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Abstract

Biological organismsdisplay an amazingability during
their ontogenetialevelopmentto adaptvely develop so-
lutions to the variousproblemsof survival thattheir en-
vironmentspresentto them. Dynamicaland embodied
modelsof cognition (Clark, 1997; Edelman& Tononi,
2000; Franklin, 1995; Freeman1999a,1999b; Freeman
& Kozma, 2000; Freeman,Kozma, & Werbos, 2000;
Hendriks-Jansen1996; Kelso, 1995; Kozma & Free-
man, 2001; Port & van Gelder, 1995; Skarda& Free-
man, 1987; Thelen& Smith, 1994)are beginningto of-
fer new insightsinto how the numerousheterogeneous
elementsof neural structuresmay self-oganize during
the developmentof the organismin orderto effectively
form adaptve cateyoriesand increasinglysophisticated
skills, stratgiesandgoals.In this papemwe presenmod-
elsof ontogenetidevelopmentbuilt onneurologicallyin-
spired,bottom-up,dynamicapproaches embodiedcat-
egory formation suchasthosedoneby Freeman(1975,
1999b), Freemanand Kozma (2000), Kozmaand Free-
man (2001), Verschureand Voegtlin (1999) and Edel-
man(1987),EdelmarandTononi(2000).We believe that
building on suchmechanismérom anembodieddynam-
ical perspectie will produceautonomousigentghatdis-
play greatlyincreasedlexibility in their behaior. Such
modelswill represent betterunderstandingf how the
brainsof biological organismsnot only form perceptual
categoriesof their ervironmentsduringdevelopment put
alsodevelopeffective patternof behaior throughthedy-
namicself-olganizationof neurologicalpatternsof actv-

ity.

Introduction

Biological organismsdevelop effective behaiors sim-
ply by perceving andacting upontheir environmentin
realtime. Their learningis alwaysguidedby their basic
needs. Throughtheir experiencewith the ervironment,
they begin to embody anticipateand exploit the regu-
larities of their ecologicalnichein the serviceof their
intrinsic needs. Somemodelsof learningand develop-
mentfor autonomoussystemsare beginning to display
someof theseproperties (Almassy Edelman& Sporns,
1998; Edelmanet al., 1992; Freeman& Kozma,2000;
Kozma& Freeman2001;VerschureKrose,& Pfeifer,
1992; Verschure,Wray, Sporns,Tononi, & Edelman,
1995)Theseabilitiesincludetheformationof embodied,
organismsignificantcateyoriesthroughexperience;the
developmenbf active searchingandanticipationof rele-
vantstimuli; the developmentof arepertoireof skills, or

actionloops,for the effective transformatiorof erviron-
mental problemsand the exploitation of environmental
regularitiesin the serviceof intrinsic needs.

In this paperwe will presentsomeof the mostim-
portantpropertief dynamicalandembodiedcognition.
We will alsodiscusshe propertiesof ontogenetiaevel-
opmentof skills, stratgiesandgoalsin biologicalorgan-
ismsthatmake it a particularly powerful mechanisnof
learning. We will look at examplesof existing systems
thatdisplaypropertiesof dynamicalandembodiedcog-
nition. And finally we discussour own plansfor creating
modelsof the ontogeneticdevelopmentof behaior in
autonomousdaptie systems.

Embodied Cognition
Embodiedcognition is an emeging viewpoint in cog-
nitive sciencethat emphasizesnary differing aspects
from the standardcognitive hypothesis(Clark, 1997;
Hendriks-Janser1,996; Pfeifer & Scheier1998). In the
standardsiew of cognition,themindis the productof the
manipulationof symbolicrepresentationsf the problem
in orderto producesolutionsandgeneratentelligentbe-
havior (Johnson-Laird,1988; Newell & Simon, 1972,
1976;Newell, 1990). The ervironmentis perceved and
transducednto symbolic representations.Thesesym-
bolsencodethe currentstateof the ervironmentandthe
problemto be solved. They canbe manipulatedjnde-
pendentf the ervironment,to discover solutionsto the
problemandproduceintelligent behaior for the organ-
ism.

