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Abstract more closely follow the reasoning patterns observed in

Automated theorem proving based on proof planning is humans became more prominent,
a new and promising paradigm in the field of automated The goal of automated proof planning (Bundy, 1988;

deduction. The idea is to use methods and heuristics as Melis & Siekmann, 1999) is to identify and to employ
they are used by human mathematicians and encode this human-like strategies and methods for theorem prov-
knowledge into so-callechethods . Naturally, the ques- ing in order to avoid the almost exhaustive search in
Hgg da}ﬂ|seifnﬁg?ﬁgfﬁéﬂq‘§{ﬁe§%? T%?ng%et;‘?g\?ég%'zes super-exponential search spaces that makes traditional
and compares the effect of different instruction materials am_omated theqrem proving |nfea5|_ble fo_r most non-
(textbook-based, example-based, and method-based) on trivial mathematical Con]eCtUreS. We |nV€St|gated reportS
problem solving performance. The results indicate that and mathematical textbooks (Melis, 1994) to make such
the performance for the method-based instruction derived ~ strategies and methods explicit and then available for the

from automated proof planning in tHeMEGA system is ;
superior to that of the other instructions that were de- QMEGA proof planner. Essentially, these methods are

rived from a textbook and an example-based classroom (generalized) macro-steps. This is in accordance with
lesson. These results provide a first support for introduc- Koedinger and Anderson (1990) who investigated human

ing proof planning based on methodological knowledge theorem proving in geometry and found that humans em-

into the school curriculum for mathematics. ploy macro-steps when proving theorems.
The identification and design afiethods and con-
Introduction trol knowledge is very laborious as this kind of knowl-

Recent developments in automated deduction, one of th§99€ 1S not explicit in mathematical texts. However,
d. Some progress has now been made in the identification

areas of Artificial Intelligence (Al), have shown the a f math tical method 4 trol k ledae (Mell
vantage of employing methods and heuristics used by h/2f mathematical methods and control knowledge (Melis,
998). Based on these achievements we focus on ques-

man mathematicians. Naturally, the question is whethel:

they can be beneficially used in teaching mathematics. °"° such as

for instance in interactive e-courses such asTAWE- Is the knowledge that was made explicit for automated

MATH (Melis et al., 2001). proof planning useful for supporting human learning of
The goal of the research reported in this paper has been mathematical problem solving?

to gather empirical evidence for the hypothesis that the

knowledge we made explicit in proof planningthods We are inclined to sayes One reason is the ex-

for a restricted area of mathematics, namely limit prob_plicit availability of this knowledge that can be used for

lems, is indeed useful for learning to prove theorems inP"0°f presefntai\tlon. rf_\nhqut(t)mated proof pI?n d”?f pro-
this area. A positive answer in this and other areas Ofiuces proof plans which in turn can pessented in a

mathematics can serve as a basis for the long-term gogpore comprehensmle_way\Ne mves_tlgated how proof
to acquiremethods to solve mathematical problems and Presentation for teaching and learning can be generated
;rom proof plans, see Melis and Leron (1999). More-

then to use them to gradually change the teaching o . . .
mathematics. over, we investigated h0\_/v such a presentation of_ proof
To understand the interdisciplinary context, we will plans can meet pedagogically and cognitively motivated
have a quick look at automated theorem proving. requirements for presenting mathema_tlcal problem splu—
tions and proofs, in particular the requirement for a hier-
Automated and Human Theorem Proving Tradi-  archically structured presentation originating from em-
tional automated theorem proving systems such as OTpirical results in Leron (1983) and Catrambone (1994).
TER have attained a remarkable strength in deductive A second reason is that this knowledge is needed for
search. They are, however, weak when it comes to nonproblem solving but not always present in textbooks
trivial mathematical theorems where long range planningVanLehn, Jones, & Chi, 1992). Indeed, interviews
or other global search control is needed. Moreover, longvith teachers of mathematics indicate a need for teach-
proofs generated by these systems are almost incomprexg methodological knowledge as capturedniethods .
hensible. Therefore, techniques like proof planning thatSome even claim this is the essence of good teaching and



a source of improved learning and thus de-mystifyinga distinct name in mathematics. For instance, cer-

mathematics to some extent. As opposed to merelyain estimation methods  for inequalities are typically

checking the correctness of single proof steps as in learmot explicity mentioned although they encode a fre-

ing with traditional mathematical instruction, learning of quently used trick. One of thegstimation methods

methodsshould help in understanding the discovery of (ComplexEstimate ) and anothermethod (TellCS ).

