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1 Introduction

Topos theory originated from the desire to compute the cohomology of schemes
in algebraic geometry. Only after that it was noticed that toposes carry a rich
structure providing an internal language and that they “are logical theories”
just as much as they “are spaces”.

The theory of classifying toposes was started in [5], when the notion of a
geometric theory was not developed yet. The initial insight being that, sim-
ilarly to classifying spaces in algebraic topology, some structures in toposes
correspond to geometric morphisms into a special classifying topos for that
sort of structures. The first example, given in [5], was that of the big Zariski
topos, which classifies local rings.

In [9], there is a remark that many toposes from algebraic geometry should
be classifying toposes of reasonable geometric theories. However, not much
of this vision seems to have been developed since. We give an answer to
the question about the classified theory for the big infinitesimal topos. For
this, we extensively utilize the concept of a theory of presheaf type, applying
different theorems from [3].

2 Geometric theories

Definition 1. A geometric theory consists of a set of sorts, a set of function
symbols, each equipped with a finite (possibly empty) list A1, . . . , An of input
sorts and one output sort B, denoted

f : A1, . . . , An → B,

furthermore a set of relation symbols, each equipped with a finite (possibly
empty) list of sorts A1, . . . , An, denoted

R� A1, . . . , An,

and finally a set of axioms, each a sequent of the form

φ `x1:A1,...,xn:An ψ,

where φ and ψ are geometric formulas in the context x1 : A1, . . . , xn : An
over the signature given by the sorts, function symbols and relation symbols
of the theory.

We don’t go into the details of defining terms and formulas here (see
[6, Section D.1.1] instead) but just want to mention that the geometric for-
mulas are those (infinitary) first-order formulas which only use the logical
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connectives
>,⊥,∧,∨,

∨
,∃,

but not ⇒,
∧
,∀.

Also, we don’t give a complete definition of a model of a theory T in
a topos E . (And we will not need the notion of a model in more general
categories.) But recall that if we are given a structure M consisting of an
object AM for every sort A, a morphism fM : A1× . . .×An → BM for every
function symbol and a subobject RM ↪→ A1 × . . . × An for every relation
symbol, then we can inductively (over the structure of the formula) define
the interpretation of a formula φ in a context x1 : A1, . . . , xn : An, which is
a subobject

JφKM ↪→MA1 × . . .×MAn .

Then a sequent φ `C ψ is fulfilled if JφKM ≤ JψKM as subobjects and M
is a model of T if all axioms are fulfilled for M . Finally, a homomorphism
of such structures M , N for the same signature (this does not depend on
the axioms of T ) consists of morphisms AM → AN for each sort A, which
are compatible with the morphisms assigned to function symbols and the
subobjects assigned to relation symbols. For details see [6, Section D1.2].

We will of course need the following Soundness Theorem. For the notion
of provability we refer to [6, Section D.1.3].

Proposition 2 (Soundness Theorem). Let M be a model of a geometric
theory T in a topos E (or in any geometric category). Then any geometric
sequent which is provable in T is also fulfilled in M .

Proof. See [6, Proposition 1.3.2].

Definition 3. • A geometric theory T is algebraic if it has no relation
symbols and all axioms of T are of the form

> `C s = t

where s and t are terms in the context C and C contains no other
variables than those occuring in s or in t.

• A geometric theory T is cartesian if the only logical connectives oc-
curing in its axioms (left and right of the turnstile `) are >,∧,∃ and
the axioms of T can be given a well-founded partial ordering such that
every occurence of existential quantification (∃x :A. φ) in an axiom σ
can be shown to refer to unique existence (φ ∧ φ[y/x] `C,x,y x = y,
where C is the context in which (∃x :A. φ) occured) relative to the
axioms preceding σ.
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Of course, any algebraic theory is cartesian.

Definition 4. A quotient of a geometric theory T is another geometric theory
T ′ over the same signature such that all axioms of T are provable in T ′.

3 Classifying toposes and Morita equivalence

For any topos E and geometric theory T , the models of T in E form a category
which we simply denote by T (E). Moreover, any geometric morphism f :
E ′ → E yields a functor

f ∗ : T (E)→ T (E ′)

by applying the inverse image part f ∗ of f to the objects, morphisms and
subobjects (for sorts, function symbols and relation symbols) of which a
model consists.

Here it is crucial that we have restricted our attention to geometric the-
ories instead of all first-order theories. For example, the interpretation of
infinitary conjunction would have been intersection of infinitely many sub-
objects. This is an infinite limit, but f ∗ is only required to preserve finite
limits. However, f ∗ preserves arbitrary colimits (since it is a left adjoint) and
also the epi-mono factorization of morphisms (since this can be characterized
using finite limits and colimits), which is all that is needed to construct in-
finite unions of subobjects, so f ∗ does preserve the interpretation of infinite
disjuctions.

We denote by Geom(E ′, E) the category of geometric morphisms between
toposes E ′ and E .

Definition 5. A classifying topos for a geometric theory T is a Grothendieck
topos Set[T ] such that for every Grothendieck topos E there is an equivalence
of categories

Geom(E , Set[T ]) ' T (E)

and this equivalence is natural in E , meaning that for every geometric mor-
phism f : E ′ → E the diagram of functors

Geom(E , Set[T ]) T (E)

Geom(E ′, Set[T ]) T (E ′)

'

· ◦f f∗

'

commutes up to isomorphism.
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The model corresponding to the identity functor on Set[T ] under the
equivalence

Geom(Set[T ], Set[T ]) ' T (Set[T ])

is then called a universal model of T and denoted UT . And indeed, the
equivalence Geom(E , Set[T ]) ' T (E) is then (up to isomorphism) given by
f 7→ f ∗UT , as can be seen by setting Set[T ] for E in the naturality square.
So in particular, any model M of T in any topos is (up to isomorphism) the
pullback of UT along a unique (up to isomorphism) geometric morphism to
Set[T ].

We next ask the question when to consider two theories T and T ′ “essen-
tially the same”. Of course, if T and T ′ share the same signature, then we
can simply ask if the axioms of each one can be deduced from the axioms of
the other. (That is, if each is a quotient of the other.) Then (by Proposition
2) they also have the same models in any topos. But we also want to compare
theories with different signatures. The appropriate general notion of “having
the same models in all toposes” is given by Definition 6.

Definition 6. Two geometric theories T and T ′ are Morita-equivalent if for
every Grothendieck topos E there is an equivalence of categories

T (E) ' T ′(E),

and this equivalence is natural in E , meaning that for every geometric mor-
phism f : E ′ → E the diagram of functors

T (E) T ′(E)

T (E ′) T ′(E ′)

'

f∗ f∗

'

commutes up to isomorphism.

Lemma 7. Given two theories T , T ′ and classifying toposes Set[T ], Set[T ′],
T and T ′ are Morita-equivalent if and only if Set[T ] and Set[T ′] are equiva-
lent.

Proof. If Set[T ] ' Set[T ′] we have

T [E ] ' Geom(E , Set[T ]) ' Geom(E , Set[T ′]) ' T ′(E)

natural in E . Conversely, if φE : T (E)
'−→ T ′(E) is a Morita equivalence, we

obtain geometric morphisms f : Set[T ] → Set[T ′] and g : Set[T ′] → Set[T ]
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corresponding to the models φSet[T ](UT ) ∈ T ′(Set[T ]) and φ−1Set[T ′](UT ′) ∈
T (Set[T ′]). Then f and g are quasi-inverses by the various naturalities, one
half provided by the following diagram.

Geom(Set[T ], Set[T ′]) T ′(Set[T ]) T (Set[T ])

Geom(Set[T ′], Set[T ′]) T ′(Set[T ′]) T (Set[T ′])

'

· ◦g g∗

'
φ

g∗

' '
φ

This is of course an application of a higher dimensional Yoneda lemma.

4 Definition of the relevant theories

Definition 8. The theory of rings, denoted Ring, consists of a single sort A,
two constant symbols 0, 1 : A, two binary function symbols +, · : A,A →
A, one unary function symbol − : A → A and axioms expressing that
(A,+, 0,−) is an abelian group

> `x:A 0 + x = x, > `x,y:A x+ y = y + x,

> `x,y,z:A (x+ y) + z = x+ (y + z), > `x:A x+ (−x) = 0,

(A, ·, 1) is a commutative monoid

> `x:A 1 · x = x, > `x,y:A x · y = y · x,
> `x,y,z:A (x · y) · z = x · (y · z),

and multiplication is distributive over addition

> `x,y,z:A x · (y + z) = (x · y) + (x · z).

Remark 9. We could leave out the function symbol for negation − : A→ A
and interpret “abelian group” to mean the axiom

> `x:A ∃y :A. x+ y = 0.

The existential quantifier here can easily be shown to refer to a unique ex-
istence, so this theory is not algebraic but it is still a cartesian theory. It is
indeed Morita-equivalent to the theory given above: If we have a function
symbol for negation, the axiom asserting the existence of negatives of course
holds. So we only have to show from the existence axiom that there is a
unique morphism − : A → A fulfilling > `x:A x + (−x) = 0. For this, we
observe that the formula x+ y = 0 is provably functional (from the context

7



x : A to the context y : A), meaning that in addition to the existence axiom
we can also prove (using the other axioms of the theory of rings)

x+ y = 0 ∧ x+ y′ = 0 `x,y,y′:A y = y′.

From this we can conclude by [6, Proposition D1.3.12] that there indeed
exists a unique morphism − : A → A as above. One can also check that
negation is respected by any homomorphism of models of the theory without
negation symbol, completing the Morita equivalence.

However, we prefer to think about the theory of rings as an algebraic
theory and therefore included the function symbol for negation. In [7, Section
X.3] this issue seems to have been overlooked, as it is stated that the theory
of rings could be formulated with only 0, 1,+, · and algebraic axioms.

Definition 10. Let K be a ring. The theory of K-algebras, denoted K-Alg,
consists of one sort A, all the function symbols (including constant symbols)
and axioms of the theory of rings and additionally one constant symbol cλ : A
for every element λ ∈ K, together with the axioms

> `[] c0 = 0, > `[] c1 = 1,

> `[] cλ + cµ = cλ+µ, > `[] cλ · cµ = cλ·µ,

the latter two for all λ, µ ∈ K, expressing the properties of a ring homomor-
phism from K to A.

