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Abstract

The diagnostic evidence model gives a computational
account of how people classify items in single categories
and in category combinations (complex categories
formed by combining two or more single categories).
This model sets out to explain generativity in category
combination (the fact that people can classify items in
new category combinations even if they have never seen
any examples of those combinations).  The model also
aims to explain context effects such as overextension in
category combination.  In an experiment people learned
to identify imaginary diseases from artificially-
constructed patient descriptions, and then classified new
patient descriptions into combinations of those disease
categories.  The model accurately predicted people's
classification scores for patient descriptions in these
disease combinations, requiring no free parameters to fit
the experimental data.  The experiment showed that both
generativity and overextension can occur in
combinations of artificially-constructed disease
categories, and confirmed the model’s predictions about
when overextension and generativity will occur.

Introduction
The ability to combine mental representations is a basic
part of human cognition.  For example, to understand a
combined phrase such as pet fish we must somehow
combine our representations of the constituent
categories pet and fish.  Category combination is
generative: we can understand a new combined phrase
such as pet lobster, even though we may never have
seen an example of a pet lobster before.  Generativity is
important because it allows us to think new thoughts,
understand new expressions, and respond to new
situations.  However, generativity poses a problem for
theories of classification in which an item’s
membership in a category is proportional to its
similarity to previously seen exemplars of that category
(e.g. the Context theory; Medin & Schaffer, 1978).
Since no previously-seen exemplar is available for
combined categories such as pet lobster, membership in
such a category cannot be computed by exemplar
similarity (Rips, 1995).  While such theories give a
good account for classification in single categories, they
do not extend well to category combination.

Context effects such as overextension occur reliably
in category combination.  These effects also pose a
problem for current theories of classification.

Overextension occurs when people classify an item as a
poor member of a constituent category of a
combination, but as a good member of the combination
as a whole; for example, when people rate goldfish as
poor members of the single categories pet and fish, but
as highly typical members of the conjunction pet fish
(Hampton, 1988).  Overextension shows that an item’s
category membership can change depending on the
context in which classification occurs: being poor if the
category occurs singly, but good if it occurs as part of a
combination.  For theories in which classification is
based on fixed rules for category membership (e.g.
Nosofsky, Palmeri, & McKinley, 1994), these changes
in membership are difficult to explain.  While such
theories apply well to classification in single categories,
the do not extend to category combination.

This paper describes a computational model which
explains classification in both single and combined
categories.  This model, called the diagnostic evidence
model, also explains generativity and overextension in
category combination.  This paper also describes an
experiment investigating classification, category
combination, generativity and overextension in artificial
laboratory-learned categories.  In this experiment
people learned to identify imaginary diseases from
artificially-constructed patient descriptions, and then
classified new patient descriptions into combinations of
those disease categories.  Both generativity and
overextension occurred reliably in these combinations
of artificial categories.  The model accurately predicted
people's classification scores for patient descriptions in
these disease combinations, requiring no free
parameters to fit the data.  The patterns of
overextension and generativity in the experiment
closely matched those predicted by the model.

The Diagnostic Evidence Model
The diagnostic evidence model is an extension of a
model originally developed to explain how people
interpret novel noun-noun phrases (Costello & Keane,
1997, 2000, 2001).  The model aims to explain
classification in both single categories (see Costello,
2000) and category combinations.  The model assumes
that people represent categories by storing sets of
category members in memory.  From these sets,
diagnostic attributes for categories are computed: these
attributes serve to identify new category members.  An
item’s classification in a single or combined category is
a function of the diagnosticity of its attributes for that



category or for the constituent categories of that
combination.  An item has a high classification score in
a category if it has diagnostic attributes of that category.
An item has a high score in a combination if it has some
attributes diagnostic for one constituent of the
combination, and others diagnostic for the other.