a proof. This leads to an improved performance basedhese have been used in our experiments and are ex-

on understanding. The methodological knowledge in-plained below.

cludes the systematic construction of mathematical ob- Those non-nammethods are often used only implic-

jects which is needed in many proofs. itly in course materials. This implicit treatment of proof
The idea of making an expert’s tacit problem solv- methods is one reason why textbooks do not provide

ing knowledge explicit to learners is in accordance withenough explanation dfow to finda proof.

some well known approaches in instructional psychol- o o .

ogy such as cognitive apprenticeship (Collins, Brown, & Proof Planning in the Limit Domain

Newman, 1989) or the provision of instructional expla- In this section we describe a class of theorems, the way

nations (Chi, 1996). their proofs can be discovered mathematically, and the
Certainly, the success largely depends on the actualay proof planning in the€dMEGA system implements

proof planningmethodsmade explicit and encoded and this with methods .

therefore another direction of research, see Melis an

Pollet (2000), aims at describingethods for interac-

tive proof planning most appropriately. In addition to

the evaluation of the concreteethods there is the more

general question on whether the explicit teaching of re-a functionf.!

latively abstract methods helps in learning mathematics. The definition of lim (x) = | describes formally that
Although there are reasons to believe in instructional.]c xa

benefits, empirical evidence is required to substantiat hx converges ta, then f(x) conergr]lesdt_o the limit
theyes and this is the focus of this report. € convergence — a means that the distange - a|

In this paper we present first emoirical results. To be_of x and a becomes arbitrary small. The definition of
_In this pap presentti P! SUES. the limit describes that if— a] becomes arbitrary small,
gin with, proof planning is briefly reviewed, in particular

roof planning of limit theorems which is the object of then|f (x) —1| becomes arbitrary small too. Put formally,
Phe de[;cribe dgexperiment J for every arbitrary small real numbesexists a real num-

berd such that ifx—a| < , 2 then|f(x) — 1| < &3

Proof Planning Basics Example Take the linear functionf(x) = 2-x+ 3.

Proof planning is based on classic Al-planning (Fikes &Whenx converges to 0, theﬁ_(x) convergesto 3, L.e., for
any arbitrary smalk, there is always &-environment

Nilsson, 1971) which reduces a goal to subgoals by in- o ; .
troducing operators until all open subgoals match one op8(0) 0f &= 0 such that for anx in that environment
f(x) is in thee-environment.

the initial state descriptions. When the sequence of oper-
ators is applied (in forward direction), the initial state is Counter Example Take as a counter example the func-
transformed into a state in which the goals hold. In prooftion
planning, the goal is the theorem to be proved and the £(x) { +2 : x>0

initial state consists of the proof assumptions. -2  x<0

For instance, for proving the theorem LIM+ which . _ . .

states that the limit of the sum of two real-valued func-n Figure 1 which does not converge at point 0.
tions f andg for a real numbea s the sum of their limits If € is smaller than 2, there is always arlose to 0

q’he Theorems Limit theorems are taught at German

high schools. Limit theorems claim something about the

limit Iimaf(x) for a functionf or about the continuity of
X—

L1 andLy, the conjecture to be proven is l;ofrI vihicg f(x) is not in thee-environment of = +2 or
lim (f(x) +g(x)) =L1+L ' o
Xﬂa( ()+g(x) =La+Lo The Proofs The proofs of limit theorems have to sug-
and the proof assumptions are gest ad, in relation to the giverg, such that the limit

inequalities, e.g|f(x) —1| < ¢, hold. That is, a relation
betweere andd has to be determined such that for each
x from thed-environment of the valuef (x) is in thee-

A proof plan is a sequence of operators whose ap® "
plication realizes an inference from the proof assump_enwronment of. Therefore, the standard proofs of these

tions to the theorem. In proof planning, the oper-heorems are often callesd—proofs. . .
ators are calledmethods . They are frequently de- Typically, textbooks postulate an appropriate relation

signed in a way corresponding to typical mathemati-Petweene and d out of the blue. Then they show

)I(@af(x) =L andxll_)n;g(x) = Ly.

