
Models of Ontogenetic Development for Autonomous Adaptive Systems

Derek Harter (dharter@memphis.edu)
Departmentof MathematicalSciences;Universityof Memphis

Memphis,TN 38152USA

Robert Kozma (rkozma@memphis.edu)
Departmentof MathematicalSciences;Universityof Memphis

Memphis,TN 38152USA
Arthur C. Graesser (a-graesser@memphis.edu)

Departmentof Psychology;Universityof Memphis
Memphis,TN 38152USA

Abstract

Biological organismsdisplay an amazingability during
their ontogeneticdevelopmentto adaptively develop so-
lutions to the variousproblemsof survival that their en-
vironmentspresentto them. Dynamicaland embodied
modelsof cognition (Clark, 1997; Edelman& Tononi,
2000;Franklin,1995;Freeman,1999a,1999b;Freeman
& Kozma, 2000; Freeman,Kozma, & Werbos, 2000;
Hendriks-Jansen,1996; Kelso, 1995; Kozma & Free-
man, 2001; Port & van Gelder,1995; Skarda& Free-
man,1987;Thelen& Smith, 1994)arebeginning to of-
fer new insightsinto how the numerous,heterogeneous
elementsof neural structuresmay self-organize during
the developmentof the organismin order to effectively
form adaptive categoriesand increasinglysophisticated
skills, strategiesandgoals.In thispaperwepresentmod-
elsof ontogeneticdevelopmentbuilt onneurologicallyin-
spired,bottom-up,dynamicapproachesto embodiedcat-
egory formationsuchas thosedoneby Freeman(1975,
1999b),Freemanand Kozma(2000), Kozmaand Free-
man (2001), Verschureand Voegtlin (1999) and Edel-
man(1987),EdelmanandTononi(2000).Webelievethat
building on suchmechanismsfrom anembodieddynam-
ical perspectivewill produceautonomousagentsthatdis-
play greatly increasedflexibility in their behavior. Such
modelswill representa betterunderstandingof how the
brainsof biological organismsnot only form perceptual
categoriesof their environmentsduringdevelopment,but
alsodevelopeffectivepatternsof behavior throughthedy-
namicself-organizationof neurologicalpatternsof activ-
ity.

Introduction
Biological organismsdevelop effective behaviors sim-
ply by perceiving andactingupontheir environmentin
real time. Their learningis alwaysguidedby their basic
needs.Throughtheir experiencewith the environment,
they begin to embody, anticipateand exploit the regu-
larities of their ecologicalniche in the serviceof their
intrinsic needs.Somemodelsof learninganddevelop-
ment for autonomoussystemsarebeginning to display
someof theseproperties.(Almássy, Edelman,& Sporns,
1998; Edelmanet al., 1992; Freeman& Kozma,2000;
Kozma& Freeman,2001;Verschure,Kröse,& Pfeifer,
1992; Verschure,Wray, Sporns,Tononi, & Edelman,
1995)Theseabilitiesincludetheformationof embodied,
organismsignificantcategoriesthroughexperience;the
developmentof activesearchingandanticipationof rele-
vantstimuli; thedevelopmentof a repertoireof skills, or

actionloops,for theeffective transformationof environ-
mentalproblemsand the exploitation of environmental
regularitiesin theserviceof intrinsicneeds.

In this paperwe will presentsomeof the most im-
portantpropertiesof dynamicalandembodiedcognition.
We will alsodiscussthepropertiesof ontogeneticdevel-
opmentof skills, strategiesandgoalsin biologicalorgan-
ismsthat make it a particularlypowerful mechanismof
learning. We will look at examplesof existing systems
thatdisplaypropertiesof dynamicalandembodiedcog-
nition. And finally wediscussourown plansfor creating
modelsof the ontogeneticdevelopmentof behavior in
autonomousadaptive systems.