Attribute Diagnosticity
Diagnostic attributes are attributes which occur
frequently in members of a category, but rarely in that
category's contrast set (the set of non-members of that
category).  These attributes serve to identify members
of a category: a new item having an attribute which is
diagnostic for a category is likely to be a member of
that category.  Equation 1 defines the diagnosticity of
an attribute x for a category C.  Let K be C's contrast
set.  Let jx be 1 if an item j has attribute x, and 0
otherwise.  D(x|C|K), the diagnosticity of x for C
relative to K, is equal to the number of members in C
which have attribute x, divided by the total size of C
plus the number of items in K which have x:
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If the attribute x occurs in all items in C, but no items in
C's contrast set, then x is fully diagnostic for C
(D(x|C|K) = 1).  Such an attribute is a perfect guide to
membership of C: a new item having that attribute is
most likely a member of C.   An attribute which does not
occur in all members of C, or which occurs in some
members of C's contrast set, will be less diagnostic for
the category.  Such an attribute will be a poorer guide to
membership of C: a new item with that attribute is less
certain to be a category member.

Diagnosticity changes in combination
The contrast set is important in computation of attribute
diagnosticity: the fewer occurrences of an attribute in
the contrast set for a category or combination, higher its
diagnosticity will be.  The contrast set for a single
category consists of all items which are not members of
that category.  The contrast set for a combined category,
however, consists of all items that are not members of
any constituent of the combination.  This change in
contrast set means some attributes that are not
diagnostic for a category occurring singly can be
diagnostic for that category in a combination.  This
change in diagnosticity is the basis for overextension in
category combination.

Table 1 shows 10 stored members of categories such
as pet and fish, described on 4 dimensions.
Computation of attribute diagnosticity can be illustrated
using this set of stored category members.  Consider the
diagnosticity of the attribute <found:house> for the
category fish. <found:house> occurs in 2 of the 4
members of fish in Table 1, and occurs 4 times in the

Table 1.  Example items: 10 stored category members.

Item Categories             Item Attributes
FOUND KEPT COLOR PARTS

1 lobster sea ------ pink claws
2 lobster aquarium tank pink claws
3 fish goldfish house tank gold scales
4 fish guppy house tank silver skin
5 fish salmon sea ------ silver scales
6 fish shark sea ------ silver skin
7 pet spaniel house basket brown tail
8 pet pitbull house kennel black tail
9 pet bulldog house basket brown -----
10 pet terrapin house tank green skin

contrast set Kfish (the set of items which are not
members of the category fish).  The diagnosticity of
<found:house> for fish is
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This attribute has a low diagnosticity for the single
category fish: <found:house> does not identify
members of category fish well.  In the context of the
combination pet fish, however, the attribute has a higher
degree of diagnosticity for fish.  Kpetfish, the contrast
set for the combination pet fish, consists of items that
are members neither of pet nor of fish (items 1 and 2
only). <found:house> does not occur in any items in
Kpetfish.  The diagnosticity of <found:house> for fish
relative to the contrast set Kpetfish is thus
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Attribute <found:house> is thus more diagnostic for pet
fish than for fish alone.  Given this, the diagnostic
evidence model would predict overextension for the
combination pet fish: an item such as goldfish, which
possessed the attribute <found:house>, could be
classified as an untypical fish, but as a typical pet fish.

A logic for evidence
Diagnostic attributes give evidence for an item’s
classification in a category.  Items usually contain a
number of different attributes, however, which may be
more or less diagnostic for the category in question, or
diagnostic for other categories.  The diagnostic
evidence model uses a continuous-valued logic to
combine the diagnosticity of multiple attributes.  This
logic assumes continuous variables with values between
0 and 1, and uses the logical operations
NOT A = 1- A (4)
A AND B = AB (5)
A OR B = 1-(1-A)(1-B) (6)

These equations can be justified by considering the
operations AND, OR, and NOT for samples of independent
variables.  Suppose A is true in 75% of samples, and B



is true in 50% of samples.  Then the probability of NOT
A being true is 0.25 (1-0.75).  The probability of A AND

B being true is 0.375 (0.75 X 0.5): A is true in 75% of
samples, B is true in 50% of those.  Finally, the
probability of A OR B being true is 0.875 (1-(1-0.75) X
(1-0.5)): A is false in 25% of samples, B is false in 50%
of those, and thus A OR B is true in 87.5% of samples.