cal techniques such gsoof by induction, proof Lor about the limit of a sequence which is a special case of
by refutation , andproof by diagonalization , to  afunction.
qguote some of the best-knowmethods . There are, %i.e.,xis in thed-environmentJs(a) of a

however, less well-knowmethods which do not have Si.e., f(x) is in thee-environmentg (1) of |



y X—a< % for a numberr to be determined and then con-

A
cludex? —a? = (x+a)- (x—a) <r- £ =¢ and therefore
€ f(x) x? —a? < €. In proof planning such reductions are re-
Ue(1) 2 alized by estimation methods. One of those methods is
ComplexEstimate ~ whose simplified version is used in
i one of the instruction materials and described below.
J2 0 & - X Simplified ComplexEstimate The simplified Com-
~—— plexEstimate method delivers the first reduction step
f(x) Us(0 , in the following plan.
[f(x)—1] < ¢
<~ J|k-|x—a < ¢
— x—a < &
Figure 1: A function that does not converge at paiat0 — Ix—al < &

that the stipulated which is dependent om make the It rewrites|f(x) —I|to k|- |[x—a|, determines thkwhich
(inequality)-conjectures true. In contrast, prabi§cov-  can be a number but also, in more complicated cases, a
ery reveals the relation either by intuition or by sys- term like|x+ 1| (see the Binomial computation above),
tematically detecting conditions/constraints under whichand conjectures the subgoal thdthas an upper bound (a
|f(x) — 1| becomes arbitrary small given that—a| be-  real number). The latter subgogk| <r is a constraint
comes arbitrary small. Those constraints result fromand gives rise to establishing the relat®s- £ in order
analyzing the inequalities to be proven. This analy-to guarante@ < \_ﬁl which implies the last proof step.

sis often includes an abduction of new simpler inequal- ComplexEstimate ’s general procedure to determine
ities/constraints sufficient to not invalidate the original k is polynomial division but manual computation may

ones. _ _ _ use simpler procedures in simpler cases, e.g. a Binomial
These constraints may restrict the relation between formula.
andd. For instance, if the constraints are:® andd < &, This generalComplexEstimate  (not used in the in-

thend = 2-¢ would be an invalid relation bdi= 5 would  struction materials) reduces an inequality goal to three
be a valid one. _V\_/hen all possible constraints have beegybgoals (rather than two in the simplified version) by
collected, then it is more transparent how to choose theneans of decomposing a tetninto a linear combina-
relation betweere andd. For instance, if the collected tjont = k-a+ mfor which an estimation o is already
constraints are & d andd < ¢, then it is easy to see that known. It justifies the original goal by the three subgoals
the relationd = % satisfies the constraints. In partlcular, and the Triang|e |nequa|iﬁ/. For difficult decomposi_
for complicated problems the systematicity is indispens+ions themethod can call a polynomial division function
able because ad hoc guesses and trial and error do n@jthout any problems.

help much. The generaComplexEstimate  as used in the auto-
Proof Planning Proof planning fore=5—proofs (in a  Matic proof planne©2MEGA covers the simpler cases for
backward fashion) introduces a sequencemethods K= 1 andm= 0. Its generality allows for proving pretty

transformingx—a| < 3to | f(x) —a| < & complicated theorems that are beyond the range of our
experiments. All test problems in the experiment require
1fx)—1] < ¢ the special casen= 0 only. In the first, second, third,

fourth, and fifth test problenk is a real number, whereas

= S in the sixth test problerkis the term(x— 1).

= x—al < d.

Each of the methods may yield restrictions on the rela- Hypotheses
tion of € andd. Therefore, proof planning systematically The overall goal of the study presented in this paper is
restricts the relation of andd by uncovering constraints an empirical validation of the assumption that the in-
sufficient for making the inequalities true which are re- structional presentation based owethods leads to an
quired in the theorem. improved problem solving performance in mathematics.
If a subgoal is a primitive inequality such as<0l or  This differs from typical textbooks or classroom lessons
d < g, thenTellCS “just collects it as a new constraint. If where the methodological knowledge is currently not ex-
the constraints are not as immediate/primitive, then theplicitly used.
can only be shown via a reduction to less complicated, The first hypothesis states that instructional material
primitive inequalities. For instance, to shof—a? <&  that includes information about proof-generation meth-
one might reduce the goal to the subgoaisa<r and  ods improves the overall problem solving performance.