Embodied Cognition
Embodiedcognition is an emerging viewpoint in cog-
nitive sciencethat emphasizesmany differing aspects
from the standardcognitive hypothesis(Clark, 1997;
Hendriks-Jansen,1996;Pfeifer& Scheier, 1998). In the
standardview of cognition,themindis theproductof the
manipulationof symbolicrepresentationsof theproblem
in orderto producesolutionsandgenerateintelligentbe-
havior (Johnson-Laird,1988; Newell & Simon, 1972,
1976;Newell, 1990). Theenvironmentis perceivedand
transducedinto symbolic representations.Thesesym-
bolsencodethecurrentstateof theenvironmentandthe
problemto be solved. They canbe manipulated,inde-
pendentof theenvironment,to discover solutionsto the
problemandproduceintelligentbehavior for theorgan-
ism.

In an embodiedview of cognition,intelligencein bi-
ologicalorganismsdoesnot arisethroughthestaticma-
nipulation of amodalsymbolsand representations.In-
stead,organismsareseento beembeddedin their envi-
ronmentsin fundamentalways. Throughtheir real time
experienceswith theirbodiesandenvironments,they be-
gin to embodythe salientaspectsof situationsin ways
that guide future perceptionand behavior towards im-
proved performance. Experiencewith their ecological
nichedevelopsexpectationsof the environmentalregu-
larities that areof benefitto the intrinsic needsandde-
siresof the organism. The organismactively learnsto
seekout expectedstimuli thatarerelevant to thedesires
andneedsof theorganismataparticularmoment.

Therearemany conceptsassociatedwith anembodied
perspectiveof cognition.Wewill briefly presentsomeof



themoreimportantconceptsin thenext sections.

Embodied Organisms are Complete Organisms

Biologicalorganismsarecurrentlytheonly examplesca-
pableof producinga full rangeof intelligent, adaptive
behavior. Standardviews of cognitionplaceno special
emphasison thefact that thesenaturalexamplesof cog-
nition arecomplete organisms.In the standardview of
cognition,it seemsplausiblethatby connectingtogether
many specializedsubsystemsthatsolveproblemsin lim-
ited, specializeddomains,eventuallya completeintelli-
gencewill beproduced.

From an embodiedperspective, we are not likely to
understandnaturalcognitionfrom sucha piecemealap-
proachto studyingand building systems. Instead,we
must examine and build completecognitive systems.
In this context, completerefersto systemsthat areau-
tonomousandadaptive. Autonomoussystemsarethose
thathavecertainintrinsicneeds,andthatareableto pro-
ducebehavior that is capableof satisfyingthoseneeds
consistentlyover time. Pfeifer(Pfeifer& Scheier, 1998)
characterizesautonomyastheability of theorganismto
maintainits critical, intrinsic valueswithin a zoneof vi-
ability. This is oftenreferredto as“homeostasis”.Adap-
tivity refersto organismsthat arecapableof modifying
their behavior sothat they canmoreefficiently maintain
their critical parametersin their zonesof viability.

Studyingcompletecognitive systemsis importantfor
several reasons.Classicalapproachesto modelingcog-
nition oftentackletoy problemsin limited domains.The
hopeis thatthetechniquesdevelopedcanthenbescaled
up to the full problemsof cognition. This approachto
studyingcognition hasfailed to produceclear insights
into how suchmethodscould eventually be scaledup.
Embodiedcognition,with its emphasisoncompletesys-
tems,maintainsthat the answeris not to startwith toy
environments.Insteadweshouldbegin by studyingsim-
ple, but complete,organisms,in morerealisticenviron-
ments(Brooks, 1990; Pfeifer & Scheier, 1998). Only
completeorganismsarecapableof developingembodied
representationsanddisplayingintentionalbehavior.