Definition 11. Let K be a ring.

• The theory K-AlgQuot of K-algebras with an ideal consists of one
sort A, all function symbols and axioms of K-Alg, one unary relation
symbol a� A and axioms expressing that a is an ideal (we denote the
“application” of a to a term t as t ∈ a)

> `[] 0 ∈ a

x ∈ a ∧ y ∈ a `x,y:A x+ y ∈ a

x ∈ a `x,y:A x · y ∈ a.

• The theory K-AlgNilQuot of K-algebras with a nil ideal is the quotient
of K-AlgQuot with one additional axiom

x ∈ a `x:A
∨

n∈N≥0

xn = 0.

Here, xn of course stands for the term (. . . ((1 · x) · x) . . .) · x with x
occuring n times.
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An alternative way to think about a K-algebra A together with an ideal
is a surjective K-algebra homomorphism from A to some other K-algebra
(therefore the name K-AlgQuot). We will see in Proposition 13 below that
this indeed leads to a Morita-equivalent theory. But first we give defini-
tions of such theories involving a K-algebra homomorphism, generalized by
additional structure on the codomain.

Definition 12. Let K be a ring and R be a K-algebra.

• The theory K-Alg-R-Alg of K-algebra homomorphisms into an R-
algebra consists of two sorts A and B, all function symbols and ax-
ioms of K-Alg for the sort A, all function symbols and axioms of
R-Alg for the sort B (we will denote the two distinct funtions sym-
bols + : A,A → A and + : B,B → B of the theory in the same way,
and similarly for all other funtion symbols mentioned so far), one ad-
ditional function symbol f : A→ B and axioms expressing that f is a
K-algebra homomorphism

> `x,y:A f(x+ y) = f(x) + f(y), > `x,y:A f(x · y) = f(x) · f(y),

> `[] f(cλ) = cλ,

the last one for every λ ∈ K (and reading λ as an element of R on the
right side of the equation, such that cλ : B).

• The theory K-Alg-R-Quot of surjective K-algebra homomorphisms into
an R-algebra is the quotient of K-Alg-R-Alg with the additional axiom

> `y:B ∃x :A. f(x) = y.

• The theory K-Alg-R-NilQuot of surjective K-algebra homomorphisms
into an R-algebra with nil kernel is the quotient of K-Alg-R-Quot with
the additional axiom

f(x) = 0 `x:A
∨

n∈N≥0

xn = 0.

Proposition 13. The theories K-Alg-K-Quot (surjective K-algebra homo-
morphisms) and K-AlgQuot (K-algebras with an ideal) are Morita-equivalent.

Proof. Let E be a Grothendieck topos. We give explicit constructions to
convert models of K-Alg-K-Quot and K-AlgQuot into each other, i. e. for
the equivalence

K-Alg-K-Quot(E) ' K-AlgQuot(E).
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First let (f : A� B) ∈ K-Alg-K-Quot(E). Then we take as subobject a
of A the interpretation of the formula f(x) = 0 (in the context x : A), that
is, the equalizer

a A B
f

0

(where the arrow annotated 0 is the composite A→ 1
0−→ B over the terminal

object 1). It is easy to show that the predicate f(x) = 0 fulfills the axioms
for an ideal, so we have obtained a model a / A of K-AlgQuot.

If a / A is a given model of K-AlgQuot, we have to construct an epimor-
phism f : A� B (because the surjectivity axiom translates exactly to being
an epimorphism) and also provide a K-algebra structure on B. For f we
take the coequalizer

a× A A B.
+

π2

f

The constants cλ for λ ∈ K are easily defined for B, we just have to compose
with f . For the other function symbols like + : B × B → B, a bit more
work is needed. One has to show that f ◦ + : A × A → B factors over
f × f : A× A → B × B, mimicking the usual algebraic calculations needed
to prove the ring operations on a quotient ring well-defined. The axioms for
the K-algebra structure on B follow then immediately from the same axioms
for A and the epimorphism f commuting with the various operations. For
example, the axiom 0 + x = x means that the horizontal composites in the
diagram below are the identity on A respectively B.

A A× A A

B B ×B B

(0,idA)

f

+

f×f f

(0,idB) +

Having defined the two parts of the equivalence on objects, one checks
that for two such “extended models” a/A� B and a′/A′ � B′, a K-algebra
homomorphism A→ A′ indeed allows a compatible map B → B′ if and only
if it sends a into a′, that is, allows a compatible map a→ a′. (Here one can
reason internally again, only giving a formula for the graph of the desired
map, and then apply [6, Proposition D1.3.12] to obtain an actual morphism.)
Finally, the above constructions are natural in E , that is, they are preserved
by the inverse image parts of geometric morphisms, as we have only used
finite limits and colimits.

Corollary 14. The theories K-Alg-K-NilQuot and K-AlgNilQuot are Morita-
equivalent.
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Proof. These theories differ from K-Alg-K-Quot, respectively K-AlgQuot,
by a nilpotence axiom, where the premise is f(x) = 0 in the first case and x ∈
a in the second. But the subobjects defined by these formulas correspond to
each other under the constructions in the proof of Proposition 13. So the two
nilpotence axioms define “the same” full subcategory of K-Alg-K-Quot(E) ∼=
K-AlgQuot(E).

Definition 15. • The theory of local rings is the quotient of the theory
of rings with the additional axioms

x1 + . . .+ xn = 1 `x1,...,xn:A
∨

i=1,...,n

∃y :A. xi · y = 1

for all n ∈ N≥0.

• The above locality axioms can be added to any of the theories de-
fined earlier as they all contain a sort A with a ring structure. Thus
we obtain in particular loc-K-Alg (the theory of local K-algebras),
loc-K-AlgNilQuot and loc-K-Alg-R-NilQuot.

Remark 16. The (countably many) locality axioms given in Definition 15 can
be replaced by two axioms

0 = 1 `[] ⊥, x1+x2 = 1 `x1,x2:A (∃y :A. x1 ·y = 1)∨(∃y :A. x2 ·y = 1).

Indeed, these are special cases of the axioms from Definition 15 for n = 0 and
n = 2. The case n = 1 is trivially fulfilled (i. e. provable from the theory of
rings) and all other instances can be seen to follow from these by induction.

Remark 17. In a context of classical logic, local rings are usually defined
as those with a unique maximal ideal. Using the Axiom of Choice this is
equivalent to our definition: Our axioms say that the non-invertible ele-
ments form an ideal (as they are in any case closed under multiplication
with arbitrary ring elements), which is then of course maximal. Conversely,
any non-invertible element is contained in some maximal ideal by Zorn’s
lemma, so if there is only one maximal ideal it must contain precisely all
non-invertibles.

For the theories with two ring structures we could also (or instead) have
added locality axioms for B. However, this would have been redundant (or
equivalent) in the case of K-Alg-R-NilQuot as we can conclude from the
following lemma.

Lemma 18. Let f : A� B be a surjective ring homomorphism with kernel
a nil ideal a / A. Then A is a local ring if and only B is a local ring. And
this holds intuitionistically (with “local” understood as in Definition 15), so
it holds in any geometric theory with an appropriate ring homomorphism.
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Proof. Let A be local and b1 + . . .+ bn = 1 in B. Then there are preimages
a1, . . . an ∈ A and a1 + . . .+an+ ε = 1 for some ε ∈ a. Since A is local, one of
the ai or ε must be invertible. But ε is nilpotent, so if it is invertible, 0 = 1
holds in A, which by the locality axiom for n = 0 entails ⊥.

Conversely, let B be local and a1 + . . .+ an = 1 in A. Then f(a1) + . . .+
f(an) = 1 in B and by locality of B, some f(ai) is invertible, f(ai) · s = 1.
For t ∈ A with f(t) = s we obtain ai · t+ ε = 1 for some ε ∈ a. Now let k ∈ N
with εk = 0, then calculate 1 = (ε + ai · t)k = εk + ai · t · (. . .) = ai · t · (. . .),
so ai is invertible.

This proof can clearly be carried out in any geometric theory with a
surjective ring homomorphism f : A→ B with nil kernel.

Remark 19. The ring homomorphism f : A→ B is then automatically local
(if f(x) is invertible, then x is invertible), as we have seen in the second part
of the proof (for x = ai).

5 Theories of presheaf type

In this section we will introduce the abstract machinery which we intend to
use later. The central notion is that of a geometric theory being of presheaf
type. It turns out that theories of presheaf type allow a very convenient
description of a classyfing topos and also provide access to quotients of the
theory. For all proofs, we refer to the recent book [3].

Definition 20. A geometric theory T is of presheaf type if there is a small
category C such that the presheaf topos [C, Set] is a classifying topos for T .

Theorem 21. Every cartesian theory is of presheaf type.

Proof. See [3, Theorem 2.1.8].

By Theorem 21 it is now clear that the theories Ring, K-Alg, K-AlgQuot
and K-Alg-R-Alg are of presheaf type, since they are all cartesian. Ring,
K-Alg and K-Alg-R-Alg are even algebraic, while K-AlgQuot is a Horn
theory : its axioms only use finite conjunctions (including >), no existential
quantification at all. However, the exitential quantifier in the axioms of
K-Alg-R-Quot can not be shown to refer to unique existence, so this is not
a cartesian theory. Only in the special case R = K we have already seen
that the theory gets Morita-equivalent to K-AlgQuot and is therefore of
presheaf type. K-AlgNilQuot and K-Alg-R-NilQuot even contain infinitary
disjunctions and thus are not cartesian. We will answer the question whether
they are still of presheaf type later.
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The main reason why we are interested in theories of presheaf type is,
that the classifying topos for any such theory has a very useful canonical site
of definition, namely the dual of the category of finitely presentable models
of the theory. We first recall the notions of compact object and filtered
category.

Definition 22. A category C is filtered if it has cocones on all finite diagrams.
Equivalently, if the following three conditions are satisfied.

• There is at least one object c ∈ C.

• For any two objects c1, c2 ∈ C, there is an object c′ ∈ C and some
arrows c1 → c′, c2 → c′.

• For any two parallel arrows f, g : c→ c′, there is an object c′′ ∈ C and
an arrow h : c′ → c′′ such that h ◦ f = h ◦ g.

A filtered colimit is one such that the index category is a filtered small cate-
gory.

