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Abstract

Evolutionary algorithms are playing an increasingly
important role as search methods in cognitive science
domains. In this study, methodological issues in the use
of evolutionary algorithms were investigated via
simulations in which procedures were systematically
varied to modify the selection pressures on populations
of evolving agents.  Traditional roulette wheel,
tournament, and variations of these selection algorithms
were compared on the “needle-in-a-haystack” problem
developed by Hinton and Nowlan in their 1987 study of
the Baldwin effect.  The task is an important one for
cognitive science, as it demonstrates the power of
learning as a local search technique in smoothing a
fitness landscape that lacks gradient information.  One
aspect that has continued to foster interest in the problem
is the observation of residual learning ability in
simulated populations even after long periods of time.

Effective evolutionary algorithms balance their search
effort between broad exploration of the search space and
in-depth exploitation of promising solutions already
found. Issues discussed include the differential effects of
rank and proportional selection, the tradeoff between
migration of populations towards good solutions and
maintenance of diversity, and the development of
measures that illustrate how each selection algorithm
affects the search process over generations. We show
that both roulette wheel and tournament algorithms can
be modified to appropriately balance search between
exploration and exploitation, and effectively eliminate
residual learning in this problem.

Introduction: EC and Cognitive Science
Evolutionary computation (EC) is increasingly used in
cognitive science, both for evolving cognitive models
and for modeling evolutionary processes.

Many algorithms use evolutionary search in one form
or another. No single search algorithm will be optimal
for all tasks (a thesis colloquially known as “no free
lunch”, Wolpert & Macready, 1996). In any simulation
study, characteristics of the task need to be taken into
account in the selection of algorithms. However, to
many cognitive science researchers it is not clear which
aspects of tasks are important in the design of a search
process, and what properties of evolutionary search

algorithms need to be taken into account to select an
appropriate design.

This study is part of a wider program of research
whose goal is to enhance the effective use of
evolutionary computation techniques in cognitive
science domains. This program involves assessing the
performance of popular evolutionary algorithms on
tasks of interest to cognitive scientists.

Current areas in cognitive science that are utilizing
EC methods include the direct modeling of evolutionary
processes, such as the role of learning in evolution,
learning as a local search technique  in a genetic
algorithm, the evolution of modularity, the evolution of
cooperation, and the evolution and learnability of
language (e.g., see the biennial “Evolution of
Language” conferences, or the Evolutionary
Computation “Special Issue on EC and Cognitive
Science”,  Wiles & Hallinan, 2001).

Other domains use evolutionary algorithms for
optimization, for example, testing theories of infant
development; modeling populations of individuals
engaged in cognitive tasks; testing outcomes following
damage in neural network models; and exploring the
range of behaviors in a dynamic model of an artificial
language learning task.

In all of the cognitive science domains mentioned,
evolutionary algorithms have been tested on specific
problems, but little work has been done at a
methodological level to characterize the nature of the
tasks per se, and the way in which they interact with the
evolutionary algorithms chosen.  Many factors affect
the performance of evolutionary algorithms, including
the choice of fitness function, representation of the
genome, population size, selection technique, and
genetic operators.

Learning and EC
For this study, the area of interest is the interaction of
learning and evolution known as the Baldwin effect,
first formalized as a computational problem by Hinton
and Nowlan (1987). Hinton and Nowlan’s simulation of
the Baldwin effect provided insight into how learning
can guide evolution within a Darwinian, rather than a
Lamarkian evolutionary framework.



In Hinton and Nowlan’s model, each individual
consisted of a bit string representing a simple neural
network with twenty connections, which must be set
correctly via either learning or evolution. A network
that achieves the correct settings has a fitness dependant
upon the time required to achieve the correct settings,
while all incorrect networks have equal, minimal
fitness. This task has a single fitness peak, which is
surrounded by a perfectly flat fitness landscape, making
it a classic needle-in-a-haystack problem (henceforth
referred to as the haystack problem).  The task is
analogous to finding the components of a module in
which no partial credit is given for partial solutions.
Issues of modular design were popularized by Dawkins
in the Blind Watchmaker (Dawkins, 1986), and are
particularly relevant to understanding the evolution of
complex cognitive systems.