In an embodiedview of cognition,intelligencein bi-
ological organismsdoesnot arisethroughthe staticma-
nipulation of amodalsymbolsand representationsin-
stead,organismsare seento be embeddedn their ervi-
ronmentsn fundamentaivays. Throughtheir realtime
experiencesvith theirbodiesandervironmentsthey be-
gin to embodythe salientaspectf situationsin ways
that guide future perceptionand behaior towardsim-
proved performance. Experiencewith their ecological
niche developsexpectationsof the ervironmentalregu-
larities that are of benefitto the intrinsic needsand de-
siresof the organism. The organismactively learnsto
seekout expectedstimuli thatarerelevantto the desires
andneedof theorganismat a particularmoment.

Therearemary conceptsassociateavith anembodied
perspectie of cognition.We will briefly presensomeof



themoreimportantconceptsn the next sections.

Embodied Organisms are Complete Organisms

Biological organismsarecurrentlytheonly examplesca-
pableof producinga full rangeof intelligent, adaptve
behaior. Standardviews of cognitionplaceno special
emphasion the factthatthesenaturalexamplesof cog-
nition are complete organisms. In the standardview of
cognition,it seemglausiblethatby connectingogether
mary specializedsubsystemthatsolve problemsn lim-
ited, specializeddomains,eventuallya completeintelli-
gencewill beproduced.

From an embodiedperspectie, we are not likely to
understanahaturalcognitionfrom sucha piecemeabp-
proachto studyingand building systems. Instead,we
must examine and build complete cognitive systems.
In this contet, completerefersto systemsthat are au-
tonomousandadaptve. Autonomoussystemsarethose
thathave certainintrinsic needsandthatareableto pro-
ducebehaior thatis capableof satisfyingthoseneeds
consistentlyovertime. Pfeifer (Pfeifer& Scheier1998)
characterizeautonomyasthe ability of the organismto
maintainits critical, intrinsic valueswithin a zoneof vi-
ability. Thisis oftenreferredto as*homeostasis” Adap-
tivity refersto organismsthat are capableof modifying
their behaior sothatthey canmoreefficiently maintain
their critical parameterin their zonesof viability.

Studyingcompletecognitive systemds importantfor
several reasons.Classicalapproacheso modelingcog-
nition oftentackletoy problemsn limited domains.The
hopeis thatthe techniquesievelopedcanthenbe scaled
up to the full problemsof cognition. This approacho
studying cognition hasfailed to produceclearinsights
into how suchmethodscould eventually be scaledup.
Embodiedcognition,with its emphasi®n completesys-
tems, maintainsthat the answeris not to startwith toy
ernvironments.Insteadwe shouldbegin by studyingsim-
ple, but complete,organisms,in morerealisticenviron-
ments(Brooks, 1990; Pfeifer & Scheier 1998). Only
completeorganismsarecapableof developingembodied
representationanddisplayingintentionalbehaior.

Active, Action-Oriented Representations

Anotherimportantdifferenceof embodiedandclassical
perspecties concernsthe natureof the representations
developedandusedby the organism. In a classicalper
spectve, symbolsare seenaspassve structureghatare
syntacticallymanipulatedto producesolutions. In an
embodiedherspectie, representationaremuchmorein-
timatelytiedto theintrinsic needsf theorganism.Clark
(1997) calls suchstructuresaction-orientedrepresenta-
tions. Action-orientedrepresentationare not passie
representationsf the stateof theernvironmentasit exists
at sometime. They are continuouslyupdatedrom sen-
sory information, and they continuouslyprescribepos-
sibilities for action. Gibson(1979) hascalled this the
concepiof affordanceswherethe representationafford
opportunitiesfor actionfor the organism.

TheWorld Represents | tself

Classicamodelsof cognitionoften experiencean expo-
nentialexplosionof computationapower astheerviron-
mentincreasesn compleity. An embodiedapproach
to cognition avoids this problem becauset adwocates
theuseof simple,cheapaction-orientedepresentations.
From an embodiedperspectie, it is betterto usecheap
andactive sensingo inform oneseliof thestateof theen-
vironment,ratherthanbuilding complec representations
of the environment. Brooks (1995) statesthis principle
as“the world is its own bestmodel”. Embodiedcogni-
tion avoidsthe useof costlyanddetailedrepresentations.
Cheapquick, active, specializedsensingof the environ-
mentis preferred.Insteadof maintaininga comple rep-
resentatiorof the stateof theenvironment,we simply di-
rectspecializedgensoryapparatuso directlypercevethe
informationrequiredfor behaior. This approachhelps
keepthe needfor computationfrom exploding in com-
plex ervironments.