Definition 23. Let C be a locally small category with all filtered colimits.
An object c of C is compact if the corepresentable functor Hom(c, · ) : C →
Set preserves filtered colimits. That is, if for every filtered small category I
and functor F : I → C the canonical map

colim
i∈I

Hom(c, F (i))→ Hom(c, colim
i∈I

F (i))

is a bijection. We will denote the full subcategory on the compact objects of
C as Cc.

If C happens to be the cagegory T (Set) of Set-based models of a geometric
theory T , then the compact objects of C = T (Set) are called the finitely
presentable models of the theory T .

Theorem 24. Let T be a theory of presheaf type. Let T (Set)c be the category
of its finitely presentable models (that is, the full subcategory of T (Set) on
the compact objects). Then [T (Set)c, Set] is a classifying topos for T .

Proof. See [3, Section 6.1.1].

Remark 25. The category T (Set) is usually not small, but T (Set)c can be
shown to be essentially small. So what we meant by the functor category
[T (Set)c, Set] is to replace T (Set)c by a small skeleton first.
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Remark 26. Theorem 24 implies that the classification of theories up to
Morita equivalence can, for theories of presheaf type, be achieved by com-
puting their compact Set-based models: If T and T ′ are Morita-equivalent,
of course T (Set)c and T ′(Set)c must be equivalent (because compactness is a
categorical property). The theorem gives the converse implication in case T
and T ′ are both of presheaf type.

In general, the Set-based models do not suffice to distinguish geometric
theories. Indeed, there are geometric theories which have no models in Set
at all, but are consistent and do have models in other topoi, so they are
not Morita-equivalent to an inconsistent theory, which has no models in any
topos.

The next question after knowing the classifying topos of a theory is of
course to identify the universal model in that topos, so here we go.

Theorem 27. In the situation of Theorem 24, a universal model of the
theory T is given by NT as follows. For a sort A, ANT is the functor
T (Set)c → Set given by M 7→ AM . For a function symbol f , fNT is the
natural transformation which assigns to an object M ∈ T (Set)c the map fM .
And for a relation Symbol R� A1, . . . , An, RNT evaluated at M is the subset
RM ⊆ A1M × . . .× AnM .

Proof. See [3, Theorem 6.1.1].

Remark 28. There are weaker (and earlier) versions of Theorems 24 and 27,
like [6, Corollary D3.1.2], which assumes T to be a cartesian theory. While
this is sufficient in many cases, we will need the theorems in the full generality
stated here in the last section.

Note that we deviate from the notation in [3], where the category of
finitely presentable models of T is denoted f.p.T -mod(Set). This is because
we like to emphasize that the notion of compactness, which distinguishes
the finitely presentable models, is a categorical one and does not depend on
the notion of a model. Also, this reduces the risk of confusion concerning
another, quite similar term, namely that of a finitely presented model. It is
a property of theories of presheaf type that for them the finitely presented
models are exactly the finitely presentable, i. e. compact ones, as we will
state in Theorem 30 below. For the same reasons we will also prefer the term
“compact model” over the term “finitely presentable model”, especially if it
is not clear whether the theory in question is of presheaf type.

Definition 29. Let T be a geometric theory. A Set-based model M of T is
(finitely) presented by a geometric formula φ if it corepresents the functor

T (Set)→ Set, N 7→ JφKN
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sending a model to the interpretation of φ in that model.

This can be spelled out as follows. Let x1 : A1, . . . , xn : An be the
context of the formula φ. Then an element of JφKN is given by elements
a1 ∈ A1N , . . . , an ∈ AnN such that φ holds for a1, . . . , an. So M is presented
by φ if and only if there are elements ai ∈ AiM (the generators of M) such
that φ holds for the ai and, for any model N ∈ T (Set) and elements bi ∈ AiN
for which φ holds, there is a unique homomorphism f : M → N such that
f(ai) = bi.

Theorem 30. Let T be a theory of presheaf type and M a Set-based model
of T . Then M is compact as an object of T (Set) if and only if M is presented
by some geometric formula.

Proof. See [3, Corollary 6.1.15].

The final tool to be introduced here concernes quotients of a theory of
presheaf type. If T ′ is a quotient of a geometric theory T , the category T ′(E)
of models of T is a full subcategory of T (E) for any Grothendieck topos E .
In terms of classifying toposes this means that Geom(E , Set[T ′]) must be a
full subcategory of Geom(E , Set[T ]). This is the case if Set[T ′] is a subtopos
of Set[T ], and indeed, there is a direct correspondence between quotients of a
geometric theory T and subtoposes of Set[T ]. For the details see [3, Theorem
3.2.5].

Now, if we have a Grothendieck topos Sh(C, J), the subtoposes of Sh(C, J)
correspond to those Grothendieck topologies on C which contain J (and
therefore “select” a smaller full subcategory of [Cop, Set] than Sh(C, J)). So
we would like to know, for a theory T of presheaf type, how to describe the
Gothendieck topology on T (Set)c

op corresponding to a quotient of the theory
T .

For this purpose, we need to explain what it means for a formula to
present a homomorphism of models (instead of a model). Let φ and ψ be for-
mulas presenting models Mφ,Mψ ∈ T (Set)c. Let furthermore θ be a formula
in the context ~x, ~y where ~x (respectively ~y) is the context of φ (respectively
ψ). Assume that θ is provably functional from ψ to φ, meaning that the
following sequents are provable in T .

θ `~y,~x φ ∧ ψ
ψ `~y ∃~x. θ

θ ∧ θ[~̃x/~x] `~y,~x,~̃x ~x = ~̃x

Then for any model N ∈ T (Set), the interpretation JθKN ⊆ JψKN × JφKN is
the graph of a map JψKN → JφKN . In particular, if ~a ∈ JψKMψ

is the tuple
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of generators of Mψ, then there is a unique element ~b ∈ JφKMψ
with (~a,~b) ∈

JθKMψ
. And since φ presents Mφ, there is a unique model homomorphism

sθ : Mφ →Mψ sending the generators of Mφ to ~b. This arrow sθ is the arrow
presented by the provably functional formula θ.

Theorem 31. Let T be a theory of presheaf type. Let φi, i ∈ I be geometric
formulas (in contexts ~xi) presenting models Mi ∈ T (Set)c. For each i ∈ I, let
ψji , θ

j
i , j ∈ Ji be geometric formulas, where each ψji (in context ~yji ) presents

a model M j
i ∈ T (Set)c and each θji is provably functional from ψji to φi.

Finally, let T ′ be the quotient of T with the additional axioms

φi `~xi
∨
j∈Ji

∃~yji . θ
j
i , i ∈ I.

Then the Grothendieck topology on T (Set)c
op induced by T ′ is generated by

the sieves Si, i ∈ I, where Si is the dual of the cosieve on Mi generated by
the arrows sji : Mi →M j

i presented by θji .

Proof. See [3, Theorem 8.1.10].

6 Compact models of the relevant theories

Because compact models play such a central role for theories of presheaf type,
we try to identify them for as many of the theories defined earlier as possible.
Of course, we have not shown all of those theories to be of presheaf type; this
problem will be handled later as needed. We start with a very useful lemma.

Lemma 32. Finite colimits of compact objects are compact.

Proof. Let G : J → C be a finite diagram in a locally small category C with
all filtered colimits such that all G(j) for j ∈ J are compact and assume that
the colimit colimj∈J G(j) exists. Then for any functor F : I → C with I
small and filtered we can calculate

colim
i∈I

Hom(colim
j∈J

G(j), F (i)) ∼= colim
i∈I

lim
j∈J

Hom(G(j), F (i))

∼= lim
j∈J

colim
i∈I

Hom(G(j), F (i))

∼= lim
j∈J

Hom(G(j), colim
i∈I

F (i))

∼= Hom(colim
j∈J

G(j), colim
i∈I

F (i))

because filtered colimits commute with finite limits in Set. And one can check
that this composition of bijections is indeed the canonical map of Definition
23.
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To determine the compact objects of K-Alg(Set) we first have to describe
filtered colimits in that category.

Lemma 33. The forgetful functor U : K-Alg(Set) → Set creates filtered
colimits. Explicitly, for any diagram (Ai)i∈I in K-Alg(Set) with I small and
filtered, there is a unique K-algebra structure on the set A := colimi∈I U(Ai)
making the canonical maps U(Ai)→ A into K-algebra homomorphisms, and
the resulting cocone in K-Alg(Set) is a colimit.

Proof. Any two elements a, a′ ∈ A are the images of elements in some Ai
for a common i ∈ I since I is filtered. So we are forced to define their sum
a+ a′ as the sum in Ai for Ai → A to have a chance to be a homomorphism.
And this is well-defined as we can compare the results obtained in Ai and in
Aj in some further Ak with i → k ← j chosen carefully such that the two
representatives of a in Ak are equal and likewise for a′. This works exactly
the same for the product of two elements and also for functions of any other
arity than two, including arity zero for constants (scalars from K) where we
use that I is inhabited to find a “common” i ∈ I for the zero elements to be
“combined”.

The algebraic (equational) axioms for a K-algebra are fulfilled because
each of them involves only finitely many elements and therefore every instance
can be checked in some Ai.

For another K-algebra A′ and compatible homomorphisms Ai → A′ we
only have to check that the induced map of sets A→ A′ is again a homomor-
phism. But this again follows immediatly from the fact that sum, product
and scalars form K all involve only finitely many elements which can be
assumed to lie in a commom Ai.

Remark 34. The proof of Lemma 33 would clearly have worked for any single-
sorted algebraic theory. For multi-sorted algebraic thories we would have to
consider the forgetful functor to Setn instead where n is the number of sorts.

Definition 35. Let K be a ring.

• A K-algebra A is finitely generated if there is a surjective K-algebra
homomorphism

K[X1, . . . , Xn]� A

for some n ≥ 0.

• A K-algebra A is finitely presented if it is isomorphic to one of the form

K[X1, . . . , Xn]/(f1, . . . , fm)

for some n,m ≥ 0 and elements f1, . . . , fm ∈ K[X1, . . . , Xn].
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Proposition 36. Let K be a ring. The compact objects of K-Alg(Set) are
precisely the finitely presented K-algebras.

The proof given here is inspired by the proof of [1, Theorem 3.12], which
is a much more general statement.

