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Abstract

Various characteristics can be encoded to define the source of
particular information.  How these characteristics interact to
describe and define a source has so far been ignored.  Our work
focuses on the representation of source information in memory
using the General Recognition Theory.  The results are discussed
in relation to current modelling efforts.

Introduction
How is a source defined?  How do we represent context
information about an event?  How do we use this
information in source monitoring?  Source monitoring
refers to the proper attribution of an item to its source
(Lindsay and Johnson, 1991; Johnson, Hashtroudi, and
Lindsay, 1993).  Sources may be defined by a variety of
characteristics, including but not limited to size, font,
location, cognitive processes at encoding, affect, and so
on.  For written material, font, location, size, and possibly
the syntax and structure used in a part of text may identify
a part of text as a source.  Memory for source is
vulnerable, and source misattributions (SM) are common.
Such errors may arise due to (1) failure of cognitive
processes underlying the judgment, (2) adoption of a lax
criterion which does not involve deliberate and conscious
consideration of each judgment, and (3) similarity of the
sources to such an extent that they are indistinguishable
from one another.  In other words, source monitoring
involves normal memory processes and decisional
processes, and a separation of the two can yield a better
understanding of how sources are actually defined and
how decisional processes can fail and cause SM errors.

Recently, a number of multinomial models of source
monitoring have been proposed (Bayen, Murnane, and
Erdfelder, 1996; Batchelder and Reifer, 1990; see
Batchelder and Reifer, 1999 for a review).  These
statistical models assume a processing tree with a single
root.  Each branch of the tree represents one possible path

in the stage of the process, and each fork in the branch
represents a possible division of probabilities for a specific
outcome.  The branches end in response categories, from
which all the fork parameters are estimated.  This type of
modelling allows an analysis of every possible contribution to
each factor and thus enables one to model a cognitive process
into discrete stages, collect categorical data, and then estimate
the contributions made at each stage.

The advantages of such a model are easily visible.
Interpretations are made effortless by the simple tree
structure.  Assumptions of independence between various
fork parameters allow one to divide and separate various
components of a process and to demonstrate independence
between these components.  However, such representation of
source information is not modelled by this technique, and as
such, these modelling efforts are limited in capturing the
global features of source monitoring.

There are at least two major limitations to multinomial
modelling.  The first involves the degrees of freedom in the
estimation procedure.  Given that there are often more
parameters than categories, some parameters must be
assumed equal.  This may sometimes be beneficial, since a
model is reduced to its minimal, simplest components.
Unfortunately, even with this parameter reduction, one may
still have more parameters than categories, and the estimation
procedure will thus result in a number of possible models
rather than a single possible solution.  From this pool of
resulting models, using goodness of fit tests, one must
determine which model actually represents the expected
design or the data.

A consequence of this is that as findings in the field
increase, such a model is more difficult to grow because of
the increase in the free parameters.  A multinomial model will
therefore be limited to more general processes and will not be
able to model details of a process, such as how source
information is represented in memory.  A lack of
understanding about the details of a process can, in turn,
result in a misunderstanding of the process as a whole as well



as the relation of that process in the grand scheme of
cognition.

The second limitation, already hinted at, is the
requirement of assuming statistical independence between
various fork parameters.  What this means is that a process
stage, modelled on a fork further down a tree, is thought to
be independent of a process stage modelled further up the
tree; no two processes can have dependence in such a
model.  As we will see below, this assumption presents a
crucial limitation of multinomial models in capturing the
representation of source information in memory.

How to test statistical independence
In a multidimensional setting of a source characteristics
where various factors influence source memory and source
judgments, how is one to assess independence while
accounting for the influence of all memory and decision
factors?  Historically, for unidimensional stimuli, signal
detection theory (SDT; Banks, 1970; see Swets, 1996) has
been the method of choice for separating decisional and
perceptual factors in perception and recognition.
However, SDT does not allow for a test of independence
and is also limited to the analysis of only unidimensional
stimuli.  Ideally, we would want a statistical technique
similar to SDT that could also account for interactions of
various dimensions on a recognition task while providing a
test of independence and separation of decisional and
perceptual factors.  General Recognition Theory (GRT;
Ashby and Townsend, 1986; Ashby, 1988), and the
analytical method permitted by it (Multidimensional
Signal Detection Analysis, or MSDA, Kadlec &
Townsend, 1992a; Kadlec & Townsend, 1992b), meet our
requirements.