Emer gence of Solutionsthrough Collective
Activity

A key conceptof embodiedcognitionis the emegence
of solutionsfrom mary parallel,distributedactuities. In
an embodiedperspectie, intelligenceis seenasemen-
ing from the parallel actvity of mary cooperatingand
competingprocessesAs in connectionisimodels,par
allel emegenceof solutionsprovides mary benefitsto
the behaior of the system.Suchemegentsolutionsare
robustandresistanto damagetolerantof noisy, incom-
pletedata;satisfygeneralgoalsandyet arevariableand
contt dependent.They arealsofast,ableto produce
solutionseasily in real time demandingervironments.
Unlike most classicalconnectionistmodeling, embod-
ied cognitionviews recurrent,non-linearinteractionsas
acrucialpropertyin theemegenceof solutions.

Developing Within the Environment

The emegenceof solutionsthroughmary parallel pro-
cessess not simply a productof the non-linearinterac-
tions of componentsn the organisms brain. Intelligent
behaior alsoemegesastheproductof theinteractionof
simple behaviors with a complex ervironment. Simple,
instinctive behaiors are seenas intelligent when they
arecoupledwith local ervironmentalcues(Braitenbeg,
1984). Developmentof action-orientedepresentations
aidsin this processOrganismdearnsimpleactionsthat,
whencoupledwith appropriatdearnedstimuli, yield in-
telligent, purposefubehaior.

Clark (1997)saysthatembodiedmindsuseextensve
external scafolding. The ecologicalniche of the or-
ganismprovidesmary consistentuesfor intelligentbe-
havior. Most intelligent behaior in naturalorganisms
involves the fast recognitionand exploitation of such
opportunities,not in comple planning and reasoning.
Also, mostorganismstendto offload complex planning
andreasoningasksontothe ervironment. They do this
by allowing the stateof the ervironmentto representhe



progressiorof the problemsolving task. One example,
givenby RumelhartMcClelland,andThePDPResearch
Group (1986), is in the behaior of peoplewhen mul-
tiplying large numbers. Most peoplecaninstantly rec-
ognize and producethe answerto simple, single digit
multiplication problems,of thetype 7 x 7 = 49. How-
ever, whengiven the taskof multiplying large numbers
togethersay4356X 1897,they invariablyresortto pen-
cil andpaper or evena calculator Peopledo not com-
putelargechainsof complicatedeasoningandlogic. In-
steadthey offload the representatiomf the progressof
the task onto the environmentby maintainingthe state
of the problemsolvingtaskwith environmentalcues.In
this case peoplemake markson paper(theernvironment)
to keeptrackof their problemsolvingprogresswhile re-
ducingthe problemsto thosesimple onesthat they can
directly recognizeand solve. Embodiedcognitionsees
this type of external scafolding not as simply useful,
but as a prevalent and penasive methodusedby cog-
nitive systemsto reducecomputationacompleity and
performproblemsolvingtasksin realtime.

Better Imperfect than Late

Biological cognitionis exemplifiedby fastpatterncom-
pletion. It hasevolvedto producebehaior in realtime.
The behaior doesnot necessariljhave to be perfect,so
long asit is good enoughfor the continuedsurvival of
the organism (at leastuntil the next crisis occurs). Or-
ganismsare continually presentedvith threatsanddan-
gersthatmustbe handledmmediatelyin orderto ensure
their survival. Suchrequirementslo not favor solutions
thattake large amountf time. Naturalcognitionseems
to be built upona foundationof fastpatternrecognition
andbehaior generatiorkeyedto threatsandopportuni-
tiesfor action. Theembodiedcognitive viewpointrecog-
nizesthis fundamentafeatureof naturalcognitive sys-
tems.Accordingto PortandvanGelder:

"The cognitive systemis not a discrete sequen-
tial manipulatoiof staticrepresentationaitructures;
rather it is a structureof mutually and simulta-
neouslyinfluencing change. Its processeslo not
take placein thearbitrary discretetime of computer
steps;rather they unfold in the real time of ongo-
ing changein the ervironment,the body, and the
nenoussystem.(Port& vanGelder,1995,pg. 3)”