Proof. By Lemma 33 the forgetful functor K-Alg(Set) → Set in particu-
lar preserves filtered colimits. But this functor is corepresented by the ob-
ject K[X], so K[X] is compact. And if A = K[X1, . . . , Xn]/(f1, . . . , fm) is
any finitely presented K-algebra, we can build A from K[X] using only fi-
nite colimits: The n-fold coproduct (tensor product) of K[X] with itself is
K[X1, . . . , Xn] and then we obtain A as the coequalizer

K[X1, . . . , Xm] K[X1, . . . , Xn] K[X1, . . . , Xn]/(f1, . . . , fm).
Xi 7→fi

Xi 7→0

Now let A be a compact object of K-Alg(Set). We first show that A is
finitely generated as a K-algebra. Let I be the set of all finitely generated
sub-K-algebras of A, partially ordered by inclusion. Then I is filtered as
a category, i. e. a directed system. (The third condition from Definition 22
is trivially satisfied for partial orders.) Indeed, we have an object im(K →
A) ⊆ A (generated by 0 elements) and any two finitely generated subalgebras
A′, A′′ ⊆ A with K[X1, . . . , Xn]� A′ and K[Y1, . . . , Ym]� A′′ are contained
in im(K[X1, . . . , Xn, Y1, . . . Ym]→ A) ⊆ A.

The K-algebras A′ ∈ I constitute a diagram in K-Alg(Set) and the in-
clusions A′ ↪→ A form a cocone. We claim that the induced homomorphism

colim
A′∈I

A′ → A

is an isomorphism: It is surjective since every a ∈ A lies in the subalgebra

im(K[X]
X 7→a−−−→ A) ⊆ A finitely generated by the single element a. And it

is injective since all the cocone arrows A′ ↪→ A are injective and any two
elements a′ ∈ A′, a′′ ∈ A′′ can be mapped within I into a common finitely
generated subalgebra of A.

We can now apply the hypothesis that A is compact to the map

colim
A′∈I

Hom(A,A′)→ Hom(A, colim
A′∈I

A′) ∼= Hom(A,A)

to obtain a preimage of idA. But this is a section A → A′ of the inclusion
A′ ↪→ A of some A′ ∈ I, showing that A′ = A and therefore that A is finitely
generated.

Now let q : K[X1, . . . Xn]� A be a fixed surjective K-algebra homomor-
phism. We show that the kernel of q is a finitely generated ideal, completing
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the proof of the proposition. To this end, let J be the partial order of all
finitely generated ideals of K[X1, . . . , Xn] contained in ker q. This is again a
directed system: The zero ideal always lies in J and for two finitely generated
ideals (f1, . . . , fm), (g1, . . . , gk) ⊆ ker q we also have (f1, . . . , fm, g1, . . . , gk) ⊆
ker q. The assignment a 7→ K[X1, . . . , Xn]/a defines a J-shaped diagram in
K-Alg(Set) and the quotient mapsK[X1, . . . , Xn]/a→ K[X1, . . . , Xn]/ ker q ∼=
A induce a homomorphism

colim
a∈J

K[X1, . . . , Xn]/a→ A.

This is again an isomorphism: It is surjective since alreadyK[X1, . . . , Xn]/(0)→
A is surjective and injective since any b ∈ K[X1, . . . , Xn]/a which becomes
zero in A already becomes zero in K[X1, . . . , Xn]/(a + (b)).

Using the compactness of A a second time, we obtain a preimage of idA
under the map

colim
a∈J

Hom(A,K[X1, . . . , Xn]/a)→ Hom(A,A).

This means for some B := K[X1, . . . , Xn]/a with a ∈ J we have a section
s : A → B of the quotient map qB : B → A. We don’t have s ◦ qB = idB
yet, but for any B′ = K[X1, . . . , Xn]/b with b ∈ J , a ⊆ b we still have
qB′ ◦ r ◦ s = idA for the quotient maps qB′ : B′ → A, r : B → B′ as in the
diagram below.

B A

B′

qB

r

s

qB′

So our aim is to find B′ such that r ◦ s ◦ qB′ = idB′ . For this we remember
that B is a finitely presented K-algebra, so by the first part of this proof it
is compact and the map

colim
b∈J

Hom(B,K[X1, . . . , Xn]/b)→ Hom(B,A)

is bijective. This time we use injectivity rather than surjectivity: s◦qB : B →
B and idB considered as elements of the left side become equal on the right
side: qB ◦s◦qB = qB = qB ◦ idB. Therefore they must be equal already on the
left side, so there exists B′ as above with r◦s◦qB = r. To see r◦s◦qB′ = idB′
we precompose with the surjection r: r ◦ s ◦ qB′ ◦ r = r ◦ s ◦ qB = r. Thus we
have B′ ∼= A and A is finitely presented.

19



Remark 37. The last part of the proof showed that the kernel of any surjec-
tive homomorphism K[X1, . . . , Xn] � A is finitely generated if A is com-
pact. Combining this with the statement of the lemma, any surjection
K[X1, . . . , Xn] � A with A a finitely presented K-algebra has finitely gen-
erated kernel.

We now quickly illustrate Theorem 30, which said that every compact
model is presentable by some geometric formula. For example, K is the
initial object of K-Alg(Set), so it is presented by the formula > in the empty
context. If we consider > as a formula in the context x1, . . . , xn, this presents
K[X1, . . . , Xn] instead: for elements a1, . . . , an in any K-algebra A (fulfilling
>, i. e. no additional condition), there is a unique K-algebra homomorphism
K[X1, . . . , Xn] → A sending Xi to ai. And for a general finitely generated
K-algebra K[X1, . . . , Xn]/(f1, . . . , fm) we find that it is presented by the
formula (f1 = 0) ∧ . . . ∧ (fm = 0) in the context x1, . . . , xn : A. (Here, fi
has to be read as a term built from the variables x1, . . . , xn and the function
symbols of K-Alg.) We could have tried to identify the compact models of
K-Alg in this way, but observe that the formulas which occured here were
of an especially simple form (finite conjunctions of equations). For a more
complex geometric formula it might not be so easy to determine if there even
exists a model presented by that formula. (In the case of a theory of presheaf
type, the irreducible formulas suffice to present all compact models, see [3,
Theorem 6.1.13] for more.)

Lemma 38. Let C, D be locally small categories with all filtered colimits.
Let F : C → D be a functor that has a right adjoint G : D → C and assume
that G preserves filtered colimits. Then F preserves compact objects.

Proof. Let c ∈ C be compact and let (di)i∈I be a diagram in D with I a
filtered small category. Then we have

Hom(F (c), colim
i∈I

di) ∼= Hom(c,G(colim
i∈I

di))

∼= Hom(c, colim
i∈I

G(di))

∼= colim
i∈I

Hom(c,G(di))

∼= colim
i∈I

Hom(F (c), di).

Lemma 39. There are four adjoint functors between K-AlgQuot(Set) and
K-Alg(Set) as follows.

K-AlgQuot(Set)
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a / A (0) / A′ a / A (1) / A′

A/a A′ A A′

a a a

K-Alg(Set)

Proof. This is easy to check.

Lemma 40. The forgetful functor K-AlgQuot(Set)→ K-Alg(Set), (a/A) 7→
A creates filtered colimits. Explicitly, for any diagram (ai/Ai)i∈I in K-AlgQuot(Set)
with I small and filtered the colimit A := colimi∈I Ai computed in K-Alg(Set)
becomes a colimit in K-AlgQuot(Set) by taking as ideal a / A the union of
the images of all ai.

Proof. The union of the images of ai in A is indeed an ideal: The sum of
elements from ai and aj can be computed in any Ak with i→ k ← j, where
they both lie in ak. And for any object (a′ / A′) ∈ K-AlgQuot(Set), and
compatible morphisms fi : (ai / Ai)→ (a′ / A′) inducing f : A→ A′ we have
f(a) ⊆ a′ because any element of a is represented by an element of some ai
and fi(ai) ⊆ a′.

Lemma 41. An object (a / A) ∈ K-AlgQuot is compact if and only if A is
a finitely presented K-algebra and a is a finitely generated ideal.

Proof. The functor (a/A) 7→ A/a from Lemma 39 preserves compact objects
by Lemma 38 because is right adjoint A′ 7→ ((0) / A′) has a further right
adjoint, so it even preserves all colimits. The functor (a / A) 7→ A also
preserves compact objects, because its right adjoint A′ 7→ ((1)/A′) preserves
filtered colimits by the description of filtered colimits in K-AlgQuot(Set)
given in Lemma 40. (Note that this functor does not preserve all colimits as
it does not preserve the initial object, which is K in K-Alg(Set) and (0) /K
in K-AlgQuot(Set).) So if a/A is compact, then both A and A/a are finitely
presented K-algebras. To see that a is finitely generated, observe that the
kernel of a composite

K[X1, . . . , Xn]� A� A/a

is finitely generated by Remark 37 and its image in A is a. This completes
the “only if” part.

For the “if” part we start by observing that the composite forgetful func-
tor

K-AlgQuot(Set)→ K-Alg(Set)→ Set, (a / A) 7→ A
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preserves filtered colimits, so the object (0) / K[X] corepresenting it is com-
pact. Just like in the proof of Lemma 33 we can build fom (0) / K[X] any
(0) / A with A finitely presented using only finite colimits. Next we see that
also the functor

K-AlgQuot(Set)→ Set, (a / A) 7→ A

preserves filtered colimits, by the description in Lemma 40. This functor is
corepresented by (X)/K[X], which is therefore compact. And also, as a finite
coproduct, (X1, . . . , Xn)/K[X1, . . . , Xn]. Now for any finitely generated ideal
(f1, . . . , fn) / A we conclude that the pushout

(0) / K[X1, . . . , Xn] (0) / A

(X1, . . . , Xn) / K[X1, . . . , Xn] (f1, . . . , fn) / A

Xi 7→fi

y

is compact.

Proposition 42. An object (a / A) ∈ K-AlgNilQuot(Set) is compact if and
only if it is compact as an object of K-AlgQuot(Set), that is, if and only if
A is a finitely presented K-algebra and a is finitely generated.

Proof. K-AlgNilQuot(Set) is a full subcategory of K-AlgQuot(Set) closed
under filtered colimits (again by the description in Lemma 40). There-
fore, if a / A is compact in K-AlgQuot(Set), it is in particular compact
in K-AlgNilQuot(Set).

