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Abstract 

A requirement of an information processing account of 
human problem solving is that it includes a mechanism 
by which people remember which goals and operators 
have been evaluated and which still need to be evaluated.  
One might expect that these are issues of such 
fundamental importance that they must have been solved 
or at least addressed by the two architectural accounts of 
cognition (Soar and ACT-R), but in fact it is an issue that 
is glossed in both.  We identify two problems: (1) Soar 
and ACT-R guarantee information about goals, and (2) 
ACT-R combines measures of frequency and recency 
into a single representation of activation. In this paper we 
report a model of how people search simple binary trees. 
The model demonstrates the cognitive plausibility of a 
search algorithm that is supported by a memory system 
that delivers independent estimates of frequency and 
recency. 

Introduction 
A requirement of an information processing account 

of human problem solving is that it includes a 
mechanism by which people remember which goals and 
operators have been evaluated and which still need to 
be evaluated.  Whether the task is the Tower of Hanoii, 
a waterjugs problem, a world-wide web search problem 
or a spatial navigation task, a person engaged in search 
examines the consequences of applying an operator to a 
state by trying it out and perceiving to which state it, 
and subsequent operators, lead. At some point in the 
future, the person may, through backup, or because of 
loops, find themselves in a visited state.  Recognition 
that the state has already been visited and/or that the 
operator has already been applied to this state, will in 
the long-term help prune the search space and thereby 
constrain the effort spent on attaining the goal.  This 
constraint has been used in a number of models of 
human problem solving (Atwood & Polson, 1976; 
Jeffries, Polson., Razran, & Atwood, 1977; Anderson, 
1993; Howes, 1994).  Atwood & Polson's model of 
human performance on the waterjugs problem, built up 
a representation of the 'familiarity' of states that was 
factored into the operator selection process.  The more 
familiar an operator then the less likely it was to be 
selected.  

One might expect that these are issues of such 
fundamental importance that they must have been 
solved or at least addressed by the two substantial 
architectural accounts of cognition (ACT-R, Anderson, 
1998; Soar, Newell, 1990), but in fact it is an issue that 
is glossed in both.  In Soar, the architecture 
automatically ensures that operators that have already 
been applied to a particular state in pursuit of a 
particular goal (on the goal stack) on a particular trial 
will not be reselected.   In ACT-R the goal stack has 
privileged status.  Items posted on the stack are not 
subject to the constraints of memory, i.e. they do not 
have decaying activation and cannot therefore be 
forgotten (Altman and Trafton, 1999).  

Another resource for supporting decisions about 
which operator to apply is memory for previous 
attempts at a goal (either successful or failed).  If a goal 
has been achieved prior to the current attempt then 
memories that indicate that an operator is familiar may 
be taken as evidence that it is more likely to lead to the 
goal than an unfamiliar operator (Payne, Richardson, 
Howes, 2000).  However, an issue for the problem 
solver is how to determine the source of the familiarity.  
If the source is the current trial then the operator should 
be rejected, if it is a previous trial then perhaps it should 
be selected. 

Payne, Richardson, Howes (2000) investigated the 
role of familiarity (Jacoby, 1991) in controlling 
interactive search. They tested the hypothesis (Aasman 
& Akyurek, 1992; Howes, 1994) that people help 
control search merely by recognising the actions that 
have been tried before and found that the familiarity of 
items could affect decisions about which item to select. 
Moreover familiarity was used strategically.  When 
participants had information indicating that familiarity 
would be more likely to indicate that an operator would 
lead to the goal, they were more likely to use familiarity 
to guide selection. 

Again, one might expect that this issue would have 
been addressed in architectural theories of cognition.  
However, while Soar’s chunking mechanism is flexible, 
the issue of whether it can provide a mechanism for 
representing the episodic familiarity of an operator has 
only recently started to be explored (Altmann and John, 
1999).  The situation for ACT-R is more complex. 