The haystack task requires exhaustive search if
genetic operators alone are used (crossover and
mutation).  However, if each agent modeled in the
search population is allowed to perform some local
searching, then the task can be solved by a much
smaller population.

Hinton and Nowlan used a population size set to
approximately the square root of the size of the search
space, with each agent able to search on average a
portion of the search space also equal to the square root
of the size of the space.  The choice of population size
and local search space balanced the need for a
population to have sufficient diversity to cover the
space, and sufficient flexibility to find the “needle”
(maximum fitness) in almost every trial.

Computationally, each individual is implemented as a
string of twenty “genes”, each of which may be either
1, 0, or ? (question mark). The ? represents a learnable
gene. The individual learns by guessing 0 or 1 with a
probability of 0.5. The target pattern is a string of
twenty 1s. The number of guesses required to achieve
this target is recorded and used to calculate the
individual’s fitness.  The next generation is created by
repeatedly selecting two parents, to produce pairs of
new individuals. Parents are probabilistically selected
proportional to the individual’s fitness relative to the
total population fitness.

Hinton and Nowlan (1987) demonstrated that under
these conditions, the ability to learn, represented by ?s,
was replaced by appropriate instincts, represented by
1s. The number of 1s rose from an initial 25% of alleles
in the population to 50-80% after 50 generations, with
the remainder of the alleles ?s. Non-target alleles,
represented by 0s, disappeared from the population.

An interesting feature of Hinton and Nowlan’s
simulation is the persistence of learnable genes in the
population once it has stabilized. Hinton and Nowlan
suggested that there is very little selective pressure in
favor of genetically specifying the last few connections,

since learning can occur in very few guesses. Several
researchers have studied the phenomena of the residual
question marks in the haystack problem and identified a
variety of factors, including selection pressure and drift
as significant factors in the results (Belew, 1989,
Harvey, 1993).

In a previous study, we analyzed multiple simulations
of the haystack problem to identify the characteristics
of two classic selection algorithms (one fitness
proportional and the other rank based) with respect to
exploitation and exploration of the fitness landscape
(Wiles et al., in press). These simulations demonstrated
that fitness proportional  selection finds good solutions
and the average fitness of a population rises quickly,
but at high fitness levels the population drifts gradually
to homogeneity (all the alleles in one position on the
chromosome are identical for all individuals in a
population). Residual learning is frequently a result of
an interaction between a pseudo-founder effect
(dominance by one early successful solution) and drift
to homogeneity at one or more of the genes.  Selection
by rank has the opposite effect, with populations
drifting initially, until a critical mass find good
solutions (or until an allele becomes homogeneous in
0s, resulting in an unsuccessful trial).  Of the successful
trials, at high fitness levels, populations converge to
homogeneity based on fitness, rather than drift. By
comparing fitness level and number of homogeneous
genes to generation number, the relative effects of drift
and selection pressure can be monitored during
evolution.

The analyses in our previous study provide tools to
understand how selection pressures are working during
trials.  The two techniques produce very different
characteristic performance. Fitness proportional
selection has initially fast fitness increases followed by
slow convergence, whereas rank-based selection has
initially slow and erratic fitness increases followed by
fast convergence.

For the haystack problem, neither of these selection
methods can be considered optimal in balancing the
exploration of possible solutions with the exploitation
of good solutions.  Fitness proportional selection has
too strong an exploitation of early successful solutions,
leading to a pseudo-founder effect, and insufficient
pressure to optimize when most of the population have
good solutions. In contrast, rank-based selection has
insufficient exploitation of its good early solutions,
allowing drift to reduce the diversity of alleles available
before fitness pressures shape the search space.

Method
In this study, we report three sets of simulations.  The
first set replicates our previous work on the classic
fitness proportional  (roulette wheel) and stochastic



rank-based (tournament) methods and is reproduced
here for comparison.

The second set of simulations was designed to
investigate other selection algorithms on the haystack
task, and also to test whether the analysis would be
useful for their evaluation. For this set, we designed two
additional algorithms to combine the search
characteristics of fitness proportional and rank-based
selection. The first operator was designed to exhibit fast
fitness rises and fast convergence, and the second to
exhibit slow fitness rises and slow convergence.