4for "Tell the Constraint Solver”. S|A+B| < |Al+|B|



The second hypothesis postulates that the methodnere stipulation of pivotal assumptions is a frequent fea-
based instruction is especially helpful in solving far- ture of example proofs in textbooks.
transfer test problems that presuppose the generation ef The example-based instruction differed from the
new solution paths. textbook-instruction in that the example problem was

To test the first hypothesis instructional material basedgresented immediately after the introductory page. To
on QMEGA’s proof planmethods was designed. The establish a general relation betweseandd, suitable val-
method-based instructions were contrasted with convendes ford are introduced for several concretealues of
tional instruction materials: textbook-based instructiondecreasing size. This approach allowed for an induc-

and example-based instruction. tive derivation of a general relation between these two
To test the second hypothesis test problems of differenparameters. Additionally, the example-based instruction
transfer distance were used differed from the textbook-instruction in the sequence of
the instructional materials: The example proof was pre-
Experiment sented before the formal definition of the notlonit and
the respective illustrating graph were introduced.
Method e The method-based instruction took thethods sim-

. i plified ComplexEstimate andTellCS from QMEGA’s
Participants The subjects were 38 students of Saar-proof planner and described an example solution explic-
land University, Germany who either participated for jtiy using ComplexEstimate  andTellCS (the collection
course credit or payment. Average age was 24.1 years. of constraints). It shows ho@omplexEstimate  reduces

Materials and procedure Each student was provided @ complicated estimation to several simpler ones. As
with the following material in a booklet: (1) Anintroduc- @ general approach it also employs the collected con-
tion that described the nature and purpose of limits. Ad-straints for defining a relation betweenandd. The
ditionally, the introduction presented a definition of the methods are applied to prove the example problem and
notion of anenvironmenss a prerequisite for the formal an abstract description of tieethod is provided.

definition oflimit. (2) A formal definition of the notion ~ Two versions of this method-based instruction were
limit together with an illustrating graph. (3) One worked- designed that differ with respect to the sequence of in-
out example that illustrated how the Iin;n(it ;itr(x) for a strqctlt?_nal mate?allls. Irzjvbersmn ﬁthe d%}‘mnpn of th(—?
given functionf and a given valua can be proven. De- notion limit was followed by an abstract description o
pending on the experimental conditions different Solu_CompIexEstlmate and an illustrating example applying

. , this method . In version B the worked-out example was
t'?n approacnes were selected in the worked-out eXarT}Sresented before the notidimit was defined and the
ples.

. . . . ComplexEstimate  method was described in a more ab-
Subjects were advised to study the instructional mateg;, ot way.

rial carefully. After reading the booklet subjects had to 5 g dependent variables problem-solving time and
solve six test problems that differed in their transfer dis-,.opiom solving performance for the six test problems

tance with respect to the instructional example. The SiXygre registered. The test problems differed in transfer
text problems were of increasing difficulty and decreas-gigiance. The first two test problems were isomorphic to
ing structural similarity to the example explained in the ye example used in the instructional material (proving
Instruction. a limit for a linear function of the fornf (x) = x+ b).
Design and dependent measuresFour different in- The next three test problems were near-transfer prob-
structional materials were designed as independent varlems (proving a limit for a linear function of the form
ables: Textbook-based instruction, example-based inf (x) = ax+b). Finally, a far-transfer test problem had to
struction, and two types of method-based instructionbe solved (proving a limit for a quadratic function of the
(only differing in the sequence of the parts of in- form f(x) = ax’ + bx+c). After the experiment, data
structional materials). The instructional conditions dif- were collected by means of a questionnaire, in partic-
fered only with respect to the solution approach for theular, the subjects’ last maths grade in school, the sub-
worked-out example and with respect to the sequence gects’ interest in mathematics, sociodemographic data,
the instructional materials. and whether they were taught anything about limit the-
o In the textbook-based instruction the introductory pageorems in (past) school lessons.
was immediately followed by a short formal definition of
the notionlimit and an illustrating graph. Subsequently, R€Sults
one example of a worked-oetd-proof for a linear func-  The six test-problem solutions were scored as follows.
tion (f(x) = x+ 2, with x being undefined ak = 1)  For a totally correct answer a score of 1 for isomorphic
was presented. The example solution was taken from aproblems, a score of 2 for near-transfer problems, and a
university-level textbook. The textbook-based instruc-score of 4 for far-transfer problems was assigned. Hence,
tion merely postulated the pivotal relation betweeand  the maximum total score is 12. 50% of the full score
0 without derivation from more general principles. The were assigned to a solution, if the answer was correct
except for minor, nonconceptual mistakes (e.g. numeri-
6Transfer distance is a measure for structural similarity. ~ cal calculation errors, mixing up ande in the solution



