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Abstract 

A computational model of a user navigating Web pages 
was used to identify factors that affect Web site usability. 
The model approximates a typical user searching for 
specified target information in architectures of varying 
menu depth. Search strategies, link ambiguity, and 
memory capacity were varied and model predictions 
compared to human user data. A good fit to observed 
data was obtained for a model that assumed users 1) used 
little memory capacity; 2) selected a link whenever its 
perceived likelihood of success exceeded a threshold; 
and, 3) opportunistically searched below threshold links 
on selected pages prior to returning to the parent page. 

Introduction 
The World Wide Web continues to revolutionize how 
people obtain information, buy products, and conduct 
business transactions. Yet many companies and 
organizations struggle to design Web sites that 
customers can easily navigate to find products or 
information. The identification of factors that affect the 
usability of the World Wide Web has become 
increasingly important. While many of these factors 
concern the graphical layout of each page in a Web site, 
the way in which the pages link to each other, often 
called the site's information architecture, plays a 
decisive role in the site's usability, especially for sites 
allowing access to large databases (Rosenfeld & 
Morville, 1998) Our effort focuses on understanding 
how a site's information architecture impacts a user's 
ability to effectively find content in a linked 
information structure such as a Web site.   

We develop our understanding through the 
construction and testing of a working computational 
model. The model simulates a user navigating through a 
site making choices about whether to select a given link 
or evaluate an alternate link on the same page. 
Constructing and testing a working model not only 
complements empirical studies, but also offers 
advantages over empirical usability testing. Empirical 
studies are generally too expensive and time consuming 
to address the wide range of content, configurations, 
and user strategies that characterize the Web. In 

contrast, an implemented model can run thousands of 
simulated sessions in minutes.  Also, empirical studies 
do not inherently provide explanations for their results 
and thus make it more difficult to determine how a 
given result generalizes to other circumstances, whereas 
a cognitive model can describe the underlying 
processes that produce behavior. For example, 
computational models have been used to highlight 
patterns of interactions with a browser (Peck & John, 
1992) and report on the accessibility of the site's 
content (Lynch, Palmiter & Tilt, 1999). 

In this paper, we build upon methods that we 
presented in an earlier paper (Miller & Remington, 
2000a). For the sake of presentation, we describe the 
methods and our model in its entirety. We introduce a 
new navigation strategy and show how the model's 
aggregate behavior tightly fits results from an empirical 
comparison of different site architectures (Larson & 
Czerwinksi, 1998).  Finally, we experiment with the 
model's assumptions by exploring alternate designs and 
parameters in order to help identify critical elements in 
the model's design. 

Modeling Information Navigation 
We simulate common patterns of user interaction with a 
Web site with the goal of providing useful usability 
comparisons between different site architectures. A 
model that precisely replicates a user's navigation is not 
possible, nor is it necessary. Useful information can be 
obtained from a simple model that captures functionally 
significant properties of the user and site architecture. 
Here we show how a simple model can predict and 
explain benefits of one design over another, such as 
when it is advantageous to use a two-tiered site instead 
of a three-tiered site. 

In constructing our model, we use the following 
principles: 
• The model should only perform operations that are 

within the physical and cognitive limitations of a 
human user. In Web navigation, for example, limits 
on visual attention dictate that a user can only 
focus upon (and evaluate) one link at a time. 
Likewise, limits on short-term memory dictate 



  

navigation strategies that minimize memory 
requirements, an assumption consistent with 
evidence that people often adopt memory 
minimization strategies (Ballard, Heyhoe, Pook, & 
Rao, 1997). 

• The model should make simplifying assumptions 
whenever they are not likely to have much impact 
on aggregate behavior.  For example the model 
takes a fixed amount of time to evaluate a link even 
though human users’ times are certainly variable. 
Since the model simulates the average user, this 
simplification will provide a good fit given a 
reasonable estimate of fixed time from human 
performance data (Card, Moran & Newell, 1983). 

• The model should employ the most effective 
strategy for a given environment unless compelling 
evidence from human usage suggests otherwise. 
Given the large set of navigation strategies that can 
operate within reasonable physical and cognitive 
limitations, we examine a strategy that is most 
effective within known cognitive constraints. This 
design constraint is the rationality principle (see 
Card, Moran & Newell, 1983), which assumes that 
human cognition is generally rational. 