For the converse, we consider adjoint functors similar to those from
Lemma 39:

K-AlgNilQuot(Set)

a / A (0) / A′ a / A Nil(A′) / A′

A/a A′ A A′

a a a

K-Alg(Set)

Only the rightmost functor had to be adjusted, because (1) / A′ is not a nil
ideal (unless A′ is the zero ring). One can easily check that A′ 7→ (Nil(A′)/A′)
is a functor, that it is indeed right adjoint to (a/A) 7→ A and that it preserves
filtered colimits. So as before we can conclude by Lemma 38 that for a / A
compact in K-AlgNilQuot(Set), A/a and A are finitely presented K-algebras
and a is finitely generated.
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We now turn to the theories with two sorts.

Lemma 43. The category K-Alg-R-Alg(Set) has all small colimits. Specifi-
cally, for (Ai → Bi)i∈I a small diagram in K-Alg-R-Alg(Set), the colimit is
given by the canonical K-algebra homomorphism

colim
i∈I

Ai → colim
i∈I

Bi,

where the first colimit is to be computed in K-Alg(Set) and the second in
R-Alg(Set).

Proof. By the canonical homomorphism we mean the one induced by the
composites of Ai → Bi with Bi → colimi∈I Bi, which indeed form a cocone of
K-algebra homomorphisms. For a cocone ((Ai → Bi)→ (A→ B))i∈I , we get
an induced K-algebra homomorphism colimiAi → A and an R-algebra ho-
momorphism colimiBi → B. These form a morphism in K-Alg-R-Alg(Set),
i. e. the right square in the diagram (in K-Alg(Set))

Ai colimiAi A

Bi colimiBi B

kommutes, since this can be tested by precomposing with all Ai → colimiAi.
This proof can in fact be carried out in the general setting of a comma
category (C ↓ F ) with F : D → C any functor such that both C and D have
all small colimits.

Proposition 44. An object (A → B) ∈ K-Alg-R-Alg(Set) is compact if
and only if A is a finitely presented K-algebra and B is a finitely presented
R-algebra.

Proof. We first want to show that A must be finitely presented as a K-
algebra, using again Lemma 38. So let

F1 : K-Alg-R-Alg(Set)→ K-Alg(Set), (A→ B) 7→ A

be the forgetful functor. It has a right adjoint, namely

G1 : K-Alg(Set)→ K-Alg-R-Alg(Set), A 7→ (A→ 0).
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Now, G1 does not (in general) preserve all small colimits, as it doesn’t pre-
serve (in general) the initial object, which would beK → R inK-Alg-R-Alg(Set).
But it does preserve filtered colimits (and indeed, all inhabited colimits), as
we can see from Lemma 43: if all Bi are 0, and there is at least one i ∈ I,
then colimi∈I Bi = 0.

Now consider the other forgetful functor

F2 : K-Alg-R-Alg(Set)→ R-Alg(Set), (A→ B) 7→ B.

We can again find a right adjoint,

G2 : R-Alg(Set)→ K-Alg-R-Alg(Set), B 7→ (B
=−→ B).

To see that G2 preserves filtered colimits, we remind ourselves of Lemma
33, which implies that filtered colimits are computed in K-Alg(Set) and in
R-Alg(Set) in the same way (i. e., R-Alg(Set)→ K-Alg(Set) preserves filtered
colimits), so we are done by Lemma 43. We conclude that for compact
(A → B) ∈ K-Alg-R-Alg(Set), A must be compact in K-Alg(Set) and B
must be compact in R-Alg(Set), which is one half of the claim.

For the other half, consider the composition of F1 and F2 with the re-
spective underlying-set functors. They both preserve filtered colimits, and

they are represented by K[X]
X 7→X−−−→ R[X] respectively K → R[Y ]. These

are the building blocks which will suffice to obtain all of the objects from
the statement using only finite colimits. So let f : A→ B be an object with
A = K[X1, . . . , Xn]/(f1, . . . , fm), B = R[Y1, . . . , Yk]/(g1, . . . , gl). Start by
taking the coproduct of n copies of K[X]→ R[X] and m copies of K → R[Y ],
yielding

K[X1, . . . , Xn]→ R[X1, . . . , Xn, Y1, . . . , Yk].

Forming a coequalizer for each fi (using K[X] → R[X]) and each gi (using
K → R[Y ]), we have

A→ A⊗K B,

and it only remains to identify each Xi with f(Xi) on the right side by
another n coequalizers, again using K → R[Y ].

Lemma 45. The full subcategory K-Alg-R-Quot(Set) of K-Alg-R-Alg(Set)
is closed under inhabited small colimits.

Proof. Let (Ai � Bi)i∈I be a small diagram in K-Alg-R-Quot(Set) with I
inhabited. Let b ∈ colimiBi

∼= (
⊗

iBi)/∼ be any element. Then b can be
written as a sum of products of elements coming from some Bi, i. e. we find a
polynomial p ∈ Z[X1, . . . , Xn] and elements bj ∈ Bij such that p(b1, . . . , bk) =
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b in colimiBi. (Here we need I to be inhabited to get rid of any scalars from
R.) But for these bj we can find preimages aj ∈ Aij under the maps Aij →
Bij , and then p(a1, . . . , an) is a preimage of b under colimiAi → colimiBi,
which is therefore surjective.

Remark 46. The subcategory K-Alg-R-Quot(Set) is, in general, not closed
under arbitrary small colimits. For instance, the initial object K → R of
K-Alg-R-Alg(Set) doesn’t have to lie in K-Alg-R-Quot(Set).

Corollary 47. An object (A� B) ∈ K-Alg-R-Quot(Set) is compact if and
only if it is compact as an object of K-Alg-R-Alg(Set), that is, if and only if
A is a finitely presented K-algebra and B is a finitely presented R-algebra.

Proof. The subcategory K-Alg-R-Quot(Set) is in particular closed under fil-
tered colimits in K-Alg-R-Alg(Set) by Lemma 45. So if an object (A� B)
of K-Alg-R-Quot(Set) is compact in K-Alg-R-Alg(Set), then it is also com-
pact in K-Alg-R-Quot(Set). Furthermore, the functors G1, G2 in the proof
of Proposition 44 factorize over K-Alg-R-Quot(Set), as (A→ 0) and B

=−→ B
are always surjective. So they are right adjoint to the restrictions of F1, F2

(and still preserve filtered colimits), which provides the other implication just
like before.

Remark 48. Note that for a compact model (f : A� B) ∈ K-Alg-R-Quot(Set),
the kernel of f doesn’t have to be a finitely generated ideal, if R is not a
finitely presented K-algebra. For example, we can take A = K, B = R with

K = Z[X1, X2, . . .]
Xi 7→0−−−→ R = Z.

Lemma 49. The full subcategory K-Alg-R-NilQuot(Set) of K-Alg-R-Quot(Set)
is closed under filtered colimits.

Proof. Let (fi : Ai → Bi)i∈I be a filtered small diagram inK-Alg-R-NilQuot(Set)
and let a ∈ colimiAi be an element which gets mapped to zero in colimiBi.
(One colimit being computed in K-Alg(Set), the other in R-Alg(Set).) We
use the description of these filtered colimits given in Lemma 33 as follows.
There is some a′ ∈ Ai representing a for some i ∈ I, and fi(a

′) ∈ Bi rep-
resents zero in colimiBi. But this means that there is an arrow i → j in
I such that fi(a

′) is zero in Bj. That is, a′ gets mapped to some a′′ ∈ Aj
with fj(a

′′) = 0. Since fj : Aj → Bj is an object of K-Alg-R-NilQuot, this
means that a′′ is nilpotent, and since a′′ also represents a, the latter was
nilpotent.

Corollary 50. Let A � B be an object of K-Alg-R-NilQuot(Set) with A
a finitely presented K-algebra and B a finitely presented R-algebra. Then
A� B is compact.
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Proof. This follows from Lemma 49 just like before.

For the converse of Corollary 50, let’s consider the pairs of adjoint functors
F1 a G1 and F2 a G2 from the proof of Proposition 44 again. We have that
G2 factors over K-Alg-R-NilQuot(Set), since B

=−→ B has kernel (0). But
the kernel of G1(A) = (A → 0) is certainly not a nil ideal in general. It
doesn’t seem obvious how to modify G1 to get a new right adjoint. Instead,
we will obtain the converse of Corollary 50 in a completely different manner
in Corollary 80.

7 The big Zariski topos

Definition 51. A morphism of schemes f : T → S is locally of finite pre-
sentation if there exists an affine open cover T =

⋃
i∈I Ui, Ui = SpecAi and

affine open subsets Vi = SpecKi ⊆ S for i ∈ I such that for all i, f(Ui) ⊆ Vi
and the corresponding ring homomorphism Ki → Ai makes Ai into a finitely
presented Ki-algebra.

Definition 52. Let S be a scheme. The big Zariski site ZAR(S) of S consists
of the following.

• Objects: Schemes T → S locally of finite presentation over S.

• Morphisms: Scheme morphisms T ′ → T compatible with the structure
morphisms to S.

T ′ T

S

• Grothendieck topology: A sieve on T is JZAR(S)-covering if and only if
it contains immersions of open subsets Ui ↪→ T such that T =

⋃
i Ui.

The topos SZAR := Sh(ZAR(S)) is the big Zariski topos of S.

For a discussion concerning the restriction to schemes locally of finite
presentation over S, see [2, Section 15].

Lemma 53. The topology from Definition 52 actually satisfies the axioms of
a Grothendieck topology.

Proof. The maximal sieve on T is covering because it contains the open
immersion T ↪→ T . If T =

⋃
i Ui is an open cover and f : T ′ → T is
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a morphism, then the pullbacks f ∗Ui constitute an open cover of T ′, so
pullback sieves are again covering. Finally, for transitivity, let (Ui)i∈I be an
open cover of T and (Ui,j)j∈Ji an open cover of Ui for each i ∈ I. Then of
course (Ui,j)i∈I,j∈Ji is an open cover of T .

We want to reduce the big Zariski topos as defined above to something
more algebraic. This is possible using the Comparison Lemma (Theorem 56
below), which rests on the notion of a dense subcategory of a site.

Definition 54. Let (C, J) be a site. A full subcategory C ′ of C is called
dense (for the topology J) if for every object c ∈ ObC the sieve generated
by all morphisms c′ → c with c′ ∈ ObC ′ is covering for J .