Table 1: Comparison between all instructional conditions

) with respect to all levels of transfer distance (one-tailed Mann-
- o Whitney U-tests)
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Figure 2:Mean performance scores (in percentage of possible ] ) ) ] ) ]

maximum score) as a function of instructional condition andstruction did not differ with respect to isomorphic prob-

transfer distance between test problems and example problemems and far-transfer problems. However, there was
a marginal significant difference with respect to near-

equation). 75% of the full score were assigned in case ofransfer problems.

incorrect solution of the polynomial in the last test prob-

lem. Discussion

an';IO gﬁsaézrgaejgg é?fjit(;/\r/tee rg dlijsstﬁ(lj)ultri]or?sl;l I%e;fg:gt‘z?geAs postulated in our first hypothesis the method-based
y X Pnstructional material based @MEGA's proof plan pre-

we compared the two mc_ethod-based Instructions W'ﬂkentation has a significant beneficial effect on learners’
respect to performance differences. Mann-Whitney U-

tests revealed that there were no differences in the t0§ubsequent problem-solving performance. Compared to

tal problem-solving score (U(9, 9) = 36: p(two-tailed) = more conventional instructional formats usually found
probl 9 . AN A p_ ) ~ in textbooks and highschool lessons the method-based
.69) or in problem-solving time (U(9, 9) = 39; p(two-

tailed) = .89). Thus, both method-based instructior1smg[rucrIon improves leamers' problem-solving perfor-

X mance without requiring more time to be invested.
were collapsed for further analysis. An overall com-

parison of the method-based, the example-based and trhe Cgt?]tzg t(t)h;he ei}(gfnﬁgﬂlc%n i?nxﬂf\/sgggr:?s 0 duljesfgotﬂg
textbook-based instruction with Kruskal-Wallis H-test ' 7P ! P P

revealed that there were significant differences in the to/"'cth0d-based instructional format are not larger for far-

tal problem-solving scorexf(2, N = 38) = 5.87: p = transfer test problems than for isomorphic and near-

05) but not in problem-solving timec¢(2, N = 38) = transfer test problems. An explanation for this unex-

2.45; p = .29). The instructional conditions did not dif- pected result might be that the far-transfer test problem

fer with respect to the last math grade in school, domain—has been chosen as a too-far one that requires an ad-

. . : . ditional computation (polynomial division) the subjects
specific knowledge they were taught in school, interest in ight have been not capable to carry out or did not even

mathematics, sex, and age. Figure 2 provides the mei{ﬂ

performance scores (in percentage of possible maximum?: o
score) for all three instructional conditions and all levels. To conclude, the results indicate that the method-based

of transfer distance instruction that originated from proof plannimgethods

Paired one-tailed comparisons with Mann-Whitney U_implemented IMIMEGA is Superior to the two other in-

tests (see Table 1) yielded that the method-based infs_truct|ons in terms of subsequent problem solving per-

struction outperformed the textbook-based instruction ormance. These results provide first evidence that proof

(marginally) as well as the example-based instructiorP/2"ing based on mathematical knowledge may also be
with respect to the total problem-solving score. Theused and introduced into highschool curricula for math-

textbook-based instruction and the example-based inematcs.

struction did not differ in total problem-solving score. C lUSi
A more detailed analysis revealed that the method- onclusion

based instruction and the textbook-based instruction difis the methodological knowledge used in proof planning
fered marginally with respect to isomorphic problemsuseful for human learning of maths problem solving?
and to far-transfer problems but not with respect toThe results of our experiments indicate that the method-
near-transfer problems. The method-based instructiobbased instruction that originated from automated proof
and the example-based instruction differed with respecplanning is, indeed, superior to the two other instructions
to all performance measures, at least marginally. Then terms of subsequent performance. These results pro-
textbook-based instruction and the example-based invide first support for introducing proof planning based on



methodological knowledge into the highschool curriculaChi, M. (1996). Constructing self-explanations and
for mathematics. scaffolded explanations in tutorinépplied Cognitive
It is not necessary to restrict this methodological Psychologyl10, 33-49.