Representing a Web Site 
Our model interacts with a simplified, abstract 
representation of a Web browser and a Web site.  Each 
site has one root node (i.e. the top page) consisting of a 
list of labeled links, each leading to a separate child 
page. For a shallow, one-level site, child pages are 
terminal pages, one of which contains the target 
information that the user is seeking.  For deeper, multi-
level sites, a child page consists of a list of links, each 
leading to child pages at the next level.  The bottom 
level of all our sites consists exclusively of terminal 
pages, one of which is the target page. Our examples 
are balanced trees (i.e. pages at the same level have the 
same number of links) since we generally compare our 
results to studies that use balanced tree structures (e.g. 
Miller, 1981 and Larson & Czerwinski, 1998). 
However, our representation does not prevent us from 
running simulations on unbalanced trees, or even on 
structures involving multiple links to the same page and 
links back to parent pages. 

When navigating through a site, a user must perceive 
link labels and gauge their relevance to the targeted 
information. Rather than model the complex and 
interesting process of link evaluation, we fix a number 
for each link, which represents the user's immediately 
perceived likelihood that the target will be found by 
pursuing this link. This simplification allows us to 
easily investigate a range of numerical relationships 
between the link label and the target information.  

In an ideal situation, after evaluating a link, the user 
would know with certainty whether to select and pursue 
that link. Figure 1 represents a site with such links. 
Each link (underlined number) on each Web page is 
understood without ambiguity. The user need only 
follow the links labeled with a 1.0 to find the targeted 
page with no backtracking. We describe the architecture 
of this site as having a two-tiered, 4x2 structure. 

Figure 1 Site with sure path 
 

More often, the user is less certain of which link to 
select. The links in the site shown in Figure 2 are more 
ambiguous. For the top page, the most likely link has a 
perceived likelihood of only .7, thus indicating that the 
user is less certain that this link will lead to the targeted 
item. In some cases, a user strategy that merely follows 
the most likely links would directly lead to the target.  
However, this figure shows a site where the user would 
find the target under what he or she perceives as a less 
plausible sequence of link selections (the target is under 
a likelihood value of 0.2 instead of the 0.5 value). In 
this way it is possible to represent sites that differ 
widely in strength of association between link label and 
target information.  

 

Figure 2 Site with ambiguous labels  

Modeling the Browser and User Actions  
Byrne et al. (1999) found that selecting a link and 
pressing the Back button accounted for over 80% of the 
actions used for going to a new page. Consequently, we 
focused our modeling on the component actions 
underlying these behaviors. These include: 

• Selecting a link 
• Pressing the Back Button 



  

• Attending to and identifying a new page 
• Checking a link and evaluating its likelihood 

To further simplify our model, attending to and 
identifying a new page can be folded into the actions of 
Selecting a Link and Pressing the Back Button since 
this action only occurs when either of these actions 
occur.  Our revised model has three primitive actions: 

• Selecting a link (and attending to and identifying a 
new page) 

• Pressing the Back Button (and attending to and 
identifying a new page) 

• Checking a link and evaluating its likelihood 

Because of physical and cognitive limitations, only 
one of these actions can be performed at any one time.  
Fixed times are assigned to each action to account for 
its duration during a simulation. The model also 
simulates changing the color of a link when it is 
selected so that the modeled user can “perceive” 
whether the page under this link was previously visited. 

Modeling Navigation Strategies 
The model navigates a Web site by serially executing 
these three primitive actions, meaning that links are 
sequentially evaluated. Serial evaluation is motivated 
by evidence that the human user has a single unique 
focus of attention that must be directed at the link for 
this decision.  

A user could employ any of a large set of possible 
strategies for link selection that vary in sophistication. 
Two examples include: 
• The threshold strategy: The user immediately 

selects and pursues any link whose probability of 
success exceeds threshold.  

• The comparison strategy: The user first evaluates 
a set of links and then selects the most likely of the 
set. 

The threshold strategy is most effective if the first 
likely link actually leads to the targeted object. The 
comparison strategy is more effective only if a likely 
link is followed by an even more likely link that 
actually leads to the targeted item. Both represent 
simple yet effective strategies. We chose to begin by 
examining the threshold strategy on the principle that it 
requires the fewest computational (cognitive) resources.   