GRT and MSDA
The GRT was developed by Ashby and Townsend (1986)
in response to various issues that had been raised in
perception research.  These issues concerned the notion of
independence and separability of the perception of
stimulus dimensions as well as decisional factors.  The
GRT is a formal method of assessing independence and
separability in terms of both stimulus dimensions and
decisional processes.  MSDA was then developed by
Kadlec and Townsend (1992a) in order to facilitate the
implementation of GRT in perception studies.  This
analytic method maps the traditional SDT parameters of
sensitivity (d’) and response bias onto a multidimensional
scheme and permits us to analyse both interaction and
independence between various stimulus dimensions.

Multidimensional signal detection analysis  MSDA was
originally developed to analyse the effects of
manipulation on the perception of a stimulus, when the
manipulations are varied on a number of dimensions
(Kadlec, 1995).  An example study would be one that

looks at the dependence of the perception of eyebrow
curvature on the perception of lip curvature.  First, we would
need a feature-complete factorial design, and we would create
this by manipulating each of the two dimensions on two
levels.  We would thus manipulate each of the two
dimensions on two levels.  Thus the eyebrows will be varied
on two levels (low and high curvature) and the same
manipulation would be used for lip curvature.  Table 1
demonstrates this matrix for all variations of stimulus A.

Table 1:  Example of a feature-complete factorial design.

Eyebrow Curve
Lip Curve Low (a) High (b)
 Low (i) Aai Abi
High (j) Aaj Abj

The participant will see stimuli, which vary on two levels
of two dimensions.  It should be noted that the stimuli at each
level vary only slightly from the stimuli at the other level.
This is mainly due to the fact that the final analysis will be
based on the amount of errors committed during the task, and
simplifying the task and making the difference between the
stimuli obvious may result in a near absence of errors.

In a typical experiment utilizing this design, participants
are given a practice session in which they view the set of
stimuli, one at a time, varied on the given dimensions, and
make judgments about their location at the different levels of
the dimensions.  In other words, a participant who views
stimulus Abj must try to categorize this stimulus on both
dimensions.  The correct response for this stimulus is high
eyebrow curvature and high lip curvature.  There are three
types of errors that could be made in the categorization of
each stimulus.  These errors can be tabulated, resulting in
proportions of each type of error, which then represents the
volume under the distribution in one of 4 possible response
regions.  These response regions can be represented by
normal distributions in multiple dimensions.

How could we, from these data and types of distributions,
answer questions regarding independence of dimensions and
decisional boundaries?  In order to answer such questions, a
slightly different view of the graphs must be utilized.
Consider a plane passing horizontally through all the normal
distributions in this multidimensional space at a given density
level.  Examining such a plane from above would yield a
topography of the distributions, as can be seen in Figure 1.

The shape of these distributions corresponds to three types
of independence (Ashby & Townsend, 1986).  The first type
is perceptual independence (PI), which is a statistical form of
independence.  PI is stated when for a stimulus Abj:

fbj(x,y) = gbj(x)*gbj(y)



In this equation g(x) refers to marginal densities, which are
obtained by integrating (measuring the area under the
curve) the two-dimensional density distribution across one
dimension.  Marginal densities can be thought of as the
picture of a density distribution as would be taken from
having a camera parallel to a dimensional axis.

PI is a strictly statistical form of independence and can
be likened to coin toss probabilities, where the probability
of obtaining two heads (assuming a fair coin; p(1H) = 0.5)
is equal to the product of the probability of obtaining one
head by the same probability:

p(2H) = p(1H) * p(1H) = 0.25

Thus PI asserts that the perception of one dimension
within a stimulus is not dependent on the perception of the
other dimension.  From the topographical diagram, PI is
represented by circular distributions and distributions
which are elliptical but parallel to the axis of one
dimension. From the diagram it may be observed that
within stimuli 1, 3 and 4 the two dimensions are
perceptually independent and the two-dimensional density
distributions are equal to the product of the marginal
densities of the stimulus on the individual dimensions.