Lemma 55. The full subcategory of ZAR(S) consisting of the affine schemes
SpecA = T → S is dense.

Proof. Of course we can cover every T ∈ ZAR(S) by affine open subschemes.

Let us denote this subcategory by ZAR∗(S).

Theorem 56 (Comparison Lemma). Let (C, J) be a site and C ′ a dense
full subcategory of C. Then the restriction functor SetC → SetC

′
induces an

equivalence of categories

Sh(C, J) ' Sh(C ′, J |C′)

where J |C′ is the topology on C ′ given as follows: A sieve S on c ∈ ObC ′ is
J ′-covering if and only if the sieve generated by S in C is J-covering.

Proof. See [6, Theorem C2.2.3].

Lemma 57. Let JZAR∗(S) = JZAR(S)|ZAR∗(S) be the restriction of JZAR(S) to

ZAR∗(S) as in the Comparison Lemma. Then a sieve S̃ on T = SpecA is
JZAR∗(S)-covering if and only if there are elements a1, . . . , ak ∈ A such that∑k

i=1 ai = 1 and the duals of all the localization homomorphisms

A→ A[a−1i ]

for i = 1, . . . , k lie in S̃.

Proof. Note that SpecA ← SpecA[a−1i ] = D(ai) is locally of finite presen-
tation, so SpecA[a−1i ] is again an object of ZAR∗(S). And indeed, SpecA
is covered (as a space) by some open subsets Uj if and only if there are

a1, . . . , ak ∈ A with
∑k

i=1 ai = 1 and each D(ai) lies in some Uj (see [8,
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Tag 01HS]). Now suppose S̃ is any sieve on SpecA in ZAR∗(S). The sieve
generated by S̃ in ZAR(S) is covering for JZAR(S) if and only if it contains
an open cover of SpecA. But in this case it also contains a cover by affine
opens, which were therefore already present in S̃, so we get exactly the as-
serted condition.

Lemma 58. If S = SpecK is affine, the category ZAR∗(S) is (equivalent
to) the dual of the category of finitely presented K-algebras.

Proof. The category of affine schemes is equivalent to the dual of the category
of rings, AffSch ' Ring(Set)op. So we also have a duality of comma categories
(SpecK ↓ AffSch) ' (Ring(Set) ↓ K)op. The claim follows because an affine
scheme T = SpecA→ SpecK is locally of finite presentation over SpecK if
and only if A is finitely presented as aK-Algebra (see e. g. [8, Tag 01TQ]).

We have seen in Proposition 36 that the category of finitely presented
K-algebras is exactly the category K-Alg(Set)c of compact Set-based models
of K-Alg. Since K-Alg is of presheaf type (as it is algebraic), we can immedi-
ately conclude by Theorem 24 that [K-Alg(Set)c, Set] ' PSh(ZAR∗(SpecK))
is a classifying topos for K-Alg. What remains is to find the quotient of
K-Alg corresponding to the subtopos (SpecK)ZAR ' Sh(ZAR∗(SpecK), JZAR∗(SpecK))
of PSh(ZAR∗(SpecK)).

Lemma 59. The Grothendieck topology JZAR∗(SpecK) on ZAR∗(SpecK) '
K-Alg(Set)c

op is generated by the duals of the following families for n ∈ N≥0.

K[X1, . . . , Xn]/(X1 + . . .+Xn − 1)

K[X1, . . . , Xn, X
−1
i ]/(X1 + . . .+Xn − 1)

i = 1, . . . , n

(By the notation X−1i we of course mean the localization away from the
element Xi.)

Proof. The displayed families are special cases of the families from Lemma
57. And any such family A → A[a−1i ] with

∑
i ai = 1 can be obtained as a

pushout (pullback in ZAR∗(SpecK)) of the displayed family (for the same
n) along K[X1, . . . , Xn]/(X1 + . . . + Xn − 1) → A, Xi 7→ ai. Thus the
Grothendieck topology generated by the families in the statement indeed
contains all the sieves from Lemma 57.

Remark 60. The given set of generators for the topology JZAR∗(SpecK) is not
the smallest possible: taking only the families for n = 0 and n = 2 suf-
fices. The other families can be recovered by the transitivity property of a
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Grothendieck topology. This corresponds to the locality axioms, where also
the instances for n = 0 and n = 2 are sufficient.

Theorem 61. The big Zariski topos (SpecK)ZAR classifies the theory loc-K-Alg
of local K-algebras.

Proof. We use Theorem 31 to find the Gothendieck topology onK-Alg(Set)c
op

corresponding to the axioms

x1 + . . .+ xn = 1 `x1,...,xn:A
∨

i=1,...,n

∃y :A. xi · y = 1.

They are of the required form

φn `~xn
∨
j∈Jn

∃~yjn. θjn

with φn :≡ (x1 + . . . + xn = 1) (in the context x1, . . . , xn : A), ψin :≡
(x̃1 + . . . + x̃n = 1) ∧ (x̃i · y = 1) (in the context x̃1, . . . , x̃n, y : A) and
θin :≡ ψin ∧ (x1 = x̃1) ∧ . . . ∧ (xn = x̃n). We actually obtain in this way

x1+ . . .+xn = 1 `~x:An
∨

i=1,...,n

∃~̃x, y. (x̃1+ . . .+x̃n = 1)∧(x̃i ·y = 1)∧(~̃x = ~x),

but the right side is equivalent to
∨
i ∃y :A. (x1 + . . .+ xn = 1)∧ (x̃i · y = 1),

which is equivalent to the right side of the locality axioms modulo the left
side. Also, θin is provably functional from ψin to φn by construction.

Furthermore, the model Mφn := K[X1, . . . , Xn]/(X1 + . . . + Xn − 1) is
presented by the formula φn, as explained after Proposition 36. Similarly,
Mψin

:= K[X1, . . . , Xn, X
−1
i ]/(X1 + . . .+Xn − 1) ∼= K[X1, . . . , Xn, Y ]/(X1 +

. . .+Xn−1, XiY −1) is presented by ψin. So using Lemma 59, we only need to
show that the formula θin presents the canonical localization homomorphism
between these models. When we insert the generators X1, . . . , Xn, Y of Mψin

in θin for the variables x̃1, . . . , x̃n, y, the unique elements of Mψin
fulfilling

the resulting formula when inserted for the variables x1, . . . , x1 are of course
X1, . . . , Xn ∈Mψin

. And the unique homomorphism Mφn →Mψin
sending the

generators X1, . . . , Xn of Mφn to the elements X1, . . . , Xn ∈ Mψin
is indeed

the localization homomorphism.

8 The simple big infinitesimal topos

We first give the general definition and reduce to an algebraic situation before
explaining the simplifying assumption to be used in this section.
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Definition 62. Let X → S be schemes. The big infinitesimal topos of X
over S is the topos X/SINF := Sh(INF(X/S)), where INF(X/S) is the fol-
lowing site.

• Objects: Pairs of schemes T → S, U → X locally of finite presentation
over S respectively X, together with a closed immersion U → T over
S such that the corresponding quasi-coherent ideal sheaf I ⊆ OT is a
sheaf of nil ideals (i. e. every section on every open subset is nilpotent).

T U

S X

• Morphisms: Pairs of morphisms T ′ → T , U ′ → U compatible with the
other data.

T ′ U ′

S X

T U

• Grothendieck topology: A sieve on T ← U is JINF(X/S)-covering if and
only if it contains the arrows

Ti U ×T Ti

T U

for some open covering Ti ↪→ T .

This definition is in analogy to the little infinitesimal topos as defined in
[4, Section 4.1.]. Note that Ti ← U ×T Ti is indeed again a closed immersion
corresponding to a sheaf of nil ideals (namely the restriction of the sheaf
corresponding to U to the open set Ti).

Lemma 63. The full subcategory of INF(X/S) on the objects T ← U with
both T and U affine is dense.

Proof. For any object T ← U , we can cover T by affine opens Ti ↪→ T . Then
the pullbacks U ×T Ti are also affine, since U → T is a closed immersion.

We denote this dense full subcategory by INF∗(X/S).
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Lemma 64. Let JINF∗(X/S) = JINF(X/S)|INF∗(X/S) be the restriction of JINF(X/S)

to INF∗(X/S) as in the Comparison Lemma (Theorem 56). Then a sieve S̃
on T = SpecA← U = SpecB (given by f : A→ B) is JINF∗(X/S)-covering if

and only if there are elements a1, . . . , ak ∈ A such that
∑k

i=1 ai = 1 and all
the morphisms given by

A B

A[a−1i ] B[f(ai)
−1]

f

for i = 1, . . . , k lie in S̃.

Proof. The dual of the displayed family generates a JINF∗(X/S)-covering sieve,
because the SpecA[a−1i ]→ SpecA are an open covering and SpecB[f(ai)

−1]
is the pushout as in Definition 62. Now let S̃ be a sieve in ZAR∗(X/S) which
generates a covering sieve in ZAR(X/S). Then the generated sieve contains
arrows (Ti ← Ui) → (SpecA ← SpecB), where Ui = U ×SpecA Ti, such that
Ti → SpecA is an open covering. This can be chosen so that the Ti are
affine, i. e. of the above form SpecA[a−1i ] → SpecA. Then the Ui are affine
too, namely Ui ∼= SpecB[f(ai)

−1], so the dual of a family as displayed in the
statement was contained in S̃.

Lemma 65. If S = SpecK, X = SpecR are both affine, then the category
INF∗(SpecR/ SpecK) is equivalent to the full subcategory of K-Alg-R-NilQuot(Set)op

on those objects A� B such that A is a finitely presented K-algebra and B
is a finitely presented R-algebra.

Proof. Of course we want to map such an f : A � B to SpecA ← SpecB.
That A (respectively B) is a finitely presented K-algebra (respectively R-
algebra) is the same as to say that SpecA (respectively SpecB) is locally of
finite presentation over SpecK (respectively SpecR). The homomorphism f
being surjective corresponds to SpecA ← SpecB being a closed immersion,
and the kernel of f is a nil ideal if and only if the corresponding ideal sheaf
on SpecA is a sheaf of nil ideals.

To make use of Lemma 65, we need to prove that K-Alg-R-NilQuot is of
presheaf type and show that said subcategory is K-Alg-R-NilQuot(Set)c

op.
This is the point where we temporarily restrict our attention to a special
case, namely that of R = K.