The Dynamics of Development

The ontogeneticdevelopmentof behaior provides a
powerful mechanismsy which organismslearnto or-
ganizeeffective patternsof behaior for performingthe
necessaryasksof survival. Therearemary properties
of this type of development. It is fundamentallya self-
organizingprocessin which the constraintsf bodyand
ervironmentguide the systemtowardsdiscovering cer
tain patternsof behaior. Developmentof behaior in
organismsis not so mucha processof finding comple
chainsof effective behaiors, but in finding salientper
ceptualcuesand effective manipulationsthat simplify

and transformthe task ervironmentinto problemsthat
aredirectly recognizableandsolvable. Problemsolving
in naturalcognitive systemss moreoftentheapplication
of mary transformationsintil the problemis suficiently
simplifiedto bedirectly solved. Clark (1997)calls such
phenomenactionloops. Kirsh andMaglio (1994)call
actionsthat are primarily performedto transformand
simplify thetaskenvironmentepistemicactions.
Problem solving behaior in biological organisms
doesnot tendto be encodedas static, proceduralsteps.
Instead,organismsdevelop a wide repertoireof action
loops and epistemicactions. Developmentof beha-
ior takes the form of learning more and better action
loopsfor the effective manipulationandtransformation
of problems.As anorganismsrepertoireof actionloops
grows, they becomebetterableto dealwith a wide va-
riety of subtledifferencesn the problemsthey needto
solve. Their solutionshecomeboth robust and efficient
with experiencen problemsolvingin the ervironment.

Development of Embodied Cognition

ThelenandSmith(1994),Thelen(1995)ervisionthede-
velopmentof behaior in cognitive systemsasan onto-
geneticlandscapeof stableand unstableattractorsand
repellors.As thebody of the organismchangesnew op-
portunitiesfor behaior are createdanddestryed. De-
velopmentis seenasa reductionof the degreesof free-
dom of the systemas useful patternsfor solving prob-
lemsarediscovered.As stablesolutionsto problemsde-
velop, thesein turn changethe ontogenetidandscape,
openingup new opportunitiesfor somebehaiors, and
closingoff opportunitiesfor others.Developmentis the
discovery of stablepatternof behaior, giventhecurrent
constraintf thebodyandthe ervironment.

Natural cognitive systemsdisplay both physical and
behaioral development. Physical changesn a matur
ing organismare continually reshapingthe ontogenetic
landscapegestabilizingpreviously stablesolutions,and
forcing the systeminto finding new patternsof behavior.
Naturalcognitive systemsalsodisplaythis flexibility in
the developmentof behaior for problemsolving. Se-
quence®f behaiors arenot learnedsomuchasbeha-
iorsthatchangehestateof theenvironmentandthuscue
thenext behaior in thesequence.

Self-Organization of Behavior

Theoriesof the self-oiganizationof patterngn nonequi-
librium systemsprovide new insightsinto the creatvity
andflexibility displayedby biologicalorganismg(Kelso,
1995). Mary of the desirablepropertiesof development
in biologicalorganismsmake senseonly in view of non-
lineardynamics.Accordingto Kelso:

“The thesishereis that the humanbrain is fun-
damentallya pattern-formingself-oiganizedsystem
governedby nonlineardynamicallaws. Ratherthan
compute our brain dwells (at leastfor shorttimes)
in metastablestates:it is poisedon the brink of in-
stability whereit can switch flexibly and quickly.



By living near criticality, the brain is ableto an-
ticipate the future, not simply reactto the present.
(Kels0,1995,pg. 26)"

The developmentof problemsolving behaior in bi-
ological organismsdisplaystheseimportantproperties.
Solutionsare developedthat are flexible, efficient and
quick. Suchsystemsarenot simply reactive, they learn
to anticipateandactively seekout future stimuli.

Bottom Up Neurological Models of
Categorization and Action

Somesystemshave beendevelopedthat display prop-

ertiesof dynamicandembodiedcognitionasdiscussed
aborve. In this sectionwe presentfour interestingex-

amplesof researchhatdisplaydynamic,self-omganizing

catgory formationanddevelopmentof behaior. These
are all examplesof systemsthat have beenhbuilt us-

ing neurologicallyinspired,intermediatdevel neuraldy-

namics.

Distributed Adaptive Control

Distributed Adaptive Control, or DAC (Pfeifer & Ver

schure,1992; Pfeifer & Scheiey 1998; Verschureet al.,

1992; Verschure& Voegtlin, 1999)is an exampleof a
modelof learningbasedon large scaleneuraldynamics.
At its heart,DAC is a model of classicalconditioning,
or the learnedassociatiorof a responséo a conditioned
stimuli. In the DAC model,therearethreelevels of con-
trol: reactve, adaptve andreflective control.