Another form of independence, called perceptual
separability (PS), is taken to exist when within one level of
one dimension, the levels of the other dimension do not
affect perception.  In this case,

gi1(x) = gi2(x) and gj1(x) = gj2(x)

where 1 and 2 refer to stimuli 1 and 2, i and j represent the
two levels of eyebrow curvature, and g(x) refers to their
marginal density distributions.  If the two marginal
distributions at the levels of one dimension (say high
eyebrow curvature) are equal, then levels of the other
dimension (lip curvature) do not influence the perception
of the eyebrow curvature.

A third form of independence is decisional separability
(DS).  Recall that within the single dimension signal
detection framework, a decisional boundary was set

between the two distributions.  Here too, within the
multidimensional framework, some decisional boundary must
be set.  This decisional boundary is set by the participant and
defines the area within which a stimulus will be identified by
its specific characteristics.  In our example, a decisional
boundary must be set in order to differentiate between faces
that vary differentially on eyebrow curvature and lip
curvature.  In other words, the decisional boundaries divide
the multidimensional space into regions that define specific
stimuli.  Within this context, DS is observed when the
decision about one dimension is not influenced by the
decision made on the other dimensions.  In our topography,
DS holds when the decisional boundaries are parallel to the
dimensional axis.

Methodology
From the above description of MSDA and its required
experimental paradigm, it is more apparent how we would go
about testing the independence of various source
characteristics in a final source judgment.  What we need is to
create a feature-complete factorial design of at least two
stimulus characteristics that can define a source, and then
conduct our analysis on these dimensions.

Our study uses the characteristics of written text to assess
this independence.  The dimensions of written text tested are
limited to size (large vs. small) and location (top vs. bottom).
Within a multinomial framework, these two dimensions
would have to be assumed independent of one another.  In
other words, independent of decisional biases, memory for an
item being on top should have no effect on the memory of it
being large.  Such a model would represent a very basic and
simple framework in which all sources are believed to be
equal; if source characteristics do not interact and are
independent, then any combination of the characteristics is
remembered equally well.

Below we will present data to show that in this case, the
assumption of independence is invalid, thus lying outside the
structure of a multinomial model of source memory.  Because
the question of how various characteristics interact to define a
source is central to the concept of source memory, we
propose that multinomial models are limited in that they
cannot capture this fundamental aspect of source memory.

Experiment 1
Participants
Eighteen undergraduate students enrolled in an introductory
psychology course at the University of Victoria participated
in the study for bonus marks.  Responses from 3 participants
were excluded because of incompleteness due to shortness of
time.  Responses from an additional participant were
excluded due to apparatus failure.  Overall, data from 14
participants were analysed.  All data were kept confidential
and no one was penalized for non-participation.

Material
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Figure 1:  Topography of the
distributions



A word-list was composed using 256 five-letter words
randomly selected from the Francis-Kucera Frequency
Norms.  Of the 256 words, 160 were used at study and the
remaining words were used as controls (novel words).
Study items were factorially manipulated on size (large or
small), font (Times or San Sarif), and location (top or
bottom).  An IBM-compatible computer with an Intel 486
processor was used for the experiment.  All presentations
were made on a 17" computer monitor and responses made
on the computer keyboard.

Procedure
Participants were informed that they would view a list of
words on the computer screen, varying in location, size,
and font.  They were instructed to try and remember all
aspects of the words, as their memory for the words as
well as these attributes would later be assessed.  Following
the instructions, the study list of 40 words was presented,
each for 3 seconds, with 1second inter-stimulus-interval.

Immediately following the study phase, the test phase
was conducted.  Participants viewed the previously studied
words in addition to 16 new words not previously seen.
The words appeared in a small, neutral font (courier) at the
centre of the screen.  The first task was to make a
remember/know/new judgement.

Following the instructions on remember/know/new
judgements, participants were instructed on the
identification task.  Questions assessing the recognition for
various item characteristics followed the
remember/know/new judgements.  The three questions
asking for the recognition of levels of the three dimensions
were randomised in presentation, so that for one item, font
was asked first, followed by location and size, but for
another, size was asked first followed by location and font,
etc.; the sequence was randomised.