In ACT-R, each chunk stored in declarative memory 
has an activation that is used to determine probability of 
retrieval.  This activation is made up of a base-level 
activation and an associative activation.  Anderson  and 
Lebiere (1998; page 70) state: “... the activation of a 
chunk is a  sum of the base-level activation, reflecting 
its general usefulness in the past, and an associative 
activation, reflecting its relevance to the current 
context,” and, “The base-level activation of a chunk 
represents how recently and frequently it is accessed.” 

Importantly however, the frequency and recency 
components of base-level activation are not 
independently inspectable by the production rules and it 
is not therefore possible to write ACT-R production 
rules that make strategic use of frequency and recency 
information stored as components of chunk activations.  
It seems unlikely therefore that it is possible to write 
productions that, for example, prefer the most frequent 
operators at the expense of the most recent. 

A commonly used solution to this in ACT-R models 
has been to use flags on declarative memory structures.  
A flag is added to operators that have been applied on 
this trial and then all flags are wiped at the end of the 
trial (Anderson's model of navigation 1993; Lebiere, 
personal communication) leaving no episodic evidence 
that they had ever been there. While, this is an extra-
architectural mechanism that, unsurprisingly, is not 
claimed as part of the theory, its use undermines the 
claim that models constructed in ACT-R are subject to a 
principled set of memory constraints. 

In this paper we report a computational level model 
of how people search simple binary trees. The model 

makes strategic use of frequency and recency 
information and demonstrates the cognitive plausibility 
of a search algorithm that is supported by a memory 
system that delivers independent estimates of frequency 
and recency. 

Task 
In a series of studies to be reported elsewhere we 

observed participants searching simple binary word-
mazes.  Each maze was a binary tree structure with a 
depth of 5 nodes.  At each choice point participants 
were presented with three buttons on a computer 
display.  Two buttons at the top and bottom of the right 
of the screen were labelled with different words 
(perhaps ‘gun’ and ‘pistol’) and the other button, on the 
left of the screen, was labelled ‘back’.  Selection of one 
of the two buttons on the right changed the current state 
to a state nearer to the leaves of the tree and selection of 
‘back’ moved the state to a node nearer the root of the 
tree.  Participants were asked to search for a leaf node 
with a given label (a random word).  

Observations: 
• All participants were able to complete these 

search tasks. 
• Three strategies were used: 

o Random search with a forward bias.  
Participants selected either the top or the 
bottom button on the right of node X, 
searched the subtree and then on returning to 
X selected the other button. 

Figure 1: Mean number of actions taken by high and low systematicity participants
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o Systematic search. Participants always 
selected the top button on the first visit to 
node X, searched the subtree, and then on 
return to X selected the bottom button. 

o Memory-based search. On trials after the 
first participants generally attempted to 
remember the correct path. 

• On trials after the first, participants flexibly 
interleaved search based on memory for 
previous trials with, when memory for 
previous trials failed, either systematic or 
random search. 

• None of the participants perseverated, i.e. they 
did not repeatedly search the same incorrect 
subtree more than a handful of times. 

• With practice (about 4 trials) all participants 
were able to follow the correct path with 
relatively few errors (Figure 1).  

• Those participants who used a systematic 
strategy were significantly more efficient than 
those who did not.  On the first trial the 
variation in the performance of the systematic 
participants was less than the variation in the 
performance of the random participants.  
(Unfortunately, the statistically significant 
difference in efficiency between the use of the 
two strategies is not reflected in Figure 1.  This 
is because some participants using the random 
strategy can, luckily, find the goal with 
relatively few actions.) 

Model 
The first model that we built relied on a single 

activation-based measure that combined both frequency 
and recency information.  This model could perform the 
first trial of a task by avoiding operators with high 
activation (those inferred to have been selected recently 
or frequently).  However, on subsequent trials, a 
strategy of preferring operators with a higher activation 
(i.e. the ones used most recently on the previous trial or 
the ones used most frequently over trials) proved to be 
fragile.  Activation may be high either because an 
operator was selected many times incorrectly or 
because it was selected more recently (i.e. closer to the 
achievement of the goal).  Worse, if an error is made 
because an algorithm prefers highly active operators, 
then the algorithm may perseverate ad infinitum on 
incorrect selections. 

