw.thrower:Self}.
In the following sections we describe what the learner. ! . . d
: . : . The potential constructiol©,e derived by replacing
might do upon encountering this example, given an . . :
e . : terms with constructional references is made up of form
existing set of construction§ that has lexical en-

tries for BALL,THROW,BLOCK,YOU,SHE, etc., as well pole {before (YOUfTHROW <) before (YOUf,BALL()}
b ) ) b ) "y

; o and meaning pol¢ THROWm.th :YOUn}. The final
as a two-wordTHROW-BALL construction associating g pol¢ m-{rower m}
the before(throw,ball) word-order constraint with the "We assume theou construction is a context-dependent
binding ofBall to thethrowee role of theThrow frame. construction that in this situation maps to the chil().
8The analysis algorithm can be viewed as a version of pars-

ing allowing both form and meaning constraints. More sophis-
ticated techniques are needed for the many complications that
Gi his inf . h \vsis algorithm in Ei arise in adult language — category constraints on roles may ap-

iven this information, the analysis algorithm in Fig- 1y only weakly, or may be overridden by the use of metaphor
ure 3 first extracts the s&inown = {you throw ,ball }, or context. For the cases relevant here, however, we assume

which serves to cue constructions whose form pole inihat constraints are simple and few enough that exhaustive
search should suffice, so we omit the details about how cueing

cludes or may be instantiated by any of these units. Ionstryctions, checking constraints and finding the best-fitting
this caseCeyed = {YOU, THROW,BALL, THROW-BALL}. analysis proceed.

In the eventual best-fitting analysi8, the con-
Istructions used ar€a ={YOU,THROW,BALL,THROW-
BALL}, which cover the forms and form relations
in Fa = {youthrow,ball,before(throw,ball) } and
map the meanings and meaning relationsMp =
{Self, Throw,Ball, Throw.throwee:Ball}. (Remaining unused
in this analysis is the form.)

s We proceed with our example by applying the proce-
dure shown in Figure 4 to hypothesize a new construc-
_tion. All form relations and meaning bindings, respec-
éively, that arerelevantto the form and meaning entities
nvolved in the analysis are extracted as, respectively,
rel =  {before(you,throw), before(throw,ball),

before(you,ball) } and My = {Throw.thrower:Self,
Throw.throwee:Ball}; the remainder of these not used

Construction analysis and hypothesis



Reorganize constructions . Reorganize C to consolidate

constructionCy, is obtained by retaining only those
similar and co-occurring constructions:

relations inCpot that hold over correlated arguments:

({before (vous ,THROWf)}, {THROWm.thrower:YOUm}) 1. Find potential construction pairs to consolidate.

e Merge constructions involving correlated relational
mappings over one or more pairs of similar con-

Hypothesize construction . Given analysis A of utterance stituents, basing similarity judgments and type gen-

U in situation S hypothesize new construction Cy linking eralizations on the conceptual ontology.

correlated but unused form and meaning relations: e Compose frequently co-occurring constructions with

compatible constraints.

1. Find the set R of form relations in U that hold between

the forms in the analysis Fa, and the set M| of mean-
ing relations in Sthat hold between the mapped mean-
ing elements in Ma.

2. Find the set Frem = Fe| \ Fa of relevant form relations
that remain unused in A, and the set Myem = M| \ Ma
of relevant meaning relations that remain unmapped in
A. Create a potential construction Cpot = (Frem.Mrem),
replacing terms with references to constructions in Cp
where possible.

3. Create a new construction Cy consisting of pairs of
form-meaning relations from Cpot whose arguments are
constructionally related.

4. Reanalyze utterance using C U{Cy }, producing a new
analysis A" with cost Cosfy. Incorporate Cy into C if
Cosh —Cosjy > Minlmprovementelse put Cy in pool
of potential constructions.

2. Evaluate how possible merge/compose operations af-
fect the posterior probability of C on seen data, perform-
ing operations on a greedy, best-first basis.