The third set of simulations directly addressed the
problems inherent in fitness proportional and rank-
based selection using modifications suggested in the
literature. To modify fitness proportional selection, the
expected number of offspring for any one individual
was scaled in proportion to its deviation from the mean
fitnesses of other individuals, which balances the
selection pressure over a trial.  To modify rank-based
selection, the two fittest individuals (replacing the
offspring of one pair of parents) were copied to the next
generation, thus preserving good solutions once found.
In the next section, the algorithms are described, and
then the results summarized and presented together for
ease of comparison.

Simulation details for the haystack problem
Hinton and Nowlan (1987) modelled the Baldwin

Effect using a simple genetic algorithm, with no
mutation and a crossover value of 1.0; each pair of
parents undergoes crossover once during each
reproduction event. The next generation is created by
repeatedly selecting two parents for each pair of new
individuals. The probability of selecting an individual
as a parent is proportional to its fitness divided by the
total population fitness.  The fitness, f, of an individual
is calculated using the recorded number of guesses, g,
taken to find the target:
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where G is the maximum number of guesses allowed
and L is the length of the chromosome. In Hinton and
Nowlan’s model, G = 1000, L = 20, and the population
size, N = 1000.

We implemented Hinton and Nowlan’s model, and as
in our previous work, selection of each parent was
implemented using a fitness proportional algorithm.
After selecting two parents, a crossover point was
chosen at random, and two new individuals were then
created. Parameters were set similar to Hinton and
Nowlan (1987), with initial proportions of 1, 0 and ?
alleles set to 0.25, 0.25 and 0.50 respectively. A minor
change from their parameters was setting both
population size and maximum number of guesses to

1024 instead of 1000. All trials were run until the
population converged (homogeneous in all genes).

For each selection method, 100 trials were performed.
We report the proportion of trials that successfully
eliminated all zeros from the population, the average
number of residual question marks at the end of each
trial, and the average number of generations to
homogeneity (see Table 1). The average fitness
pressures in the early and late stages of trials were
calculated as the average number of generations until
the fitness rose to 50% of the maximum (Stage 1) and
from the midpoint to final convergence (Stage 2). By
defining these values, the relative selection pressures
early and late in a run can be compared.  The average
fitness of the population when the first gene in each
trial became homogeneous was also calculated (see
Table 1, column 4). This measure shows the potential
exploration available to the algorithm.

Set 1: Original algorithms
Traditional roulette wheel (fitness proportional)
selection: The fitness of an individual is determined
using equation (1) given above, and the selection
procedure for two parents is as described for Hinton and
Nowlan’s simulations.

Tournament (rank based) selection:  In this algorithm
two candidates are selected at random from the parent
population, and the individual with the higher fitness
becomes a parent. The probability of being selected as a
parent for the next generation therefore depends on the
relative rank of an individual within the population,
rather than its proportional fitness. Under tournament
selection, the reduced fitness differential later in
evolution does not change the ranking of individuals
and selection pressure is maintained as long as there are
different fitnesses within the population.

Set  2: Modified algorithms
Roulette with ranking: In order to produce a selection
strategy that should both begin and end rapidly, ranking
was added to roulette wheel selection.  This algorithm
has also been called stochastic tournament (attributed to
Wetzel by Goldberg, 1989). Continued pressure after
the initial fast start means that selection will force the
population to converge, rather than simply drifting to
homogeneity.

To select each parent, two candidates are chosen
using roulette wheel selection.  The fittest of these two
individuals becomes one parent, as in tournament
selection. A second parent is selected in the same way.
The fitness-proportional selection of candidates enables
very successful individuals to have many offspring, in a
similar manner to roulette wheel selection. The addition
of a tournament between two candidates ensures that as
fitness differentials decrease later in trials, the selection



pressures continue.  The strategy is identical in all other
ways to the others that have been used previously.

Probabilistic tournament: The second variation is a
strategy that is designed to start slowly and end slowly.
For this strategy, tournament selection was modified to
include the proportional elements of roulette wheel
strategy.

For each parent, two candidates are chosen randomly
from the parent population.  The one that will become a
parent is chosen using proportional selection based on
the fitness of these two individuals.  That is, the one
that is fitter will be more likely to be chosen than the
less fit individual, but both still have a chance of being
a parent.  The selection of candidates with equal
probability means that each individual, even the fittest
one, can expect on average to contribute genes to a
maximum of four offspring.  The second parent is
chosen in the same way, and reproduction continues as
in the other selection strategies.