The reactve level is prewired in the model,andrep-
resentgheintrinsic valuesof the autonomousgent. In
the caseof DAC, therobotinstinctively turnsaway from
things when it bumpsinto them. This representghe
valueof avoiding damagerom collisionswith the envi-
ronment.In additionto a collision sensoyra specialsen-
sorfor targetacquisitionis presentDAC is hardwiredto
move towardsthetargetwhenit is detectedby thetarget
sensor

The next level is the adaptve control layer In this
layer representationsf the statesof long rangesensors
areslowly associatedavith eventsthathappenin there-
active control layer.  So, for example, the systemwill
learnto avoid collisionsby associatingheprofilesof ob-
jectssensedwith thelong rangesensoitto collisionsand
the subsequerdctivationof avoidancebehaior. DAC is
alsocapableof learningandexploiting theregularitiesof
the ecologicalnicheit findsitself in. So, if tamgetsare
alwaysfound behindopeningsn walls, DAC is capable
of learningthis associatiorandbeginsto searctoutsuch
openingssincethey tendto leadto finding the targetsin
theervironment.

The final layer of DAC is the Reflective control
layer At this level sequencesf actionsareformedand
rememberedhrough developing sequentialrepresenta-
tions. This level representghe addition of long term
memoryto the basicmechanismef adaptve learning.

DARWIN

DARWIN (Almassyet al., 1998; Edelman,1987; Edel-
man et al., 1992; Edelman& Tononi, 2000; Sporns,
Almassy & Edelman,1999; Verschureet al., 1995)is
anothemeurologicallyinspiredmodelthatis capableof
learninganddevelopingrepresentationsimply by inter-
actingwithin its ervironment. At the heartof Edelmans
DARWIN systemds the classificatiorcouple.In aclas-
sification couple,two mapsof neuronalgroupsreceve
inputfrom separatsensorsThe two mapsarewired to-
getherwith mary reentrantconnections.As a resultof
reentrancouplingandthe changeof synapticstrengths,
correspondingclassificationpatternsbegin to be asso-
ciated and mutually activate one anotherin the maps.
Thus, for example,the feel (tactile map)and shape(vi-
sual map) of an object becomefunctionally correlated
throughrepeatedaxperiencewith the objectsin the envi-
ronment. The correlatedpatternsof actwity in the maps
representoordinatedpropertiesof objectsencountered
within theervironment.

DARWIN 111 is capableof self-oilganizing cateyories
of objectsthatit encountersn its ervironment,and of
learningappropriatebehaior patterns.DARWIN is ca-
pableof learningto track moving objectsin its environ-
mentandalsoof directingits manipulatorin a targeted
mannerin orderto manipulateits ervironment. DAR-
WIN Il is alsocapableof adaptye learningof behaior,
like DAC. It learnsto associateisualpropertieof desir
ableandundesirablebjects to thefeel of theobject. As
it gainsexperiencean theenvironment,it nolongerneeds
to toucha badobjectin orderto avoid it. It hasformed
associationdetweenthe visual andtactile maps,andit
beginsto avoid undesirablebjectsuponseeinghem.

KI111: Mesoscopic Dynamics

Thediscovery thatbraindynamicsoperateén chaoticdo-

mainshasprofoundimplicationsfor the studyof higher
brainfunction(Skarda& Freeman1987).A chaoticsys-
temhasthe capacityto createnovel andunexpectedpat-

ternsof actwity. It canjump instantlyfrom onemodeof

behaior to anothey which manifeststhe factthatit has
a collection of attractors,eachwith its basin, and that
it can move from oneto anotherin an itineranttrajec-
tory. It retainsin its pathway acrossts basinsa history;

which fadesinto its past,just asits predictability into

its future decreasesTransitionsbetweenchaoticstates
constitutethe dynamicsthatwe needto understandhowv

brains perform suchremarkablefeats as abstractionof

theessential®f figuresfrom comple, unknavn andun-

predictablebackgroundsgeneralizationover examples
of recurringobjectsnever twice appearinghe same re-

liable assignmento classedhatleadto appropriateac-

tions,andconstanup-datingby learning.