Active, Action-Oriented Representations

Anotherimportantdifferenceof embodiedandclassical
perspectives concernsthe natureof the representations
developedandusedby theorganism. In a classicalper-
spective, symbolsareseenaspassive structuresthatare
syntacticallymanipulatedto producesolutions. In an
embodiedperspective,representationsaremuchmorein-
timatelytiedto theintrinsicneedsof theorganism.Clark
(1997)calls suchstructuresaction-orientedrepresenta-
tions. Action-orientedrepresentationsare not passive
representationsof thestateof theenvironmentasit exists
at sometime. They arecontinuouslyupdatedfrom sen-
sory information,and they continuouslyprescribepos-
sibilities for action. Gibson(1979) hascalled this the
conceptof affordances,wheretherepresentationsafford
opportunitiesfor actionfor theorganism.

The World Represents Itself
Classicalmodelsof cognitionoftenexperienceanexpo-
nentialexplosionof computationalpowerastheenviron-
ment increasesin complexity. An embodiedapproach
to cognition avoids this problem becauseit advocates
theuseof simple,cheap,action-orientedrepresentations.
From an embodiedperspective, it is betterto usecheap
andactivesensingto inform oneselfof thestateof theen-
vironment,ratherthanbuilding complex representations
of the environment. Brooks(1995)statesthis principle
as“the world is its own bestmodel”. Embodiedcogni-
tion avoidstheuseof costlyanddetailedrepresentations.
Cheap,quick,active,specializedsensingof theenviron-
mentis preferred.Insteadof maintainingacomplex rep-
resentationof thestateof theenvironment,wesimplydi-
rectspecializedsensoryapparatustodirectlyperceivethe
informationrequiredfor behavior. This approachhelps
keepthe needfor computationfrom exploding in com-
plex environments.

Emergence of Solutions through Collective
Activity
A key conceptof embodiedcognitionis the emergence
of solutionsfrom many parallel,distributedactivities. In
an embodiedperspective, intelligenceis seenasemerg-
ing from the parallel activity of many cooperatingand
competingprocesses.As in connectionistmodels,par-
allel emergenceof solutionsprovides many benefitsto
thebehavior of thesystem.Suchemergentsolutionsare
robustandresistantto damage;tolerantof noisy, incom-
pletedata;satisfygeneralgoalsandyet arevariableand
context dependent.They arealso fast,able to produce
solutionseasily in real time demandingenvironments.
Unlike most classicalconnectionistmodeling, embod-
ied cognitionviews recurrent,non-linearinteractionsas
acrucialpropertyin theemergenceof solutions.

Developing Within the Environment
The emergenceof solutionsthroughmany parallelpro-
cessesis not simply a productof thenon-linearinterac-
tionsof componentsin theorganism’s brain. Intelligent
behavior alsoemergesastheproductof theinteractionof
simplebehaviors with a complex environment. Simple,
instinctive behaviors are seenas intelligent when they
arecoupledwith local environmentalcues(Braitenberg,
1984). Developmentof action-orientedrepresentations
aidsin thisprocess.Organismslearnsimpleactionsthat,
whencoupledwith appropriatelearnedstimuli, yield in-
telligent,purposefulbehavior.

Clark (1997)saysthatembodiedmindsuseextensive
external scaffolding. The ecologicalniche of the or-
ganismprovidesmany consistentcuesfor intelligentbe-
havior. Most intelligent behavior in naturalorganisms
involves the fast recognitionand exploitation of such
opportunities,not in complex planningand reasoning.
Also, mostorganismstendto offload complex planning
andreasoningtasksonto theenvironment.They do this
by allowing thestateof theenvironmentto representthe



