Artin glueings of frames and toposes as semidirect products

Peter Faul
University of Cambridge, Cambridge, United Kingdom
peter@faul.io

Abstract

An Artin glueing [2] of two frames H and N is a frame G in which H and N are included as sublocales, with H open and N its closed complement. Artin glueings are not unique, but are determined by finite-meet preserving maps $f: H \to N$. This notion categorifies to the setting of toposes. The details of these constructions can be found in [1].

Compare this to a semidirect product G of two groups N and H. Both N and H are subgroups of G, with N being normal. They satisfy that $N \cap H = \{e\}$ and $NH = G$, which if thought of in terms of the lattice of subobjects of G, says that N and H are complements. Furthermore, just as with the Artin glueing, semidirect products of groups are not unique and are similarly determined by a map $f: H \to \text{Aut}(N)$.

In order to make this connection precise we examine a link to extension problems. It is well known that the split extensions between any two groups N and H are precisely the semidirect products of N and H. We show that Artin glueings of frames are the solutions to a natural extension problem in the category RFrm of frames with finite-meet preserving maps, and that Artin glueings of toposes are the solutions to a natural extension problem in the category RTopos of toposes with finite-limit preserving maps.

Talking about extensions requires appropriate notions of kernels and cokernels. We say a chain $N \xrightarrow{m} G \xrightarrow{e} H$ is an extension when m is the kernel of e and e is the cokernel of m. In the case of groups it is the split extensions that are important and these satisfy the property that if s is a splitting of e, then the images of m and s together generate G. This is not so in RFrm and RTopos and will only occur when s is the right adjoint of e. This motivates restricting to adjoint split extensions.

We show that there is a natural way to view Artin glueings of frames and toposes as extensions and that every extension $N \xrightarrow{m} G \xrightarrow{e} H$ can be thought of as the glueing of H and N along $m^* e_*$.

References