Definition 66. Let S be a scheme. We call SINF := (S/S)INF = Sh(INF(S))
with INF(S) := INF(S/S) the simple big infinitesimal topos.
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We have seen in Corollary 14 that K-Alg-K-NilQuot is Morita-equivalent
to K-AlgNilQuot, and identified the compact models in Proposition 42 to be
those described in Lemma 65. It is still not obvious whether K-AlgNilQuot
is of presheaf type, since it contains the following nilpotence axiom, which
prevents it from being a cartesian theory.

x ∈ a `x:A
∨

n∈N≥0

xn = 0

We will now further reformulate this theory to a Morita-equivalent theory
which is cartesian.

If we had an upper bound N on the nilpotence index of (generalized)
elements of any model, we could simply replace the infinitary disjunction by
xN = 0. This is of course not possible, as there are models (already in Set)
with elements of arbitrarily high nilpotence index. Instead of deciding for
one of the formulas xn = 0 for a fixed n, we will impose them all, but under
different premises.

Let A be a ring (in Set) and N ⊆ A an arbitrary subset containing only
nilpotent elements. Then we can “stratify” N into the subsets Nn := {a ∈
N | an = 0}, for each of which there is a bound n on the nilpotence index of its
elements. To make this stratification unique, we must additionally require
Nn = {a ∈ Nn+1 | an = 0}. Finally, can we formulate the requirement
that N =

⋃
Nn should be an ideal, only refering to the Nn but not to

their union? This is possible, since the nilpotence index of elements can not
increase arbitrarily under the operations needed to define an ideal.

Proposition 67. The theory K-AlgNilQuot is Morita-equivalent to the the-
ory obtained from K-Alg by adding unary relation symbols an � A for
n ∈ N≥0 and the following axioms (for each n,m ∈ N≥0 wherever occur-
ing).

x ∈ an a`x:A (xn = 0) ∧ (x ∈ an+1)

> `[] 0 ∈ a1

x ∈ an `x,y:A x · y ∈ an

(x ∈ an) ∧ (y ∈ am) `x,y:A x+ y ∈ an+m−1

Proof. The conversion between models of the two theories is relatively simple
here, because the signatures only differ in relation symbols (a for one, an,
n ≥ 0 for the other). Given a model M of K-AlgNilQuot in any Grothendieck
topos, we define subobjects anM := J(x ∈ a) ∧ (xn = 0)KM ↪→ AM . We
have obtained a model of the second theory, since all of the above axioms
are provable in K-AlgNilQuot when every application x ∈ an of one of the
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relation symbols not present in K-AlgNilQuot is replaced by the formula
(x ∈ a) ∧ (xn = 0). (Here one calculates, within the theory, that (xy)n = 0
for xn = 0, and (x + y)n+m−1 = 0 for xn = 0, ym = 0.) Next, let instead
anM ↪→ AM be subobjects such that the above axioms are valid. Then we
set aM := J

∨
n≥0 x ∈ anK ↪→ AM , that is, aM is the union of the subobjects

anM . And this time, we have to check that aM fulfills the axioms for an ideal,
which is easily done.

To see that these constructions are inverses of each other (up to isomor-
phism, i. e. different representations of the same subobjects), we only have to
prove the following sequents, which follow readily from the respective axioms.

x ∈ a a`x:A
∨
n≥0

((x ∈ a) ∧ (xn = 0))

x ∈ an a`x:A (xn = 0) ∧
∨
n≥0

x ∈ an

There is no additional restriction imposed on homomorphisms of mod-
els by the relation symbols an, since (f(x))n = 0 follows from xn = 0 if
f satisfies the ring homomorphism axioms. (Or alternatively, since model
homomorphisms respect the interpretation of geometric formulas.) So the
established correspondence between models is indeed an equivalence of cate-
gories. Finally, naturality in the topos argument is given because geometric
morphisms preserve the interpretation of geometric formulas.

Corollary 68. The theory K-AlgNilQuot is of presheaf type, and therefore
classified by PSh(INF∗(SpecK)).

Proof. The theory given in Proposition 67 is a cartesian theory (in fact,
it is a Horn theory), so it is of presheaf type (by Theorem 21), and so is
K-AlgNilQuot. Theorem 24 and Lemma 65 provide the second part of the
statement.

Lemma 69. The Grothendieck topology JINF∗(SpecK) on INF∗(SpecK) '
K-AlgNilQuot(Set)c

op is generated by the duals of the following families for
n ∈ N≥0.

(0) / K[X1, . . . , Xn]/(X1 + . . .+Xn − 1)

(0) / K[X1, . . . , Xn, X
−1
i ]/(X1 + . . .+Xn − 1)

i = 1, . . . , n
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Proof. For X = S, the families displayed in Lemma 64 can be written as

a / A

a[a−1i ] / A[a−1i ]

i = 1, . . . , n

with a := ker(A � B), because B carries no extra structure than being
a quotient of A by a nil ideal. The families in the statement are clearly
special cases of this, so they do generate JINF∗(SpecK)-covering sieves. And by
pushout along ((0) /K[X1, . . . , Xn]/(X1 + . . .+Xn− 1))→ (a /A), Xj 7→ aj
we can again recover all covering sieves from these special cases.

Theorem 70. The simple big infinitesimal topos (SpecK)INF classifies the
theory loc-K-AlgNilQuot.

Proof. Just as for the big Zariski topos, we use Theorem 31 to describe
the topology on K-AlgNilQuot(Set)c

op corresponding to the locality axioms.
Indeed, we can take the same formulas as before, and only have to find
new models presented by them, this time in K-AlgNilQuot(Set) instead of
K-Alg(Set): φn :≡ (x1 + . . .+xn = 1), ψin :≡ (x̃1 + . . .+ x̃n = 1)∧ (x̃i ·y = 1)
and θin :≡ ψin ∧ (x1 = x̃1) ∧ . . . ∧ (xn = x̃n).

One can check that φn and ψin present precisely the models they presented
in K-Alg(Set), with a set to the zero ideal.

Mφn = ((0) / K[X1, . . . , Xn]/(X1 + . . .+Xn − 1))

Mψin
= ((0) / K[X1, . . . , Xn, X

−1
i ]/(X1 + . . .+Xn − 1))

This is because of the adjunction

HomK-AlgNilQuot(Set)((0) / A, a′ / A′) ∼= HomK-Alg(Set)(A,A
′)

we have already met in Proposition 42: The interpretation of a formula
of K-AlgNilQuot, which does not contain the relation symbol a, is, as a
functor K-AlgNilQuot(Set) → Set, the composition of the interpretation
of the same formula read as a formula of K-Alg and the forgetful functor
K-AlgNilQuot(Set)→ K-Alg(Set), (a / A) 7→ A. One can also check that θin
still presents the canonical localization homomorphism, so we have obtained,
as generating families for the topology corresponding to the locality axioms,
exactly the families from Lemma 69.
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9 The big infinitesimal topos

We now return to the general case of the big infinitesimal topos (SpecR/ SpecK)INF

for affine base schemes. As noted before, it would be very helpful to know
that K-Alg-R-NilQuot is of presheaf type. We do not even know this for
K-Alg-R-Quot, but here it seems very plausible in the following sense: K-Alg-R-Quot
differs from K-Alg-K-Quot, which is a theory of presheaf type, only in addi-
tional “algebraic data”. We will start by showing that K-Alg-R-Quot is of
presheaf type, using the concept of a rigid Grothendieck topology.

Definition 71. Let (C, J) be a site.

• An object c ∈ C is irreducible for the Grothendieck topology J if every
J-covering sieve on c is the maximal sieve (contains idc).

• The Grothendieck topology J is rigid if for every object c ∈ C, the sieve
on c generated by all arrows c′ → c with c′ irreducible is J-covering.

Lemma 72. Let (C, J) be a site with J a rigid Grothendieck topology. Let
C ′ be the full subcategory of C on the irreducible objects. Then we have
Sh(C, J) ' PSh(C ′) via the restriction of functors defined on Cop to C ′op.

Proof. We use the Comparison Lemma (Theorem 56). The only thing to
show is that the topology induced on C ′ by J is the trivial topology. So let
c ∈ C ′, S ′ a sieve on c in C ′, such that the sieve S generated by S ′ in C is
J-covering. Then S is the maximal sieve, idc ∈ S, since c is irreducible. This
means that there is an arrow f : d→ c in S ′ such that idc factorizes over f ,
but then we already had idc ∈ S ′, since S ′ is a sieve.

Let us denote by JQuot the topology on K-Alg-R-Alg(Set)c
op induced by

the quotient K-Alg-R-Quot of the theory K-Alg-R-Alg.

Lemma 73. The topology JQuot is generated by a single covering family con-
sisting of a single arrow, namely the dual of (K → R[X])→ (K[X]→ R[X]).

Proof. We use Theorem 31. The axiom

> `y:B ∃x :A. f(x) = y

is of the required form with φ :≡ > in the context y : B, ψ :≡ > in the
context x : A and θ :≡ (f(x) = y). (The potentially infinitary disjunction
was not needed here.) Of course, θ is provably functional from ψ to φ. And
φ, ψ respectively present the models K → R[X] and K[X] → R[X], as
the interpretation functors are the forgetful functors (A → B) 7→ B and
(A → B) 7→ A. Finally, θ presents the obvious arrow (K → R[X]) →
(K[X]→ R[X]).
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Lemma 74. A cosieve on (A → B) ∈ K-Alg-R-Alg(Set)c is JQuot-covering
if and only if it contains an arrow of the form

(A→ B)→ (A[X1, . . . , Xn]
Xi 7→bi−−−−→ B)

for some elements b1, . . . , bn ∈ B, n ∈ N≥0.

Proof. Via pushout along (K → R[X])
X 7→b−−−→ (A → B), the sieve generated

by the single arrow (A → B) → (A[X]
X 7→b−−−→ B) is JQuot-covering for any

b ∈ B. The arrows in the statement are n-fold compositions of such arrows,
so they generate JQuot-covering sieves by transitivity JQuot.