progressionof the problemsolving task. Oneexample,
givenby Rumelhart,McClelland,andThePDPResearch
Group (1986), is in the behavior of peoplewhen mul-
tiplying large numbers.Most peoplecan instantly rec-
ognizeand producethe answerto simple, single digit
multiplication problems,of the type 7 x 7 = 49. How-
ever, whengiven the taskof multiplying large numbers
together, say4356X 1897,they invariablyresortto pen-
cil andpaper, or even a calculator. Peopledo not com-
putelargechainsof complicatedreasoningandlogic. In-
steadthey offload the representationof the progressof
the task onto the environmentby maintainingthe state
of theproblemsolvingtaskwith environmentalcues.In
thiscase,peoplemakemarksonpaper(theenvironment)
to keeptrackof theirproblemsolvingprogress,while re-
ducingthe problemsto thosesimpleonesthat they can
directly recognizeandsolve. Embodiedcognitionsees
this type of external scaffolding not as simply useful,
but as a prevalent and pervasive methodusedby cog-
nitive systemsto reducecomputationalcomplexity and
performproblemsolvingtasksin realtime.

Better Imperfect than Late
Biological cognitionis exemplifiedby fastpatterncom-
pletion. It hasevolved to producebehavior in real time.
Thebehavior doesnot necessarilyhave to beperfect,so
long as it is goodenoughfor the continuedsurvival of
the organism(at leastuntil the next crisis occurs). Or-
ganismsarecontinuallypresentedwith threatsanddan-
gersthatmustbehandledimmediatelyin orderto ensure
their survival. Suchrequirementsdo not favor solutions
thattake largeamountsof time. Naturalcognitionseems
to bebuilt upona foundationof fastpatternrecognition
andbehavior generationkeyedto threatsandopportuni-
tiesfor action.Theembodiedcognitiveviewpoint recog-
nizesthis fundamentalfeatureof naturalcognitive sys-
tems.Accordingto PortandvanGelder:

”The cognitive systemis not a discretesequen-
tial manipulatorof staticrepresentationalstructures;
rather, it is a structureof mutually and simulta-
neouslyinfluencingchange. Its processesdo not
takeplacein thearbitrary, discretetimeof computer
steps;rather, they unfold in the real time of ongo-
ing changein the environment, the body, and the
nervoussystem.(Port& vanGelder,1995,pg. 3)”

The Dynamics of Development
The ontogeneticdevelopmentof behavior provides a
powerful mechanismsby which organismslearn to or-
ganizeeffective patternsof behavior for performingthe
necessarytasksof survival. Therearemany properties
of this type of development. It is fundamentallya self-
organizingprocess,in which theconstraintsof bodyand
environmentguidethe systemtowardsdiscovering cer-
tain patternsof behavior. Developmentof behavior in
organismsis not so mucha processof finding complex
chainsof effective behaviors, but in finding salientper-
ceptualcuesand effective manipulationsthat simplify

and transformthe task environmentinto problemsthat
aredirectly recognizableandsolvable. Problemsolving
in naturalcognitivesystemsis moreoftentheapplication
of many transformationsuntil theproblemis sufficiently
simplifiedto bedirectly solved. Clark (1997)callssuch
phenomenaactionloops. Kirsh andMaglio (1994)call
actionsthat are primarily performedto transformand
simplify thetaskenvironmentepistemicactions.

Problem solving behavior in biological organisms
doesnot tendto be encodedasstatic,proceduralsteps.
Instead,organismsdevelop a wide repertoireof action
loops and epistemicactions. Developmentof behav-
ior takes the form of learning more and better action
loopsfor the effective manipulationandtransformation
of problems.As anorganismsrepertoireof actionloops
grows, they becomebetterableto dealwith a wide va-
riety of subtledifferencesin the problemsthey needto
solve. Their solutionsbecomeboth robust andefficient
with experiencein problemsolvingin theenvironment.