The model is neutral as to the actual order in which 
the links are evaluated.  The design and layout of a page 
principally determine which links a user would evaluate 
first.  Any understanding of how page layout and design 
affect the user's focus could eventually be incorporated 
into the model. For our purpose of investigating site 
structure, the model simply establishes a fixed order in 
which links are evaluated for each run. To avoid 
systematic order biases, our simulations randomly place 

the targeted item at a different terminal page for each 
run. 

With the appearance of a new page, the model's 
threshold strategy first attends to the page, which, if it is 
a terminal page, includes checking if it contains the 
target information. If it does not, the model sequentially 
scans the links on a page selecting any link whose 
likelihood is equal to or above a fixed threshold (0.5 in 
the simulations reported below).  When a page appears 
by selecting a link, the process of checking and 
scanning the page is repeated. 

Once the model detects no unselected links above the 
threshold value, it returns to the parent page by pressing 
the Back button and continues scanning links on the 
parent page starting at the last selected link. It does not 
scan links it has already evaluated. Determining the last 
link selected places no demands on memory since the 
last selected link is easily detected by its color, and 
many browsers return the user to the location of the last 
selected link. 

Selecting the most probable link will often lead to the 
targeted item. However, sometimes the targeted item 
lies behind ostensibly imp robable links and, after some 
initial failures, human users must start selecting links 
even if the link labels indicate that they will probably 
not lead to the targeted item. An earlier version of our 
model (Miller & Remington, 2000a) started selecting 
improbable links only after completing a full traversal 
of the site. We will call this the traverse-first strategy. 
However, a more effective strategy may 
opportunistically select improbable links at a lower tier 
immediately after trying the more probable links and 
before returning to a higher tier in the site. We call this 
the opportunistic strategy. 

 Figure 2 illustrates how the opportunistic strategy 
may be more effective.  The model scans across the top 
page and selects the second link (0.7).  On the second 
level it selects the first link it encounters (0.5). After 
discovering that this is not the targeted item, it returns 
to the page on the second level. However, before 
returning to the top level, it temporarily reduces its 
threshold to 0.1, selects the second link (0.2) and finds 
the target on the new page. Had the targeted item been 
elsewhere in the site, the strategy backs up twice, 
returning to the top-level and resetting the threshold to 
the previous value (0.5). 

The opportunistic strategy is more efficient than the 
traverse-first strategy.  First, it explores less probable 
links when the cost of doing so is minimal, that is, 
when the less probable links are immediately available. 
Secondly, it implicitly takes into account the positive 
evaluation of the parent link, which had indicated a 
high likelihood that the targeted item is under a link on 
the current page. 



  

The opportunistic strategy is not efficient if employed 
in cases where all the links on a page have very low 
likelihood values (defined as less than 0.1). In such 
cases our model assumes that the user has sufficient 
memory to know that rescanning the page would be 
futile, and returns to the parent page. This memory of 
knowing that the page has nothing worthwhile only 
lasts as long as the model remains on the current page. 
Thus, if the model leaves the page and then returns to 
this same page, the model must assume that the page 
may be worth rescanning and the opportunistic strategy 
is employed. This qualification is also consistent with 
our design principles in that it contributes to an 
effective strategy while minimizing memory resources. 

While generally consistent with our design principle 
of preferring strategies that place minimal demands on 
memory, the opportunistic strategy does require state 
values to be held in memory. If opportunistic search 
fails to find the targeted item, the model must reset the 
link selection threshold to the previous value upon 
returning to the upper level.  Resetting a value requires 
storing the old value before reducing it. Storing and 
recalling one or two values reasonably fall within the 
limits of human cognition, but storing and recalling an 
arbitrary number of values does not.  For this reason, 
our model allows us to fix a limit on the number of 
previous threshold values it can recall.  We initially set 
this number to one, but later in this paper we will 
explore the impact of being able to store and recall 
additional values. 

Part of our reason for adopting the opportunistic 
strategy in place of the traverse-first strategy was our 
examination of usage logs for a site search task. We 
conducted a pilot study using a Web site whose 
structure mirrored a popular department store’s 
organization. Preliminary results suggest that users 
frequently select ostensibly less probable links before 
backtracking to other possibilities (see Miller & 
Remington, 2000b, for more details and an example). 
We plan future studies that could further identify usages 
of this strategy. 