Set  3: Optimized algorithms
Sigma Scaled Roulette: Amongst the known problems

with roulette wheel selection is the variable selection
pressure between early and late stages in a trial and the
premature convergence of populations with inadequate
exploration of the search space (Mitchell, 1996). A
variety of modifications of roulette wheel selection
have been proposed. One such mechanism is to balance
the selection pressures evenly throughout a trial. Sigma
scaled roulette is a renormalized version of roulette
wheel. We use the description given by Mitchell (1986,
who credits an early unpublished manuscript of Forrest
from 1985).  The expected number of offspring, E, is
calculated from the mean and standard deviation of the
fitnesses of the population:
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where f(i) is the fitness of individual i, m is the mean
fitness of the population and σ is the standard deviation.
This means that an individual with a fitness equal to the
mean will gain a slice of the roulette wheel proportional
to one unit. An individual with fitness one standard
deviation above the mean will (on average) gain a slice
proportional to 1.5 units, and one with fitness one
standard deviation below will gain a slice proportional
to 0.5 units. If the expected value for an individual is
less than 0.1, then the slice is set to 0.1. The total size of
the wheel is the sum of the slices of all individuals in
the population. The expected number of offspring is
proportional to the size of the slice, with corrections for
the very small slices. For each pair of parents selected,
two offspring are produced. Using the standard

deviation of the fitness maintains a constant selection
pressure in the population throughout a trial.

Elite tournament: The slow initial period of all trials
during tournament selection is a known problem.  Even
when a good solution is found, recombination of
parents results in disruption of the solution and drift
(rather than selection) can lead to homogeneity in one
or more of the genes. Many researchers use elitism to
preserve good solutions (first introduced in the 1970s
by de Jong, according to Mitchell, 1996).  In this
strategy, one or more individuals with the highest
fitnesses are copied to the next generation unchanged.
In our implementation, elite tournament is identical to
tournament selection, except that the individuals with
the two highest fitnesses are copied to the next
generation.

Results and Discussion
The results from all three sets of simulations have been
collated in Table 1, which shows the performance of
each selection technique, the average number of
residual question marks, and the number of generations
to convergence (i.e., all genes become homogeneous)
over 100 trials. Figures 1-3 show the selection pressures
during early and late stages over 10 trials. Stage 1 is the
average number of generations taken to reach a fitness
value of 10 (i.e., 50% of the maximum fitness), the
point at which fitness increases most rapidly in this
task.  Low values (few generations) indicate high initial
selection pressure and high values indicate low
selection pressure. Stage 2 is the average number of
generations from this level of fitness to convergence of
the population and indicates the selection pressure after
the initial increase in fitness. The mean population
fitness when the first allele becomes homogeneous
generally indicates how good the solution will be.  If an
allele is homogeneous before the population is very fit,
the solution tends to be poor.

The simulations in Set 1 (roulette wheel and
tournament) provide a benchmark for the later studies.
Performance in these simulations was consistent with
our previous results (Wiles et al. in press). Using
roulette wheel selection, all trials eliminated zeros from
the population, and at convergence, individuals had an
average of 1.4 residual question marks (stdev. 0.9). The
change in selection pressure is revealed by the average
number of generations spent in Stage 1 (10) versus
Stage 2 (1437). See Table 1 for the means and standard
deviations of all results.

Using tournament selection, 85/100 trials eliminated
all zeros. In the successful trials, individuals retained an
average of 1.2 residual question marks, with a much
higher variance (stdev. 2.2). The average time spent in
Stages 1 and 2 is reversed in this case, with 185
generations in Stage 1 and 23 generations in Stage 2.



The interaction between Stages 1 and 2 for roulette
wheel and tournament selection is clear in Figure 1.

Set 1: Original Algorithms
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F
igure 1. Time to convergence in Set 1, the original roulette
wheel and tournament selection algorithms.  Note that the y-
axis is logarithmic.  The algorithms show clear differences in
behaviour, with roulette wheel faster in Stage 1, and
tournament faster in Stage 2.