Figure 5: Construction reorganization.

straints with appropriate correlations are found, resulting
in the hypothesis of the constructi@y,:

({before (SHEf,THROW¢)}, { THROWm.thrower:SHEm })

Cy, andCy, bear some obvious similarities: both con-
structions involve the same form relations and meaning
bindings, which hold of the same constituent construc-
tion THROW. Moreover, the other constituent is filled in

5. If U contains any unknown form units or relations, add

(U, ) to the pool of unexplained data the two cases byHE andyou. As emphasized in our
, .

discussion of conceptual representations, a key require-
ment is that the meaning poles of these two constructions
) . - reflect their high degree of similarify. The overall simi-

Atthis point, the utility ofCy, can be evaluated by re- |4ty hetween the two constructions can lead to a merge

analyzingUs to ensure a minimum reduction of the anal- ¢ e constructional constituents, resulting in the merged
ysis cost. As noted in Step 4 of Figure 4, a construction.qnstruction:

not meeting this criterion is held back from incorpora-
tionintoC. Itis possible, however, that further examples
will render it useful, so it is maintained as a candidatewhereh is a variable over a construction constrained to
construction. Similarly, Step 5 is concerned with main-have aHuman meaning pole (whereuman is a gener-
taining a pool of examples involving unexplained form alization over the two merged constituents). A similar
elements, such as the unfamiliar artizle this example.  process, given appropriate data, could produce the gen-
Further examples involving similar units may togethereralized mapping:

lead to the correct generalization, through the reorgani-
zation process to which we now turn.

Figure 4: Construction hypothesis.

({before (hf,THROW¢)},{ THROWm.thrower:hm})

({pefore (THROWt,0¢)},{ THROW,.throwee:om})

o _ whereo is constrained to have amject meaning pole?
Reorganizing constructions Besides merging based on similarity, constructions
The analysis-hypothesis process just described providg®ay also be composed based on co-occurrence. For ex-
the basis for incorporating new examples into the set ofmple, the generalizeBuman-THROW and THROW-
constructions. A separate process that takes place in pafbject constructions just described are likely to occur
allel is the data-driven, bottom-up reorganization of thein many analyses in which they share tterow con-
set of constructions based on similarities among and costituent. Since they have compatible constraints in both
occurrences of multiple constructions. Figure 5 gives dorm and meaning (in the latter case even based on the
high-level description of this process; we refrain from same conceptuairow frame), repeated co-occurrence
delving into too much detail here, since these processegventua”y leads to the formation of a larger construction
are closely related to those described for other generathat includes all three constituents:
ization problems (Stolcke, 1994; Bailey et al., 1997). 9The precise manner by which this is indicated is not at is-

Continuing our example, let us assume that the uttersue. For instance, a type hierarchy could measure the distance

anceU, = “she’s throwing a frisbee” is later encountered between the two concepts, while a feature-based representation
in conjunction with an appropriate scene, with similar re-™gnt [0k for common featural descriptions. _

Its: in thi both th familiar inflecti dth Although not further discussed here, examples with unex-
sults: in this case, both the untamiliar inflections and théy|ained forms (such as theein U; andUs,) may also undergo

article are ignored; the meanings are mapped; and commerging, leading to the emergence of common meanings.



({pefore (h{,THROW¢),before (THROW¢,0¢)}, Baker, C. F., Fillmore, C. J., and Lowe, J. B. (1998).
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Discussion Bloom, P. (2000)How Children Learn the Meanings of

We have described a model of the acquisition of gram- Words MIT Press, Cambridge, MA.

matical constructions that attempts to capture insight§sasser, M. and Colunga, E. (2000). Babies, variables,
from child language using the formal tools of machine  and relational correlations. IRroceedings of the
learning. Methods previously applied to word learning Cognitive Science Society Conferencelume 22,
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are claimed to require new representational and algorith- . .
mic machinery. Goldberg, A. E. (1995)Constructions: A Construction

The model is compatible to the extent possible with ~ Grammar Approach to Argument Structuténiver-

evidence from child language acquisition. In particu-  Sity Of Chicago Press.

lar, the tight integration proposed between comprehenLakoﬁ’ G. (1987).Women, Fire, and Dangerous Things:
sion and learning is consistent with usage-based theories  \yhat Categories Reveal about the Mitthiversity
of language acquisition: new constructions are hypothe- ¢ Chicago Press.

sized to capture form-meaning correlations not covered

by known constructions, in a manner akin to some ofLangacker, R. W. (1987). Foundations of Cognitive
Slobin’s (1985) Operating Principles for mapping. The Grammar, Vol. 1 Stanford University Press.
data-driven progression from lexically specific to more . .
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More broadly, since the algorithm produces construc- i i
tions based on any utterance-situation pair and existin@RY; D- and Pentland, A. (1998). Learning audio-
set of constructions represented as described above, it Visually grounded words from natural input. In
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guage development, when the learner has more sophigisking, J. M. (2000). Visual event classification via
ticated meaning representations and more complex con-  ¢5.ce dynamics. IrProc. AAAI-2000 pages 149—
structions. The potential continuity between early lan- 155.

guage acquisition and lifelong constructional reorgani-
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