PROFINITE MONADS AND REITERMAN’S THEOREM

Jiří Adámek
Czech Technical University Prague

Jan Reiterman characterized in 1980’s pseudovarieties \mathcal{D} of finite algebras, i.e., classes closed under finite products, subalgebras and quotients: they are precisely the classes that can be presented by equations between profinite terms, see [1]. A profinite term is an element of the profinite monad which is the codensity monad of the forgetful functor of $Pro\mathcal{D}$, the profinite completion of the given pseudovariety.

We have recently generalized this result to pseudovarieties of \mathcal{T}-algebras where \mathcal{T} is a monad over a base category which can be an arbitrary locally finite variety of (possibly ordered) algebras, see [2]. But now we realize that a much more general result holds: the base category need not be a variety, it can be an arbitrary complete and wellpowered category \mathcal{D} in which a full subcategory \mathcal{D}_f (of objects called ‘finite’) is chosen so that

(i) \mathcal{D}_f is closed under subobjects,

(ii) every finite object is strong quotient of a strongly projective object, and

(iii) all strong epimorphisms in \mathcal{D}_f are closed under cofiltered limits.

For every monad over \mathcal{D} preserving strong epimorphisms we then introduce its profinite monad on $Pro\mathcal{D}_f$ and the corresponding concept of profinite equation. We then prove that a collection of finite algebras (i.e., \mathcal{T}-algebras carried by objects of \mathcal{D}_f) is a pseudovariety iff it can be presented by profinite equations. As a special case we obtain the result of Pin and Weil about pseudovarieties of first-order structures, see [3].

References