Development of Embodied Cognition
ThelenandSmith(1994),Thelen(1995)envisionthede-
velopmentof behavior in cognitive systemsasan onto-
geneticlandscapeof stableand unstableattractorsand
repellors.As thebodyof theorganismchanges,new op-
portunitiesfor behavior arecreatedanddestroyed. De-
velopmentis seenasa reductionof thedegreesof free-
dom of the systemasuseful patternsfor solving prob-
lemsarediscovered.As stablesolutionsto problemsde-
velop, thesein turn changethe ontogeneticlandscape,
openingup new opportunitiesfor somebehaviors, and
closingoff opportunitiesfor others.Developmentis the
discoveryof stablepatternsof behavior, giventhecurrent
constraintsof thebodyandtheenvironment.

Natural cognitive systemsdisplay both physical and
behavioral development. Physical changesin a matur-
ing organismarecontinually reshapingthe ontogenetic
landscape,destabilizingpreviously stablesolutions,and
forcing thesysteminto findingnew patternsof behavior.
Naturalcognitive systemsalsodisplaythis flexibility in
the developmentof behavior for problemsolving. Se-
quencesof behaviors arenot learnedsomuchasbehav-
iorsthatchangethestateof theenvironmentandthuscue
thenext behavior in thesequence.

Self-Organization of Behavior
Theoriesof theself-organizationof patternsin nonequi-
librium systemsprovide new insightsinto the creativity
andflexibility displayedby biologicalorganisms(Kelso,
1995). Many of thedesirablepropertiesof development
in biologicalorganismsmake senseonly in view of non-
lineardynamics.Accordingto Kelso:

“The thesishere is that the humanbrain is fun-
damentallyapattern-formingself-organizedsystem
governedby nonlineardynamicallaws. Ratherthan
compute,our braindwells (at leastfor shorttimes)
in metastablestates:it is poisedon thebrink of in-
stability whereit can switch flexibly and quickly.



By living nearcriticality, the brain is able to an-
ticipatethe future, not simply reactto the present.
(Kelso,1995,pg. 26)”

The developmentof problemsolving behavior in bi-
ological organismsdisplaystheseimportantproperties.
Solutionsare developedthat are flexible, efficient and
quick. Suchsystemsarenot simply reactive, they learn
to anticipateandactively seekout futurestimuli.

Bottom Up Neurological Models of
Categorization and Action

Somesystemshave beendevelopedthat display prop-
ertiesof dynamicandembodiedcognitionasdiscussed
above. In this sectionwe presentfour interestingex-
amplesof researchthatdisplaydynamic,self-organizing
category formationanddevelopmentof behavior. These
are all examplesof systemsthat have been built us-
ing neurologicallyinspired,intermediatelevel neuraldy-
namics.

Distributed Adaptive Control

Distributed Adaptive Control, or DAC (Pfeifer & Ver-
schure,1992;Pfeifer& Scheier, 1998;Verschureet al.,
1992; Verschure& Voegtlin, 1999) is an exampleof a
modelof learningbasedon largescaleneuraldynamics.
At its heart,DAC is a modelof classicalconditioning,
or thelearnedassociationof a responseto a conditioned
stimuli. In theDAC model,therearethreelevelsof con-
trol: reactive,adaptive andreflective control.

The reactive level is prewired in the model,andrep-
resentsthe intrinsic valuesof theautonomousagent. In
thecaseof DAC, therobotinstinctively turnsaway from
things when it bumps into them. This representsthe
valueof avoiding damagefrom collisionswith theenvi-
ronment.In additionto a collision sensor, a specialsen-
sorfor targetacquisitionis present.DAC is hardwiredto
move towardsthetargetwhenit is detectedby thetarget
sensor.

The next level is the adaptive control layer. In this
layer representationsof the statesof long rangesensors
areslowly associatedwith eventsthat happenin the re-
active control layer. So, for example, the systemwill
learnto avoid collisionsby associatingtheprofilesof ob-
jectssensedwith thelong rangesensorto collisionsand
thesubsequentactivationof avoidancebehavior. DAC is
alsocapableof learningandexploiting theregularitiesof
the ecologicalniche it finds itself in. So, if targetsare
alwaysfoundbehindopeningsin walls, DAC is capable
of learningthisassociationandbeginsto searchoutsuch
openingssincethey tendto leadto finding thetargetsin
theenvironment.