Combining attribute diagnosticities
To compute an item’s overall evidence for membership
in a category, the diagnosticity of the item’s attribute
are combined using the equation for OR (Equation 6).
An item i with a set of attributes x1, x2, x3 will be a
member of category C if  x1 OR x2 OR x3 is diagnostic for
C.  This is formalised in Equation 7.  Let A be the set of
attributes of item i and let D(x|C|K) be the diagnosticity
of attribute x for C. Then E(i|C|K), the overall evidence
for classifying item i as a member of C, is
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If an attribute x strictly defines a category C (occurs in
all members of C and never occurs outside C), then x is
perfectly diagnostic of C (D(x|C|K) = 1).  If any item i
possesses attribute x , then by Equation 7 E(i|C|K) will
be 1, and the item i will definitely be a member of
category C.  In categories which have no single
defining attribute but rather a range of attributes of
medium diagnosticity, Equation 7 combines evidence
from different attributes in computing evidence for
category membership: the more diagnostic attributes the
item has, the higher its degree of membership will be.
This fits with the observed family resemblance structure
of natural categories (Rosch, 1978).  The relationship
between diagnosticity and membership is supported by
Rosch & Mervis' (1975) finding that people's
judgements of an item’s typicality in a category rises
with the number of the item’s diagnostic attributes.

Diagnostic evidence in combinations
In the diagnostic evidence model, an item will be a
member of a combined category if it gives evidence for
membership in each constituent category in that
combination: if it has some attributes diagnostic for one
constituent of the category, and other attributes
diagnostic for the other.  In computing an item’s
membership in a combined category, the model uses the
equation for AND to combine the item’s evidence for
membership in each constituent.  An item i will be
classified as member of a combined category C1...CN if
it gives evidence for membership in C1 AND evidence
for membership in C2 AND evidence for membership in
C3 and so on.  Formally, E(i|C1...CN|K1...N), the
evidence for classifying i as a member of C1...CN, is
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Table 2. Classification of the item goldfish in single
categories pet and fish and combination pet fish.

Evidence for Attribute Diagnosticity
membership in FOUND KEPT COLOR PART

house tank golden scales
pet singly : 0.7 0.7 0.1 0.0 0.0
fish singly: 0.8 0.2 0.3 0.2 0.5
pet fish:
constituent pet 1 1.0 0.2 0.0 0.0
constituent fish 0.9 0.5 0.4 0.2 0.5
Pet fish overall: 0.9

where the contrast set K1...N is the set of items not in any
category C1...CN.  In this equation an item i gives
evidence for membership in each constituent of a
combination if it has attributes diagnostic for each.
Note that, in computing the evidence for membership in
each constituent category (r.h.s. in Equation 8), the
contrast set for the combination as a whole is used.  In
computing membership in those categories occurring
singly, their single contrast sets would be used.

Table 2 illustrates the diagnostic evidence model by
showing the computed membership for the item
goldfish, which has attributes <found:house>,
<kept:tank> <color:golden> and <part:scales>, in the
single categories pet and fish and in the combination pet
fish.  The diagnosticity of the item’s attributes for single
categories and for constituents of the combination are
listed in columns under those attributes.  The item’s
membership scores in the single categories and the
constituents of the combination are computed from
those diagnosticities (shown in bold, to the left of those
diagnosticities).  At the bottom of Table 2 is the item’s
overall membership score in the combination (obtained
by multiplying its constituent membership scores).