It is also clear that the generator from Lemma 73 is a special case of the
arrows in the statement. But we have to show that the indicated collection
of (co)sieves J is a Grothendieck topology. Maximal sieves lie in J by, e. g.,
n = 0. The pushout of (A → B) → (A[X1, . . . , Xn] → B) along (A →
B) → (A′ → B′) is simply A′[X1, . . . , Xn] → B′, so pullback of sieves (in
K-Alg-R-Alg(Set)c

op) remains in J . Finally, transitivity is satisfied by J ,
since the composition of two arrows as in the statement is again of that
form.

Proposition 75. If R is a finitely generated K-algebra, the Grothendieck
topology JQuot is rigid and K-Alg-R-Quot is of presheaf type.

Proof. Those (f : A→ B) ∈ K-Alg-R-Alg(Set)c with f surjective (or rather
their duals) are irreducible for JQuot: any covering cosieve contains an arrow

(A � B) → (A[X1, . . . , Xn]
Xi 7→bi−−−−→ B), and since f is surjective, there are

ai ∈ A with f(ai) = bi. Then, (A[X1, . . . , Xn] → B)
Xi 7→ai−−−−→ (A � B) is a

retract of the previous arrow, so the cosieve was maximal.
Secondly, any object A→ B can be covered by such irreducibles. Since B

is a finitely presented R-algebra and R is finitely generated as a K-algebra,
B is also finitely generated as a K-algebra. Then B is in particular finitely
generated as an A-algebra and the sieve generated by the dual of the following
arrow is covering.

A B

A[X1, . . . , Xn] B

It follows by Lemma 72 that K-Alg-R-Quot is of presheaf type.

We have identified the compact models of K-Alg-R-Quot in Corollary 47.
The Grothendieck topology on K-Alg-R-Quot(Set)c

op corresponding to the
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further quotient K-Alg-R-NilQuot will be denoted JNil. This time, applying
Theorem 31 will mean a bit more effort, since the formulas we use must
present models fulfilling the surjectivity axiom.

Lemma 76. Let R be finitely generated as a K-algebra by r1, . . . , rm ∈ R.
Then the Grothendieck topology JNil on K-Alg-R-Quot(Set)c

op is generated
by the following family indexed by n ∈ N≥0.

(K[R1, . . . , Rm, X]
Ri 7→ri−−−→
X 7→0

R)→ (K[~R,X]/(Xn)
Ri 7→ri−−−→
X 7→0

R)

(We allow ourselfs to write ~R for R1, . . . , Rm and similar extensively now.)

Proof. The additional axiom is

f(x) = 0 `x:A
∨
n≥0

xn = 0.

Since we do not know models of K-Alg-R-Quot which are presented by these
simple formulas, we introduce m new variables ~xR : Am of which we will
always require f(~xR) = ~r to make the models presented by our formulas in
K-Alg-R-Alg(Set) into such ones lying in K-Alg-R-Quot(Set). The axiom is
equivalent modulo K-Alg-R-Quot to

φ `x:A,~xR:Am
∨
n≥0

∃x̃ :A. ∃~̃xR : Am : θ. n,

φ :≡ (f(x) = 0) ∧ (f(~xR) = ~r),

θ :≡ φ ∧ (x̃ = x) ∧ (~̃xR = ~xR) ∧ (x̃n = 0).

Note, that the existence of ~xR with f(~xR) = ~r is indeed derivable inK-Alg-R-Quot.
The formula θn is provably functional from ψn to φ with

ψn :≡ (f(x̃) = 0) ∧ (x̃n = 0) ∧ (f(~̃xR) = ~r).

The models presented by φ and ψn are indeed the ones from the statement
and θ of course presents the obvious homomorphism.

To give a very explicit description of JNil, we strengthen the requirement
of R being a finitely generated K-algebra to even being finitely presented as
a K-algebra.

Lemma 77. Let R be a finitely presented K-algebra. A cosieve on (f : A�
B) ∈ K-Alg-R-Quot(Set)c is JNil-covering if and only if it contains all the
arrows

(A� B)→ (A/an � B)

for n ≥ 1, where a := ker f .
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Proof. Let us give the collection of sieves from the statement the name J
again. We first show that J is a Grothendieck topology. While maximal
sieves are trivially covering for J again, the pushout of a sieve containing
(A � B) → (A/an � B) along (A � B)

g−→ (A′ � B′) will contain
the arrows (A′ � B′) → (A′/a′ � B′), since g(a) ⊆ a′, so g(an) ⊆ a′n.
For transitivity, a sieve of composites will contain the arrows (A � B) →
(A/an � B)→ ((A/an)/(a/an)n � B) = (A/an � B).

Next, J contains the generator of JNil: in K[~R,X]� R, we have X ∈ ker,

so (K[~R,X]� R)→ (K[~R,X]/(Xn)� R) factorizes over (K[~R,X]/ kern �
R). This shows JNil ⊆ J .

For J ⊆ JNil, let (f : A� B) be any object, then ker f = a = (a1, . . . , ak)
is finitely generated, because both A and B are finitely presented K-algebras,
using that R is a finitely presented K-algebra. Let furthermore s1, . . . , sm ∈
A be such that f(si) = ri by surjectivity of f . Then form the following
pushout.

(K[~R,X]� R) (A� B)

(K[~R,X]/(Xn)� R) (A/an1 � B)

Ri 7→si
X 7→a1

By transitivity, the sieve generated by (A � B) → (A/(an1 , a
(
2n
′)) � B)

for n, n′ ≥ 1 lies in JNil. But this is already generated by (A � B) →
(A/(an1 , a

(
2n))� B) for n ≥ 1. By induction, we get the same with the ideals

(an1 , . . . , a
n
k), which are contained in an.

Proposition 78. If R is a finitely presented K-algebra, the Grothendieck
topology JNil on K-Alg-R-Quot(Set)c

op is rigid and the theory K-Alg-R-NilQuot
is of presheaf type.

Proof. The objects with nilpotent kernel an = 0 are irreducible, as this means
(A/an � B) = (A� B). Also, the kernel of A/an � B is nilpotent, so any
object can be covered by irreducibles.

The reasoning from rigid Grothendieck topologies to quotient theories
being of presheaf type, that we have used twice now, can be strengthend to
the following theorem.

Theorem 79. Let T be a geometric theory of presheaf type. Let T ′ be a
quotient of T corresponding to a Grothendieck topology J on T (Set)c

op. Then
J is rigid if and only if T ′ is of presheaf type and every compact object of
T ′(Set) is also compact as an object of T (Set).
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Proof. See [3, Theorem 8.2.6].

This completes our identification of the compact models ofK-Alg-R-NilQuot.

Corollary 80. Let R be finitely presented as a K-algebra. Then an object
A � B of K-Alg-R-NilQuot(Set) is compact if and only if A is a finitely
presented K-algebra and B is a finitely presented R-algebra.

Proof. Corollary 50 was the “if” part. The “only if” part is provided by
Proposition 78 and Thoerem 79.

Let JLoc be the Grothendieck topology on K-Alg-R-NilQuot(Set)c
op cor-

responding to the quotient theory loc-K-Alg-R-NilQuot.

Lemma 81. Let R be a finitely presented K-algebra. Specifically, let r1, . . . , rm ∈
R be generators for R as a K-algebra and let p1, . . . , pl ∈ K[R1, . . . , Rm] be
generators of the kernel. Then the Grothendieck topology JLoc on K-Alg-R-NilQuot(Set)c

op

is generated by the duals of the following families, one for each k ≥ 0, n ≥ 1.

K[~R, ~X]/(~pn, X1 + . . .+Xk − 1) R[ ~X]/(X1 + . . .+Xk − 1)

K[~R, ~X,X−1j ]/(~pn, X1 + . . .+Xk − 1) R[ ~X,X−1j ]/(X1 + . . .+Xk − 1)

Proof. The additional axioms are the locality axioms.

x1 + . . .+ xk = 1 `y:A
∨

j=1,...,k

xj · y = 1

We have to express this with formulas presenting models inK-Alg-R-NilQuot(Set).

First, α0 :≡ (f(~xR) = ~r) presents inK-Alg-R-Alg(Set) the modelK[~R]
Ri 7→ri−−−→

R. This is surjective, but the kernel is not a nil ideal yet. The formulas
αn :≡ (f(~xR) = ~r) ∧

∧
i=1,...,l(pi(~xR)n = 0) present K[~R]/(pn1 , . . . , p

n
l ) � R,

which does lie in K-Alg-R-NilQuot(Set).
We formulate the axioms

φnk `~xR,~x
∨

j=1,...,k

∃~̃xR. ∃~̃x. ∃y :A. θnk,j,

φnk :≡ αn ∧ (x1 + . . .+ xk = 1),

θnk,j :≡ (~̃xR = ~xR) ∧ (~̃x = ~x) ∧ ψnk,j,
ψnk,j :≡ αn[~̃xR/~xR] ∧ (x̃1 + . . .+ x̃k = 1) ∧ (y · x̃j = 1).
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One can see that θnk,j is provably functional from ψnk,j to φnk . The models pre-
sented by φnk and ψnk,j inK-Alg-R-Alg(Set), and therefore inK-Alg-R-NilQuot(Set),
are the ones in the statement. And θnk,j presents the canonical localization
homomorphism.

One can also see that these axioms, for fixed k and varying n, are equiva-
lent modulo K-Alg-R-NilQuot to the locality axiom for the same k. Indeed,
we need both the surjectivity axiom and the nilpotence axiom to eliminate
the additional condition

∨
n≥1 α

n which can be separated out when combining
the axioms for varying n.

Theorem 82. Let K be a ring and R be a finitely presented K-algebra.
Then the big infinitesimal topos (SpecR/ SpecK)INF classifies the theory
loc-K-Alg-R-NilQuot.

Proof. We only have to show that the families of Lemma 81 generate the
Grothendieck topology JINF∗ := JINF∗(SpecR/ SpecK) described in Lemma 64.
Our generators are clearly instances of the families for JINF∗ . Conversely, let
(f : A � B) ∈ K-Alg-R-NilQuot(Set)c be any object and a1 + . . . + ak = 1
in A. Then there are elements aR,i ∈ A with f(aR,i) = ri, because f is
surjective. And since f(pi(~aR)) = 0 and the kernel of f is a nil ideal, we find
an n such that pi(~aR)n = 0 for all i. Then we can use our generator for that
k and n to obtain the required family from Lemma 64 as a pushout along
Xi 7→ ai, Ri 7→ aR,i.
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