Simulation Parameters  
Our previous work established plausible time constants 
for link evaluation and link selection (Miller & 
Remington, 2000a). We compared the model and 
results from hierarchical menu selection studies and 
obtained good fits with link evaluation costs set to 250 
ms and link selection costs set to 500 ms. The use of 
time constants is well established (e.g., Card, Moran, & 
Newell, 1983) and these values are consistent those 
previous estimates. 

To assign likelihood factors to the links, the ideal link 
values (1, 0) are perturbed with noise according to the 
formula below: 

g * n + v 
where g is a number chosen randomly from a standard 
normal gaussian distribution (mean=0, stdev=1); n is 
the noise factor multiplier (equivalent to increasing the 
variance of the normal distribution); and v is the 
original likelihood value (0 or 1). Since this formula 
occasionally produces a number outside the range from 
zero to one, our algorithm may repeatedly invoke the 
formula for a link until it generates a number in this 
range. The noise factor n thus models the level of label 
ambiguity in the site. Higher levels of ambiguity lead to 
more frequent backtracking, which may be more 
prominent in Web search than menu search. 

Simulations 
To further evaluate the model’s design decisions, we 
compare its performance to the Web navigation results 
of Larson and Czerwinski (1998). They studied users 
navigating two-tiered (16x32 and 32x16) and three-
tiered (8x8x8) site architectures that were otherwise 
comparable. Participants took significantly longer to 
find items in the three-tiered site (58 seconds on 
average) than the two-tiered sites (36 seconds for the 
16x32 site and 46 seconds for the 32x16 site).  

Simulations of the Opportunistic Strategy 
For our simulations using the opportunistic strategy, 
sites were constructed as described above, except that 
the noise was not applied to the bottom level, which 
leads to the terminal pages. This reflects the fact the 
participants in Larson & Czerwinski could clearly tell 
whether the link's label matched the text of the targeted 
item. 

For each site architecture (8x8x8, 16x32, and 32x16) 
10,000 simulations were run using the following time 
costs: 250ms for evaluating a link, 500ms for selecting 
a link, and 500ms for return to the previous page 
(pressing the back button). Following Larson and 
Czerwinski (1998), any run lasting more than 300 
seconds was  coded as lasting 300 seconds. 

Figure 3 shows the calculated mean times of the 
simulation runs. Not surprisingly, the time needed to 
find a target increased with link ambiguity. What is 
more interesting is how link ambiguity interacts with 
site structure. The 8x8x8 architecture produced slightly 
faster times at low levels of noise but substantially 
slower times at noise levels above 0.2.  At these higher 
noise levels the results are consistent with the human 
users.  At noise levels of 0.4 and higher, simulated 
times were faster with the 16x32 architecture than the 
32x16 architecture.  This difference was also noted in 
the study with human users, albeit not reported as 
statistically significant. 

At a noise level of 0.4, the simulation results closely 
match the human results in absolute terms: 62s 



  

(compare to 58s for humans) for 8x8x8, 43s (compare 
to 46s) for 32x16, and 35s (compare to 36s).  It appears 
that the 0.4 serves a good parameter estimate describing 
the amount of label ambiguity in the sites used by 
Larson and Czerwinski. 

 
Figure 3 Simulating threshold and opportunistic 

strategies  

Impact of Time Costs 
While changing the time costs (250ms for link 
evaluations and 500ms for link selection and returning 
to the previous page) will affect absolute simulation 
times, it is less clear if different time costs will change 
which architecture produces the fastest times. For 
example, one may wonder if the 8x8x8 architectures 
would still produce the slowest times if the link 
selection cost were double, which may occur for a 
slower internet connection. 

To explore the impact of time costs, we look at the 
number of link evaluations, link selections and page 
returns.  If independent counts of these actions correlate 
with the aggregate simulation time, we conclude that 
varying the time costs have minimal impact on the 
relative performance of the different architectures.  For 
example, if the 8x8x8 requires more evaluations, more 
selections and more returns than the other architectures, 
we know that 8x8x8 will produce slower search times 
regardless of the time costs. 

Looking at the number of evaluations, selections and 
returns, we see that the 8x8x8 architecture required 
more of each action (173, 17, and 19 respectively) at 
the 0.4 noise level than the 16x32 (125, 3, and 5) and 
the 32x16 (134, 6, and 8). Further experimentation 
reveals that this relationship holds across all but the 
lowest noise levels (0.2 and less). We conclude that 
changing the time costs have no effect on the relative 
comparisons provided that the noise level is at least 0.3. 