knowledge tanethods which have b ired f d . .
noviiedge 1anetnogs Which nave been acquired for an Collins, A., Brown, J., & Newman, S. (1989). Cognitive

used in automated proof planning. We can, however, - ashin: hi h fs of readi X
re-use these results. Then the advantage is that those@PPrenticeship: Teaching the crafts of reading, writ-

methods are formalized and implemented and, there- Nd, and mathematics. In L. Resnick (EcKnowing,

. ; learning, and instruction: Essays in honor of robert
fore, can be employed by a system supporiitigractive ' ;
problem solvingF.) y yasy PP < glaser(p. 453-494). Hillsdale, NJ: Lawrence Erlbaum

The presented empirical results are limited, however, ASSOciates.
to only one area of highschool mathematics. Future worksjkes R., & Nilsson, N. (1971). STRIPS: A new ap-

will try to provide similar evidence in other areas as well. ' proach to the application of theorem proving to prob-
Interestingly, we met many committed mathematics |em solving. Artificial Intelligence 2, 189-208.
teachers in Germany who have been engaged in activi-

ties targeting a similar idea without knowing, of course, Gerjets, P., Scheiter, K., & Tack, W. (2000). Resource-
about automated theorem proving and proof planning. adaptive selection of strategies in learning from
Their concern is a reshaping of mathematics lessons that worked-out examples. In L. Gleitman & A. Joshi

aims at learning problem solving methods, heuristics, (Eds.),Proc. of the annual conference of the cognitive
and structuring problems and solutions rather than at science societ{p. 166-171). Mahwah, NJ: Erlbaum.

memorizing facts and procedures. Gerjets, P., Scheiter, K., & Tack, W. (2001)Prob-
Future Work lems of example selection and example processing in
hypertext-based learning environmeifiech. Rep.).

In the future we will replicate the experiment reported Saarbr'ucken, Germany: Saarland University.

here with several augmentations. First, we will obtain
think-aloud protocols to get more detailed insights intoKoedinger, K., & Anderson, J. (1990). Abstract plan-
the learning and problem-solving processes elicited by ning and perceptual chunks: Elements of expertise in
different instructional materials. Second, we will try to  geometry.Cognitive Sciengel4, 511-550.

shed more light on the results with respect to second hy- , )

pothesis by adjusting the difficulty of the far transfer testL€ron, U. (1983). Structuring mathematical procféie
problems.” Third, we will additionally consider certain American Mathematical Month|0, 174-185.

features of instructional situations like domaln-speuﬂcMe"S, E. (1994). How mathematicians prove theorems.
prior knowledge or degree of time pressure that have |, proc “of the annual conference of the cognitive sci-

been shown to influence the profitability of different in- ; _ ;
structional materials (Gerjets, Scheiter, & Tack, 2000). ence societyp. 624-628). Atlanta, Georgia U.S.A.

Another line of research will pertain to the fact that Melis, E. (1998). The “limit” domain. In R. Simmons,
the provision of profitable instructional materials does M. Veloso, & S. Smith (Eds.Proc. of the fourth inter-
not ensure that learners indeed use these materials ap-national conference on artificial intelligence in plan-
propriately. This is especially true for computer-based ning systemgp. 199-206).
learning environments that allow learners to control for .
many aspects of the learning process, e.g. the seled/€lis, E., Andres, E., Goguadse, G., Libbrecht, P., Pol-
tion of instructional materials (Gerjets, Scheiter, & Tack, '€t M., & Ullrich, C.  (2001). Activemath: System
2001). Therefore, we will examine whether learners se- description. - InProc. of the international conference
lect method-based instructional materials when they are ©n artificial intelligence in education.

allowed to choose between different types of informa-\jejis E.. & Leron. U. (1999). A proof presentation

tion in electronic learning environments. Finally, we g jitaple for teaching proofs. In S. Lajoie & M. Vivet
will design experiments investigating the influence of ex- (gqs ) international conference on artificial intelli-

plicitely teaching control knowledge (i.e. knowledge on  ance in educatiofn. 483-490). Le Mans: 10S Press.
when to choose which method) in addition to the teach- g ® )

ing of method knowldege. Melis, E., & Pollet, M. (2000). Domain knowledge for
search heuristics in proof planning. Aips 2000 work-
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