The final layer of DAC is the Reflective control
layer. At this level sequencesof actionsareformedand
rememberedthroughdeveloping sequentialrepresenta-
tions. This level representsthe addition of long term
memoryto thebasicmechanismsof adaptive learning.

DARWIN
DARWIN (Almássyet al., 1998;Edelman,1987;Edel-
man et al., 1992; Edelman& Tononi, 2000; Sporns,
Almássy, & Edelman,1999; Verschureet al., 1995) is
anotherneurologicallyinspiredmodelthat is capableof
learninganddevelopingrepresentationssimply by inter-
actingwithin its environment.At theheartof Edelman’s
DARWIN systemsis theclassificationcouple.In a clas-
sificationcouple,two mapsof neuronalgroupsreceive
input from separatesensors.Thetwo mapsarewired to-
getherwith many reentrantconnections.As a resultof
reentrantcouplingandthechangeof synapticstrengths,
correspondingclassificationpatternsbegin to be asso-
ciatedand mutually activate one anotherin the maps.
Thus,for example,the feel (tactile map)andshape(vi-
sual map) of an object becomefunctionally correlated
throughrepeatedexperiencewith theobjectsin theenvi-
ronment.Thecorrelatedpatternsof activity in themaps
representcoordinatedpropertiesof objectsencountered
within theenvironment.

DARWIN III is capableof self-organizingcategories
of objectsthat it encountersin its environment,andof
learningappropriatebehavior patterns.DARWIN is ca-
pableof learningto trackmoving objectsin its environ-
mentandalsoof directingits manipulatorin a targeted
mannerin order to manipulateits environment. DAR-
WIN III is alsocapableof adaptive learningof behavior,
likeDAC. It learnsto associatevisualpropertiesof desir-
ableandundesirableobjects,to thefeelof theobject.As
it gainsexperiencein theenvironment,it nolongerneeds
to toucha badobjectin orderto avoid it. It hasformed
associationsbetweenthe visual andtactile maps,andit
beginsto avoid undesirableobjectsuponseeingthem.

KIII: Mesoscopic Dynamics
Thediscovery thatbraindynamicsoperatein chaoticdo-
mainshasprofoundimplicationsfor thestudyof higher
brainfunction(Skarda& Freeman,1987).A chaoticsys-
temhasthecapacityto createnovel andunexpectedpat-
ternsof activity. It canjump instantlyfrom onemodeof
behavior to another, which manifeststhe fact that it has
a collection of attractors,eachwith its basin,and that
it can move from one to anotherin an itinerant trajec-
tory. It retainsin its pathway acrossits basinsa history,
which fadesinto its past, just as its predictability into
its future decreases.Transitionsbetweenchaoticstates
constitutethedynamicsthatwe needto understandhow
brainsperform suchremarkablefeatsas abstractionof
theessentialsof figuresfrom complex, unknown andun-
predictablebackgrounds,generalizationover examples
of recurringobjectsnever twice appearingthesame,re-
liable assignmentto classesthat leadto appropriateac-
tions,andconstantup-datingby learning.

TheKIII model(Freeman& Kozma,2000;Kozma&
Freeman,2001) consistsof varioussub-units;i.e., the
KO, KI, and KII sets. The KO set is a basicprocess-
ing unit, and its dynamicsis describedby a 2nd order
ordinarydifferentialequation.By couplinga numberof
excitatory and inhibitory KO sets,KI(e) and KI(i) sets



areformed.Interactionof interconnectedKI(e) andKI(i)
setsforms the KII unit. Examplesof KII setsin the ol-
factorysystemarethe olfactorybulb, anteriorolfactory
nucleusandprepyriform cortex. CouplingKII setswith
feed-forward and feedbackconnections,one arrives at
theKIII system.