Set 2: Modified Algorithms
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Figure 2. Time to convergence in Set 2, the modified
algorithms.  The Stages 1 and 2 components from  Set 1 (see
Fig 1), have been recombined as intended, to produce one
algorithm in which both Stages 1 and 2 are fast (roulette with
ranking), and the other algorithm in which both Stages 1 and
2 are slow (probabilistic tournament). Note that neither of
these algorithms eliminate residual question marks.

In Set 2, the number of successful trials and residual
question marks are similar to those from Set 1, but the
time spent in Stages 1 and 2 differed markedly, as
expected. Roulette wheel with ranking was fast in both
stages (averages 7.6 and 33 generations respectively),
and stochastic tournament was slow in both stages
(average 249 and 1624 generations respectively, see
Figure 2).

In Set 3, the original roulette and tournament selection
procedures were modified to address their major known
weaknesses, and both showed considerable
improvement in optimization performance (as
evidenced by the number of residual question marks).
All trials eliminated zeros from the population, the time
to convergence was short and very few residual
question marks remained (an average of 0.02 in sigma
scaled roulette and 0.06 in elite tournament).

Set 3: Optimized Algorithms

1

10

100

1000

10000

Stage 1 Stage 2

N
u

m
b

er
 o

f 
G

en
er

at
io

n
s

Sigma Scaled Roulette Elite Tournament

Figure 3. Time to convergence in Set 3, the optimized
algorithms.  Both sigma scaled roulette and elite tournament
eliminate virtually all residual question marks and are much
faster than the algorithms in Sets 1 and 2 (cf. Figs 1 and 2).

The average time spent in Stage 1 and Stage 2 was
also much more balanced (16 and 42 generations
respectively in sigma scaled roulette and 56 and 19
generations respectively in elite tournament, see Figure
3).

Premature convergence is a known problem for these
evolutionary algorithms. Tracking progress towards
homogeneity can therefore provide valuable
information. The average fitness at which the first gene
becomes homogeneous provides a quantifiable measure
of diversity at a significant point in a simulation.  This
fitness value was recorded for each selection regime
(see Table 1, column 5). Higher values (maximum is
20) indicate that higher levels of diversity are
maintained in the population. For problems in which
hitchhiking genes (sub-optimal genes that are carried by
pseudo-founders in a population) are liable to cause
problems such as in the haystack problem, this measure
is a good indicator of potential problems with
premature convergence. The tournament-based
algorithms that have trials that do not eliminate all zeros
show the lowest values with average population
fitnesses at the first homogeneous alleles of 9.1 and 6.0
for Sets 1 and 2 respectively. Values for the
corresponding roulette wheel-based algorithms are
higher (16.7 and 13.6 respectively), but are not optimal.
The best algorithms, those in Set 3 have the highest
values (19.3 for sigma-scaled roulette and 19.9 for elite
tournament) indicating that none of the trials suffered
from premature convergence.

The combination of relatively balanced fitness
pressures in Stages 1 and 2, short times to convergence,
and high fitness before diversity is reduced indicate that
both selection algorithms in Set 3 are well-adapted to
the haystack task.

Conclusions
One specific conclusion from these experiments is that
residual learning is not an inherent aspect of the
Baldwin effect. Rather, it is a consequence of the way



the fitness landscape is searched, and the application of
selection pressures at different stages.  The
methodological studies presented in this paper are one
way to explore such issues.  Further work is needed to
tie these results to biologically-plausible learning
scenarios, but that is beyond the scope of this study.

At a more general level, the simulations show that the
haystack task is one for which tailoring of the algorithm
makes a qualitative difference to the behaviors
observed. Specific issues addressed in this study
concern the characteristics of the algorithms and the
nature of the landscape.

The simulations of the original algorithms illustrate
properties such as premature convergence in roulette
wheel and the dangers of early homogeneity in one or
more genes due to drift in tournament selection. With
appropriate modifications, the optimized algorithms
achieve a balance between exploration and exploitation,
resulting in convergence to good solutions. Residual
learning can be almost eliminated, and performance on
the haystack problem can be near optimal.

These results illustrate the need for a characterization
of task types in cognitive science, and a characterization
of evolutionary algorithms and their performance on
these tasks. Such a classification would facilitate the
tailoring of algorithms to particular problems, and has
the potential to significantly reduce artifacts due to
implementation details.
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