Explaining overextension and generativity
In the diagnostic evidence model, overextension arises
if some attributes have low diagnosticity for a single
category but high diagnosticity for that category in a
combination.  Table 2 illustrates this overextension.
The item in Table 2 has a higher overall membership
score in the combination pet fish than in the categories
pet or fish presented singly, because the item’s
attributes are more diagnostic for the combination than
for the single categories.  For example, <found:house>
has lower diagnosticity for the single category fish, but
higher diagnosticity in context of the combination pet
fish (it occurred often in the contrast set for the single
category fish, but not in the contrast set for pet fish).
The model thus predicts overextension for that item.

The diagnostic evidence model gives a generative
account of category combination, in which an item can
be classified in a new combination even if no previous
examples of that combination have been seen.  An item



Table 3. Training materials for learning diseases.

Training  Item features Member of Category or
Item D1 D2 D3 Combination
1 A X C A
2 A Y Y A
3 A A X A
4 Y A Y A
5 X A B A&B
6 A B X A&B
7 Z B B B
8 X B B B
9 Y X B B
10 Z Y B B
11 C A Y C
12 C X B C
13 C Y C C
14 C A C C
15 C X C C
16 X Y C C

is classified in such a combination if it has diagnostic
attributes for each constituent category in the
combination: some attributes diagnostic for one
constituent, other attributes diagnostic for the other.
For example, in Table 1, there are no stored members of
the combination pet lobster. However, an item could be
classified as a good member of the combination pet
lobster if it possessed the attributes <has-part:claws>
(diagnostic for lobster in Table 1) and <found:house>
(diagnostic for pet).  The model thus predicts
generativity for that combination.  The next section
describes an experiment testing the diagnostic evidence
model’s predictions about classification, overextension,
and generativity in category combination.  This
experiment uses artificial categories in the domain of
disease diagnosis.

Disease Diagnosis: An Experiment
Most experiments investigating category combination
examine how natural-language categories are
combined.  The current experiment examines category
combination with artificial, laboratory-generated
categories representing imaginary diseases.  In this
experiment, every subject was given a set of 16 patient
descriptions (16 training items), each with 3 symptoms
and each having a given disease or disease combination.
The abstract distribution of symptoms in training items
was identical for all subjects, and is shown in Table 3.
The training materials used ill-defined categories: no
symptom perfectly indicated any disease.  In the
training phase of the experiment, subjects used these
training items to learn to identify diseases.  In the
transfer phase subjects were given new patient
descriptions (transfer items) and asked, for each disease
and each possible disease combination, to indicate

whether the new item was a member of that disease
category or disease combination.

Method

Subjects.  19 Dublin City University undergraduates.
Materials.  Each subject received a set of 16 patient-
description cards (training items) with the abstract
structure shown in Table 3. In these, abstract attribute A
(on any dimension) is most diagnostic for category A,
attribute B for category B, and C for category C.   Each
subject received a different set of patient descriptions,
generated via a unique mapping from abstract attributes
to concrete symptoms.  For example, for one subject,
attribute <A> on dimension D1 became symptom
eyes:puffy; <A> on D2 became skin:flaking, and <A>
on D3 became mucles:taut.  For other subjects the
attributes were mapped to different symptoms.

Procedure.  In the training phrase subjects spent 15
minutes learning to identify diseases by studying their
16 patient-description cards. Subjects were then shown,
in random order, patient descriptions with the same
symptoms as those they had learned, but sometimes
with incorrect diagnoses.  Subjects indicated whether
diagnoses were correct and incorrect.  If a subject got a
diagnosis wrong, they were shown the correct answer.
The transfer phase of the experiment examined subjects
classification of 5 new patient descriptions (the transfer
items).  Table 4 gives abstract representations for these
items.  Each subject’s transfer items were formed by
applying their attribute-to-symptom mapping to this
representation.  Each item was presented 6 times, each
time with a different single or combined category.
Subjects rated the given item as a member or non-
member of the given category or combination, using a
–10 to +10 rating scale, with a positive rating indicating
membership and a negative rating non-membership.