For both the remember/know/new judgements and the
item judgements, participants made their response by
selecting the first letter of the response on a computer
keyboard (‘ r’ for ‘remember’, ‘t’ for times font when
making font decision and top when making location
decisions, and so on).  The task was not timed, and
participants were encouraged to consider each judgement
carefully.  Following the first study and test phase, three
more study and test phases continued with the same
instructions.

Results
Responses were collapsed across all subjects.  To
minimize variability due to practice (at the beginning of
the session) as well as variability due to fatigue (at the end
of the session), only responses from trials 2 and 3 were
analysed; responses from these two trials were then
combined, after no significant difference between them
was observed on a chi-squared test.  Due to space
limitations, the results on remembering and knowing will

not be discussed here, but we will only comment that near
identical interactions were observed for remembered and
known items; for the analysis, results associated with
“remember” and “know” judgments  (i.e. studied items
judged as “old”) were combined.

The results are reported following Kadlec (1995).  All tests
of DS, PS, and PI are Z-tests with at least p < 0.1, unless
otherwise noted.  DS and PS held for all dimensions, whereas
PI failed for all items.

To simplify the interpretation, the results were collapsed on
to two dimensions, size and location.  The resulting
distribution topographies are represented in figure 2.

Figure 2:  Schematic representation of results from
experiment 1

The straight vertical and horizontal lines separating the
distributions represent the decisional boundaries; they are
parallel to the dimensional axese, because DS held for both
dimensions.  Furthermore, the distances between the
distributions do not differ between the levels of each
dimension, thus PS is also valid.  However, PI has been
violated in all instances, and in a consistent pattern:  there is a
strong positive tendency to remember large items as being on
top and small items on the bottom, while there is a strong
negative tendency to remember small items on top and large
items on the bottom.  Clearly, source definitions formed from
these characteristics will result in a memory bias independent
of decisional processes such as response biases.  In other
words, recolllected large words have a “topness” associated
with them, and are dissociated from a “bottomness”, while
the opposite is true for small words.

In order to further validate our results, we conducted a
similar study, but we eliminated the presentation of a font
dimension all together, as well as the remember/know
judgments.

Experiment 2
Participants
Twenty-one undergraduate students enrolled in an
introductory psychology course at the University of Victoria
participated in the study for bonus marks.
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Materials
One hundred sixty words with a frequency rating of 1 were
obtained from the Francis-Kucera Word Pool and
randomly divided into four lists of forty words.  List
presentation was fully counterbalanced.  All the words
were presented in random order in a study phase and were
factorially manipulated on size (large and small) and
location (top or bottom).

Procedure
Participants were informed that they would view a list of
words on a computer screen, and that these words would
vary on two dimensions, location on screen and font size.
They were then instructed to do their best to ‘remember’
the words and how they were presented, as they would
later be tested on these attributes.  Firstly, in phase 1, a list
of 40 words was presented for approximately 2 seconds
each with an inter-stimuli interval of 1 second.  Following
this was a test phase in which subjects were asked 3
questions about 80 words (40 studied and 40 novel words):
“Is this word old (o) or new (n)?”, “Did it appear on the
top (t) or bottom (b)?”, and “Was it presented in a large (l)
or small (s) size font?”.  The order of the questions was
randomised.  Subjects responded using a keyboard with
the abbreviated letters corresponding to the responses to
which they stand for (e.g. (o)=old).  This task was not
timed.  Phase 2 followed and was a mere repetition of
phase 1 but with different word lists.  The whole session
lasted 40 to 50 minutes.

Results
All tests of DS, PS, and PI are two-tailed Z-tests with at
least p<0.05, unless otherwise noted.  Analysis of the
compiled old-correct matrix (where subjects responded
“old” and were correct in doing so, whether in phase 1 or
phase 2, or whether the new/old question preceded or
followed the attribution questions) revealed an interaction
of source characteristics, identical to that of experiment 1,
represented in figure 2.  Whereas DS and PS held for the
two dimensions, PI failed in every case, such that there
was both a positive dependency between “bottomness” and
“smallness” and a positive dependency between “topness”
and “largeness”.  Alternatively, it is also true that as words
appear closer to the top of the screen, they are more likely
to be remembered as having appeared in a larger size font.
In analysis of unremembered items (where the item was
presented, but judged as “new”), a bias was observed for
words presented on top of the screen and in large size.
This suggests that people have poor memory for such
items; this and other result will be discussed below.