TheKIll model(Freemar& Kozma,2000;Kozma&
Freeman,2001) consistsof various sub-units;i.e., the
KO, KI, andKIl sets. The KO setis a basicprocess-
ing unit, andits dynamicsis describedby a 2nd order
ordinarydifferentialequation.By couplinga numberof
excitatory and inhibitory KO sets,Kl(e) andKI(i) sets



areformed. Interactionof interconnectedl(e) andKI(i)

setsformsthe KIl unit. Examplesof Kll setsin the ol-
factory systemarethe olfactorybulb, anteriorolfactory
nucleusandprepyriform cortex. CouplingKIl setswith
feed-forvard and feedbackconnectionsone arrives at
theKIIl system.

KIIl shaws very good performancen learninginput
dataandit cangeneralizeefficiently in various classi-
fication problems. KlIl hasa high dimensionalchaotic
attractorin the basalstate. It can be destabilizedby
sensorystimuli andswitchedto a lower dimensionakt-
tractorwing thatrepresenta previously learnedmemory
pattern.

Basic I ntentional System: The Limbic System

We considerbiological organismsto be behaing intel-
ligently whenthey actin waysthat will enhancetheir
currentand future survival. The behaior exhibited by
biological organismsis often very creative andflexible.
Yetsuchbehaior is alwaysdirectedtowardsthesatishc-
tion of thebasicneedf theorganism.Freemarn(1999a,
1999b)describesuchbehaior asintentionalbehaior.
Intentionalityprovidesa key conceptthatlinks the neu-
rodynamicof brainsto goal-directecbehaior.

One of the primary actsof intentionalbehaior is in
directingsensoryobsenationin expectationof informa-
tion to guide future actions. Both the formation of ex-
pectationsandthe real time dynamicinteractionof the
organismwith the ervironmentareimportantprinciples
of intentionalbehaior. Freemars view of the mecha-
nismsof intentionality is one of nonlineardynamicin-
teractionof heterogeneouseuralelementon mary lev-
els andtime scales. The neurodynamiaarchitectureof
the brainforms mary recurrenfoopsbhetweerbrainand
brain, brain and body, and organismand ervironment.
But the basicarchitectureof intentionalbehaior canbe
foundin the simplestand phylogeneticallyoldestparts
of biologicalbrains:thelimbic system.

Conclusion and Future Directions

In this paperwe have presentedn overview of the dy-
namicaland embodiedcognitive hypothesis. We have
also given an overview of some systemsthat display
category formation and developmentallearning of the
type we areinterestedn. We have begun work on our
own modelsof the ontogeneticdevelopmentof beha-
ior in autonomoussystems(Harter & Kozma, 2001a,
2001b).Our own modelsemphasizéhe developmentof
action-orientedepresentationthat afford opportunities
for action-looplike interactionsbetweenthe agentand
the ervironment. Suchmodelsare baseduponthe for-
mation of embodiedcateyoriesfrom chaoticnon-linear
dynamics.

We begin with bottom-up neurologicalmodelsthat
arecapableof chaoticnon-lineardynamics(Freeman
Kozma,2000;Kozma& Freeman2001). Theseneuro-
logically inspiredmodelsare neitherlow nor high level
simulationsof neurologicafunction, but insteadcapture
behaior of the mesoscopiaynamicsof brain function

(Freemar& Kozma,2000). Thesemodelsof neurologi-
calfunctionarecapableof thedynamicformationof cat-
egories. Thesedynamiccateyoriescanbe thoughtof as
modelsof embodiedcateyory formation. We are plan-
ning to expandsuchmechanismso not only form per

ceptualcateyories, but develop and display action-loop
like skills in the context of the problemdomain. Our
goalsareto seehow far suchmechanismgangoin de-
velopingproblemsolving behaiors, andto what extent
thesebehaiors mimic thoseseenin natural cognitive
systems.

Eventuallywe planto build simplifiedmodelsof com-
pletelimbic systemsWe hopethatthesemodelswill be
capableof displayingforms of true intentionalbehaior
in autonomousadaptve systems. Suchmodelsshould
displaysomeof the characteristidlexibility of the prob-
lem solving behaior that developsin naturalcognitive
agentsWe aredevelopingagentsn cognitively demand-
ing real time task ervironments. Beginning with some
virtual ervironments,like the game of Tetris (Kirsh &
Maglio, 1992,1994),we aredevelopingbottom-upneu-
rological modelsthat are capableof category formation
andthe developmentof behaior in suchervironments.
We hopeto eventually move to more complex environ-
ments,andrealautonomousobots.
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