Results
Analysis of subject’s performance in the training phase
showed that most had no problem in classifying items.
One subject got most of the training-phase test
classifications wrong and was excluded from analysis.
The 2nd-last column in Table 4 (‘classification
probability: observed’) shows the observed probability
(proportion) of subjects rating each transfer item as a
member of the given combination.  (For space reasons
the corresponding data for single categories are not
shown.)  For example, the observed probability of
transfer item <ABY> being classified in combination
A&B was 0.5: 50% of subjects rated that item as a
member of that combination.
The data in Table 4 shows that subjects responded
consistently to items.  For example, there were some
items which had high observed classification
probabilities for particular combinations, indicating that
many subjects agreed that those items did belong in



Table 4.  Observed and predicted classification of the 5
transfer items in 3 different category combinations.

Item Combination  Classification probability
D1 D2 D3   Observed Predicted
A B Y A&B 0.50 0.47
A B Y A&C 0.11 0.13
A B Y B&C 0.11 0.07
C Y B A&B 0.06 0.19
C Y B A&C 0.28 0.21
C Y B B&C 0.72 0.77
Y A C A&B 0.22 0.14
Y A C A&C 0.50 0.50
Y A C B&C 0.17 0.17
X B C A&B 0.28 0.23
X B C A&C 0.17 0.27
X B C B&C 0.39 0.42
X X B A&B 0.28 0.29
X X B A&C 0.11 0.15
X X B B&C 0.39 0.45

those combinations.  For example, 72% (0.72 observed
classification probability) of participants identified item
<CYB> as a member of combination B&C: most
subjects agreed in classifying that item as a member of
that combination.  Conversely, a number of items had
very low observed classification probabilities for
particular combinations, indicating that a large
proportion of subjects agreed that those items did not
belong in those combinations.  For example, only 6%
(0.06 observed classification probability) of participants
classified  item <CYB> as a member of combination
A&B.  The remaining 94% of participants indicated that
the item did not belong in that combination.  Because
each subject’s patient descriptions used a unique
mapping from abstract attributes to symptoms, this
consistency depended only on the distribution of those
symptoms in the learned categories.

Model fit.   To apply the diagnostic evidence model to
the experimental materials, the equations described
earlier were used to compute the classification score for
each of the transfer items in Table 4 in every possible
single and combined disease category.  The
diagnosticity of each item's attributes for each category
was computed from the distribution of those attributes
in the training items shown in Table 3.  The last column
in Table 4 (‘classification probability: predicted’)
shows computed classification scores for each item in
each combined category.  These computed scores were
compared with the observed probability with which
people classified the items as members of each
combination.  There was a strong correlation between
the predicted and observed classification scores for the
combined categories (r=.95, p <.01, %var=.9).
Comparing predicted and observed classification scores
for items across all single and all combined categories

Table 5. The 6 item-combination-constituent triplets for
which overextension occurred or was predicted.

Item  Combination Constituent Overextension

Observed Predicted

A B Y A&C C Yes (0.50) Yes
C Y B A&C A Yes (0.56) Yes
C Y B B&C B Yes (0.67) Yes
Y A C A&C C Yes (0.56) No
X X B A&B A No (0.41) Yes
X X B B&C C Yes (0.61) Yes

also showed a significant correlation (r=.85, p <.01,
%var=.73).  No free parameters were used to fit the
model's classification scores to the experimental data.

Generativity.  The generativity of category
combination was examined by comparing the
classification of transfer items in the combinations
A&B, A&C, and B&C.  In the training phase, subjects
saw examples of the combination A&B but not of the
other combinations.   If combination is not generative,
participants will only be able to identify items as
members of the previously-seen combination A&B, but
not as members of the other two combinations.  Table 3
shows that 72% of participants classified the item
<CYB> as a member of the previously-unseen
combination B&C.  More participants classified the
item in that new combination than classified the item
<ABX> in the previously-seen combination A&B.
There was no significant difference between the number
of items classified in the previously-seen combination
A&B and in the other, new combinations.   This
supports a generative view of category combination.