Discussion
How are source characteristics defined then?  Using
MSDA, we were able to separate decisional factors from

memory factors.  Our results are thus not based on a any
decisional biases of the participant.  In other words, it is not
the case that participants recall an aspect of an item (e.g.
having been presented in large size) and then infer from this
information that the word must have been presented on top.
If it were the case that participants recalled information on
one dimension and inferred information on the other
dimension, different criterion measures (C’s) would have
been observed at each level of any one dimension.  However,
measures of C were identical at every level of all dimensions,
suggesting that decisional factors did not play a role at
generating the observed patterns.

Perceptual separability also held for both dimensions,
which suggest that memory for large items is no better than
memory for smaller items, and that memory for items on top
is no better than memory for items on the bottom.  If this
were not the case, d’ measures for items presented on top or
bottom would have differed when varied across the two sizes,
and/or d’ measures for items presented in large or small size
fonts would have differed across the two different locations.

As both DS and PS held for both dimensions, we can infer
that (1) decisional factors did not play a role in producing the
observed pattern of results, and (2) that global features of the
stimuli did not play such a role either.  It can therefore be
concluded that the interaction of the various source
characteristics is a pure memory process.

This has implications for how source information is stored
in memory.  Our results suggest an information-compression
taking place during encoding and/or storage of the source
characteristics.  In effect, error for the overall storage of such
source information (size and location) is minimized by
reducing error on the most frequently occurring instances of
such a source.  Source definitions composed of large items
presented on the top of the screen are particularly common in
all printed media such as newspapers, magazines, web pages,
etc.  Meanwhile, it occurs rarely that small print appears on
the top part of a display, and the same is true for large items
presented on the bottom of the screen.  It may be the case
that, in order to minimize errors on these frequently occurring
source types, we are introducing biases into the process.

We believe that the compression (or consolidation) account
is the most appropriate for our data; i.e. the way new
information is stored is affected and directed by prior
knowledge.  This is analogous to perceptual illusions:
perceptual illusions may exist as a consequence of a biased
set of inputs which then results in a biased perception of
illusory, but-otherwise-neutral items.  It is likely that the
same processes that cause perceptual illusions are responsible
for the effects obtained here.  In essence, our results may be
demonstrative of a form of memory illusion, very distinct
from prior studies of memory illusions with relation to
eyewitness memory.  In the case of eyewitness memory,
some researchers (i.e. Loftus, Miller & Burns, 1978) suggest
that presentation of secondary, post-event information
impairs memory for an event by altering its contents.  We
suggest that prior knowledge impairs what new information



can be learned in the first place, by limiting how the new
information is represented.

What is the relation between our results and multinomial
models of source monitoring?  We suggest that
multinomial models will be unable to incorporate our data
in a meaningful way, because of inherent limitations in the
estimation procedure for such models.  Here, we are
referring to the fact that multinomial models would have to
assume independence between various source
characteristics and, as our results show, such assumptions
would be invalid.  Therefore, such modelling techniques
will not be able, in the long run, to present an accurate
model of source memory.

Our results do not falsify any present uses of
multinomial models.  Multinomial modelling is insensitive
to biases for sources, thus such modelling could capture
the more general nature of our results.  However, such a
technique inherently does not allow for any type of
representation of source memory and we believe that such
a representation is crucial for an accurate model of source
memory.

Recall from our results that studied items that were
judged as “new” were more often items that had been
presented on top of the screen and in large font.  Although
statistical analysis of this trend was not conducted for this
paper, this may be a real effect worth considering, as it
suggest that certain sources (or certain combinations of
source characteristics) are easier to remember, such that
this source combination may even affect item detection.
Again, as statistical analysis of this was not conducted, we
are only speculating on this point, but it is consistent with
our findings, as they suggest a form of memory
consolidation taking place.

 Future work in the area can thus focus on assessing how
sources are defined, as the tools now exist to answer such
specific questions.  Modelling efforts should also attempt
to incorporate this representational information, as this
will, without doubt, contribute to a more complete
understanding of human memory.
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