KIII shows very goodperformancein learninginput
dataand it can generalizeefficiently in variousclassi-
fication problems. KIII hasa high dimensionalchaotic
attractor in the basalstate. It can be destabilizedby
sensorystimuli andswitchedto a lower dimensionalat-
tractorwing thatrepresentsapreviously learnedmemory
pattern.

Basic Intentional System: The Limbic System
We considerbiological organismsto be behaving intel-
ligently when they act in ways that will enhancetheir
currentand future survival. The behavior exhibited by
biological organismsis often very creative andflexible.
Yetsuchbehavior is alwaysdirectedtowardsthesatisfac-
tion of thebasicneedsof theorganism.Freeman(1999a,
1999b)describessuchbehavior asintentionalbehavior.
Intentionalityprovidesa key conceptthat links theneu-
rodynamicsof brainsto goal-directedbehavior.

Oneof the primary actsof intentionalbehavior is in
directingsensoryobservationin expectationof informa-
tion to guide future actions. Both the formationof ex-
pectationsand the real time dynamicinteractionof the
organismwith theenvironmentareimportantprinciples
of intentionalbehavior. Freeman’s view of the mecha-
nismsof intentionality is oneof nonlineardynamicin-
teractionof heterogeneousneuralelementsonmany lev-
els and time scales. The neurodynamicarchitectureof
thebrainformsmany recurrentloopsbetweenbrainand
brain, brain and body, and organismand environment.
But thebasicarchitectureof intentionalbehavior canbe
found in the simplestandphylogeneticallyoldestparts
of biologicalbrains:thelimbic system.

Conclusion and Future Directions
In this paperwe have presentedan overview of the dy-
namicaland embodiedcognitive hypothesis. We have
also given an overview of somesystemsthat display
category formation and developmentallearning of the
type we are interestedin. We have begun work on our
own modelsof the ontogeneticdevelopmentof behav-
ior in autonomoussystems(Harter & Kozma, 2001a,
2001b).Our own modelsemphasizethedevelopmentof
action-orientedrepresentationsthat afford opportunities
for action-looplike interactionsbetweenthe agentand
the environment. Suchmodelsarebaseduponthe for-
mationof embodiedcategoriesfrom chaoticnon-linear
dynamics.

We begin with bottom-upneurologicalmodels that
arecapableof chaoticnon-lineardynamics(Freeman&
Kozma,2000;Kozma& Freeman,2001). Theseneuro-
logically inspiredmodelsareneitherlow nor high level
simulationsof neurologicalfunction,but insteadcapture
behavior of the mesoscopicdynamicsof brain function

(Freeman& Kozma,2000).Thesemodelsof neurologi-
cal functionarecapableof thedynamicformationof cat-
egories. Thesedynamiccategoriescanbe thoughtof as
modelsof embodiedcategory formation. We areplan-
ning to expandsuchmechanismsto not only form per-
ceptualcategories,but develop anddisplayaction-loop
like skills in the context of the problemdomain. Our
goalsareto seehow far suchmechanismscango in de-
velopingproblemsolvingbehaviors, andto whatextent
thesebehaviors mimic thoseseenin natural cognitive
systems.

Eventuallyweplanto build simplifiedmodelsof com-
pletelimbic systems.We hopethatthesemodelswill be
capableof displayingformsof true intentionalbehavior
in autonomousadaptive systems. Suchmodelsshould
displaysomeof thecharacteristicflexibility of theprob-
lem solving behavior that developsin naturalcognitive
agents.Wearedevelopingagentsin cognitively demand-
ing real time taskenvironments. Beginning with some
virtual environments,like the gameof Tetris (Kirsh &
Maglio, 1992,1994),we aredevelopingbottom-upneu-
rological modelsthat arecapableof category formation
andthe developmentof behavior in suchenvironments.
We hopeto eventuallymove to morecomplex environ-
ments,andrealautonomousrobots.
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