Overextension.  The occurrence of overextension in
the experimental data was analysed at the individual
subject level.  Overextension was taken to have
occurred every time an individual subject gave a
particular transfer item a higher score as a member of a
combined category than they gave that item as a
member of one of the constituent categories of that
combination.  For example, if a given subject gave the
transfer item <ABY> a high classification score as a
member of A&C, but the same subject gave <ABY> a
lower classification score as a member of C, that would
be taken as a case of overextension (an overextension
response).  In the experiment there were 5 different
transfer items, each of which was classified in 3
different category combinations (A&B, A&C, B&C),
where each combination had two different constituent
categories.  There were thus 30 possible cases in which
overextension could arise.  Out of those 30 cases, there
were 5 in which 50% or more subjects produced
overextension responses.  Table 5 shows all item-
combination-constituent triplets for which overextension



either occurred in the experiment or was predicted by
the model.  The 5 cases with at least 50% overextension
responses in the experiment are indicated in Table 5 by
a “Yes” in the 2nd-last column (with the proportion of
overextension responses for each case).  For these
cases, at least 50% of subjects rated the given item as a
better member of the given combination than of the
given constituent category presented singly.  In a
significant number of cases subjects rated the given
item as a member of the combination, but as a non-
member of the constituent category.  For example, 44%
of subjects rated the item <CYB> as a member of the
combination B&C, but the same subjects rated that item
as a non-member of the constituent category B.  These
cases show that overextension occurs reliably even for
artificial categories. (Order of presentation had no
reliable influence on overextension in these cases.)

To analyse the model’s predictions about
overextension, the model’s computed classification
scores for all transfer items in all category combinations
were compared with the  scores for those items in the
constituents presented singly.  If an item had a higher
classification score in a combination than in one of its
constituent categories presented singly, the model
predicted overextension for that item.  Again, there
were 30 cases in which overextension could happen:
out of those 30 cases, the model predicted
overextension in only 5 cases.  These are indicated by a
“Yes” in the last column in Table 5.  Of the 5 cases in
which overextension occurred in the experiment, 4 were
cases in which overextension was predicted by the
model.  Of the remaining 25 cases in which
overextension was not observed, 24 were cases in
which the model predicted overextension would not
occur.  The model accurately predicted the occurrence
and non-occurrence of overextension in these materials.

Discussion and Conclusions
The results obtained in the above experiment are
important for a number of reasons.  They show that
both overextension and generativity occur even for
combinations of artificial laboratory-learned categories.
Previous research has investigated these factors in
natural-language category combinations alone.  They
show that the patterns of overextension and generativity
seen in the experiment have a close quantitative match
with those predicted by the diagnostic evidence model.
Other models give a looser qualitative account of
overextension and generativity.  Finally, these results
show that the diagnostic evidence model accurately
predicts people's classification of items in both single
categories and category combinations, needing no free
parameters to fit the data.  Other models typically apply
either to single categories or to category combination,
but not to both.  These models typically require a
number of free parameters to fit the relevant data.

The diagnostic evidence model, in accounting
accurately for the results of the above experiment,

represents an advance on other current theories of
classification.  However, there are results which the
model cannot currently explain.  For example, studies
show that people can learn correlations between pairs
of attributes and use those correlations in classification
(Medin, Altom, Edelson, & Freko, 1982).  The
diagnostic evidence model, because it has no
mechanism for learning correlations between attributes,
cannot account for these results.  In future work the
model will be extended to learn attribute correlations by
forming new “composite” attributes, and to use those
attributes in classification.  This may allow the model
account for these findings.
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