The model that we focus on in this paper, is an 
extension of a proposal by Payne, Richardson, Howes 
(2000).  It relies on the separate and strategic use of 
information about the frequency and recency of 
operator usage.  The model is not based on assumptions 
about the structure of memory, rather it is based on 
assumptions about what information memory can 
deliver.  The heuristics that define the search algorithm 
rely on the following functions for acquiring 
information from memory: 

 
• F = frequency( I ) - returns an estimate of the 

frequency F of item I. 
• X = most_recent( P ) - Instantiates pattern P 

to its most recent occurrence.  (e.g. 
most_recent( op ) would bind X to the most 
recently tried operator).  Only one value can be 
returned for a particular P. 

• F = freq_before( I, E ) - returns the frequency 
F of I before the most recent occurence of 
event E. (e.g. to give the frequency of an item I 
before the selection of the current goal.) 

• F = freq_after( I, E ) - returns the frequency F 
of I after event E. 

 
In order to simulate a lack of reliability in the 

information returned by these functions, frequency and 
recency information decayed from memory 
stochastically.  Also, false positives were randomly 
generated in answer to queries about whether operators 
had been applied on this trial.  In the Payne, 
Richardson, and Howes (2000) experiment, false 
positives occurred when participants were forced to 
make a decision about whether or not they had applied 
an operator before.  In fact, participants may have only 
seen the operator and not applied it.    The functions 
that determined the rate of decay and false positives are 
not important for our current purposes. 

The purpose of introducing the errors was not to 
capture some quantitative aspect of the data but instead 
to ensure that the search algorithm was robust given the 
return of incorrect information from memory.  Most 
importantly the algorithm should not perseverate 
implausibly even when degraded information is 
returned from memory. 

The heuristics work by adding to a preference value 
for each operator proposed.  There are three sets of 
heuristics: those that switch algorithm (or strategy); 
those that control systematic search; and those that 
control frequency-based search.   

Given goal G, operator Op and a preference constant 
V, the rules for each algorithm are described below.  
The rules depend on memory encodings of the 
frequencies and recencies of associations, in general 
between G and Op, but for clarity. a short-hand has 
been used to describe the rule conditions, which does 
not refer to the association per se, but instead just to Op.  
Each rule proposes an addition (plus) or a subtraction 
(minus) to the current value of the preference for Op. 
The rules are described in a pseudo-code where 
variables are represented with capitals.  The symbol  ‘=’ 
indicates a test of equality.  If the test has a variable on 
either side and the variable is not already bound then 
the test will result in binding.  The variables TOP and 
BOTTOM are respectively bound to the top and bottom 
forward menu selections.   

Rules 1 to 5 describe the memory-based algorithm. 
This algorithm is used if the model has a memory 



indicating that the goal has been achieved before.  
Rules 6 and 7 describe the random algorithm.  Rules 8 
to 10 describe the systematic algorithm.  (A particular 
instantiation of the model uses either the random or the 
systematic rules but not both.)  Finally, rule 11 switches 
to the memory algorithm and rule 12 restarts a search in 
the case of apparent exhaustion (this is described 
further below). 

There is only space to describe some of these rules 
here.  We will focus on those for the systematic 
algorithm.  Rule 8 says, if the most recent algorithm is 
systematic and the operator (Op) being evaluated is a 
forward operator at the top of the screen, and the most 
recent of the previously applied operators (R) was not a 
‘back’ operator THEN add V to the preference for Op.  
Rule 9 is similar to rule 8 but adds a preference for the 
forward operator at the bottom of the screen if the 
previous operator was a backup, Lastly, rule 10 prefers 
the back operator when the bottom operator has been 
tried on this trial and the most recent previous operator 
was also a back. 

 
1. IF most_recent(algorithm) = A, 
  A = use_memory, 

forward(Op) = true, 
freq_after(Op,A) = 0, 
freq_before( achieved(G), A ) = FG, 
freq_before( Op, A ) = FO 

THEN  P becomes plus( 1 / (1 + abs( FO – FG ) * V ) ) 
 

2. IF most_recent( algorithm ) = use_memory, 
   forward( Op ) = true, 
   freq_before( fail( Op ), now ) = FN 
THEN  P becomes minus( FN * V ). 
 