Impact of Memory Capacity 
Recall that the opportunistic strategy requires the model 
to store and retrieve threshold values so that the 
previous threshold can be reinstated upon returning to a 
parent page. So far, our simulations have assumed that 
only one threshold value can be restored. Thus, if the 
model returned to the top level of a three-tier 
architecture, it would no longer be able to recall the 
previous threshold and would simply leave the 
threshold at its current state. 

Because this limited memory capacity only hinders 
performance in a three-tiered site (e.g. 8x8x8), we ran 
simulations where the memory capacity could hold the 
additional threshold value so that the previous value 
could be reinstated when navigating through a three-
tiered site. Figure 4 shows the results using the same 
scale as Figure 3. While we see that the extra memory 
capacity improves the performance of the 8x8x8 
architecture, its navigation is still slower than the two-
tiered architectures. 

 

Figure 4 Results using a larger memory capacity 

Discussion 
We have shown that a simple model of a Web user can 
provide an excellent account of user behavior and 
reveal important factors underlying Web usage. The 
model suggests that link ambiguity interacts with the 
depth of information architecture to determine site 
navigation time. As link amb iguity decreases, better 
performance is found from architectures with deep 
structures that minimize the number of links searched. 
As link ambiguity increases, the model shows 
performance degradations for architectures with deeper 
structures.  The same pattern is characteristic of human 
users. However, the preference for shallow hierarchies 
is observed only with sufficient ambiguity in the link 



  

labels and with no ambiguity at the bottom level. Thus, 
the results of Larson and Czerwinski (1998) may not 
generalize to large numbers of real Web pages with 
ambiguity at all levels.  

As for Web search strategies, combining threshold-
based selection with opportunistic search strategies 
produced simulated times that are very close to 
observed times for 0.4 noise level. This also 
corresponds to the behavior of several users searching a 
department store site in the pilot study mentioned 
above. We recognize the need for converging methods 
to independently determine link ambiguity and are 
exploring theoretical and empirical methods of 
estimating actual values. 

To make time predictions, our model assumes 
plausible time costs for link evaluation, link selection 
and returning to the previous page. By noting the actual 
counts for these operations, our simulations help us 
understand what happens when the link selection time 
is significantly longer, as would be the case for a slow 
internet connection. We found, however, that the time 
costs have no effect on the relative comparisons 
provided that the noise factor is at least 0.3. This 
suggests that a slower internet connection does not 
impact the relative advantage of shallow architectures 
when significant link ambiguity is present, at least for 
the case where no noise is present at the bottom level. 

Our simulations also aid our understanding of how 
human memory impacts effective navigation. 
Increasing the model’s memory capacity improved 
performance for the deep (8x8x8) structure but left the 
other two architectures largely unaffected. This 
suggests that memory is more useful in keeping track of 
site architecture than in searching within a page. Since 
searching a page is facilitated by visual cues (e.g., 
changes in the color of previously selected links) users 
can avoid reliance on memory. Visual cues are typically 
not present to remind users of the names and locations 
of previous links. The interaction of structure with 
memory capacity indicates further that simple heuristics 
for representing capacity are insufficient to capture 
memory phenomena of importance. Instead, it is 
necessary to examine how the structure of information 
sites provides aids to memory. Our analysis contrasts 
with previous advice suggesting that the number of 
links per page should be limited to 10 (Rosenfeld & 
Morville, 1998) (see Larson & Czerwinski, 1998, for a 
discussion based on experimental results).  

We have shown that a simple model of a user 
interacting with a simplified Web site can reveal 
important factors that affect usability and can support 
the investigation of the interactions between those 
factors across a wide range of conditions. What we 
have presented is not a comprehensive model of Web 
navigation. No attempt is made to account for how 
people scan a page, or evaluate link labels or images.  

By abstracting these processes, and representing only 
their functionality, the model focuses  on understanding 
how information architecture affects the navigation 
process. As an approximation of user navigation, the 
model can account for a range of human behaviors by 
varying likelihood factors in its site representations. We 
have shown that the model provides a good 
approximation of the behavior of the common (modal) 
user. By varying parameters it should be possible to 
extend the model to account for alternate strategies.  
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