3. IF  most_recent( algorithm ) = A,  
   A = use_memory, 
   forward( Op ) = true, 
   freq_after( Op, A ) = 0, 
   freq_before( Op, achieved(G) ) = OF, 
THEN P becomes plus( OF * V ). 
 

4. IF most_recent( algorithm )=A,  A= use_memory, 
   forward( Op ) = true, 
   freq_after( Op, A ) = 0, 
THEN P becomes plus( V ). 

 
5. IF  most_recent( algorithm )=A, A= use_memory, 

   back( Op ) = true, 
   freq_after( TOP, A ) > 0, 
   freq_after( BOTTOM, A ) > 0, 

THEN P becomes plus( V ). 
 
6. IF  most_recent( algorithm ) = A, A = random, 

   forward( Op ) = true, 
   freq_after( Op, A ) = 0, 

THEN  P becomes plus( V ). 
 

7. IF most_recent( algorithm ) = A, A = random, 
   back( Op ) = true,  
   freq_after( TOP, A ) > 0, 
   freq_after( BOTTOM, A ) > 0, 
THEN P becomes plus( V ). 
 

8. IF most_recent( algorithm ) = systematic, 
   forward( Op ) = true, top( Op ) = true, 
   most_recent( op ) = R, not( back( R ) = true ), 
THEN P becomes plus( V ). 
 

9. IF  most_recent( algorithm ) = A, A = systematic, 
   forward( Op ) = true, bottom( Op ) = true, 
   most_recent( operator ) = R,  
   back( R ) = true, 
   freq_after( Op, A ) = 0, 
THEN P becomes plus( V ). 
 

10. IF  most_recent( algorithm ) = A, A = systematic, 
   back( Op ) = true, 
   most_recent( operator ) = R,  
   back( R ) = true, 
   freq_after( BOTTOM, A ) > 0, 
THEN P becomes plus( V ). 
 
11. IF most_recent( algorithm ) = A, A = none, 
  freq_before( achieved(G), A ) > 0, 
  Op = algorithm( use_memory ), 
THEN P becomes plus( 3*V ). 
 

12. IF current_node = root , 
 most_recent( algorithm ) = A ,  
 Op = algorithm( A ), 
 freq_after( TOP, A ) > 0, 
 freq_after( BOTTOM, A ) > 0, 
THEN P becomes plus( 3*V ). 
   
 
The last algorithm switching rule (rule 12) plays a 

crucial role. Occasionally the problem solver will return 
to the root node without having found the goal.  This 
will happen if the search was incomplete (i.e. some 
subtree remained unsearched) due to inadequate 
information from memory (a false positive).  In this 
situation rule 12 restarts the search.  In the model this is 
operationalised as the operator for the current algorithm 
is reapplied.  The time at which the most recent 
algorithm operator was applied is used by the other 
rules to judge whether memories for operator 
applications were part of the current trial or previous 
trials. 

Results 
For particular rates of memory decay and false 

positives, the model was run 40 times on each of the 4 
tasks performed by participants.   The resulting mean 
performance for three decay rates is shown in Figure 2. 



The participants’ mean performance is within the 
bounds of the best and worst model performance 
illustrated in Figure 2.  We have not attempted to fit the 
model precisely, rather in accordance with Roberts and 
Pashler (2000) we explored the range of its behaviour. 

Importantly, the model did not perseverate. 
Regardless of errors made during search, it always 
recovered and eventually found the goal. Also, as the 
decay rate increased the model was still able to learn 
the task.  A large number of errors in the first trial did 
not on average incapacitate the learning over 
subsequent trials.   

The gradual improvement in practice after the first 
trial was a result of a search algorithm (rules 1 to 5) that 
is guided by a combination for memory for previous 
trials and the current trial.  If memory for previous trials 
proved inadequate then memory for the current trial, as 
distinguished by relative recency, ensured a reasonably 
efficient search.  

Also, in accordance with the participants behaviour, 
the systematic algorithm produced more efficient and 
less varied searches on trial 1.  

Discussion 
The model reported here demonstrates that aspects of 

the way in which people search and learn paths through 
external problem spaces can be captured with heuristic 
rules that make strategic use of independent estimates 
of the frequency and recency of previously selected 
operators.  Without access to this information it is 
impossible to write heuristics that distinguish an 
operator with high frequency from one that has high 
recency, and it is therefore a problem to determine 

whether key events occurred on the current trial or 
previous trials.  The analysis of the model’s behaviour 
under a range of memory decay and false positive 
conditions reveals that it produces behaviour broadly 
similar to human performance on a simple search task.  
Notably, unlike previous activation-based models built 
by the authors, the model does not perseverate when 
receiving degraded information from memory.  In 
addition, the mean performance of the model over ten 
trials consists of a practice curve similar to that of the 
participants. 

However, further investigation revealed that, after the 
first trial, the model produced a much greater variation 
in behaviour than the participants in the experiment. 
This issue is a matter for further investigation, and may 
well imply the need for some superordinate learning 
mechanism (perhaps rehearsal or impasse-driven 
learning).   

A superordinate learning mechanism might involve 
the deliberate encodings of what the correct option is.  
This is an approach that was explored in Howes (1994), 
and while it deserves further attention, there are two 
problems.  The first is that there is a dislocation in time 
between when the items are experienced and when a 
participant achieves the goal.  In previous models the 
feedback of information about correctness produced 
recency effects  in which lower levels of the tree were 
learnt first (Howes, 1994).  These effects were not 
observed in our experiments. The second is that 
deliberate learning only pushes the problem back one 
level.  If people deliberately learn what is correct then 
when situations change or mistakes are made, they also 
have to deliberately learn that a different option is 

Figure 2: Mean number of actions taken by model given increasingly unreliable information from 
memory
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correct.  Subsequent competition between different 
representations of correctness would then have to be 
resolved, perhaps using exactly the kind of mechanism 
that we have proposed.  Progress will require modelling 
the range of individual trial data rather than just mean 
data. 

Another possibility that we are investigating is that 
the long-term learning is based on recency and not 
frequency. Once the goal has been achieved, then the 
operator that led to the goal will be the most recently 
selected operator at any choice. Memory for recency 
could therefore be used to guide learning.  However, 
under normal assumptions about decay, a recency-based 
model predicts that choice points at different distances 
from the goal would be learnt at different rates.  Our 
data (not described above) does not support this 
prediction. 

In principle, it may be possible to construct 
algorithms in ACT-R designed to ensure that during 
search sufficient episodic information is stored in 
declarative chunks to enable the kinds of computations 
that are posited in the model report here (e.g. Altmann 
and Trafton, 1999). However, regardless of the success 
of this approach, there will remain an issue about how 
people obtain information about frequency, and 
recency.  While the concept of activation is well 
established in psychology, an architecture in which 
chunks are stored with independent measures of 
frequency and recency may lead to more parsimonious 
accounts of problem solving behaviour. 

There are a number of models of the cognitive 
activity that give rise to practice effects, amongst them  
Logan's (1988) instance model and Rosenbloom and 
Newell’s (1981) chunking model. More recent work has 
emphasised the strategy specific nature of the practice 
curves (Delaney, Reder, Staszewski & Ritter, 1998). 
The model reported here is similar to Logan's in that the 
practice curve emerges as a result of encodings made 
from experience with the external environment: 
however, maze-like tasks are more complex than simple 
letter arithmetic tasks and it is for this reason that our 
model requires the combination of frequency and 
recency dependent control mechanisms that we have 
described. 

In the introduction we claimed that ACT-R’s 
representation of undifferentiated activations was not 
sufficient to directly support algorithms that capture the 
behaviour of people engaged in typical search tasks. In 
contrast, the model that we have reported illustrates the 
cognitive plausibility of a mechanism that makes 
strategic use of separate sources of operator recency and 
frequency during search.   
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