Alasdair Caimbeul

Centre of Australian Category Theory Macquarie University

> Category Theory 2019 Oilthigh Dhùn Èideann 10 Iuchar 2019

Coherence for bicategories

Every bicategory is biequivalent to a 2-category.

Moreover, one can model the **category theory** of bicategories by "2-category theory":

Lack, A 2-categories companion:

2-category theory is a "middle way" between **Cat**-category theory and bicategory theory. It uses enriched category theory, but not in the simple minded way of **Cat**-category theory; and it cuts through some of the technical nightmares of bicategories.

This could also be described as "homotopy coherent" **Cat**-category theory; we enrich over **Cat** not merely as a monoidal category, but as a monoidal category with inherent higher structure: **Cat** as a **monoidal model category**.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

One dimension higher:

Theorem (Gordon–Power–Street)

Every tricategory is triequivalent to a **Gray**-category.

Gray denotes the category **2-Cat** equipped with Gray's symmetric monoidal closed structure.

2-Cat is a monoidal model category with respect to this monoidal structure and Lack's model structure.

To a large extent, one can model the category theory of tricategories by "homotopy coherent" **Gray**-category theory.

However, there is a fundamental obstruction to the development of a *purely* **Gray**-enriched model for three-dimensional category theory:

Not every 2-category is **cofibrant** in Lack's model structure.

In practice, the result is that certain basic constructions fail to define ${\bf Gray}\mbox{-}functors;$ they are at best "locally weak ${\bf Gray}\mbox{-}functors"$.

This obstruction can be overcome by the introduction of a new base for enrichment: the monoidal model category $2-Cat_Q$ of algebraically cofibrant 2-categories, which is the subject of this talk.

We will see that:

- Every object of **2**-**Cat**_Q is cofibrant.
- 2-Cat_Q is monoidally Quillen equivalent to 2-Cat.

- 2 The left-induced model structure
- 3 Bicategories as fibrant objects
 - 4 Monoidal structures
- 5 A counterexample

- 2 The left-induced model structure
- Bicategories as fibrant objects
- 4 Monoidal structures
- 5 A counterexample

Let Q denote the normal pseudofunctor classifier comonad on 2-Cat.

2-Cat
$$\xrightarrow{Q}$$
 2-Cat_{nps} $QA \longrightarrow B$ 2-functors
 $A \longrightarrow B$ normal pseudofunctors

The 2-category QA can be constructed by taking the (boba, loc ff) factorisation of the "composition" 2-functor $PUA \longrightarrow A$. (PUA = the free category on the underlying reflexive graph of A)

$$PUA \xrightarrow{\text{boba}} QA \xrightarrow{\text{loc ff}} A$$

The coalgebraic definition of **2-Cat**_Q

Define $2-Cat_Q$ to be the category of coalgebras for the normal pseudofunctor classifier comonad Q on 2-Cat.

A 2-category admits at most one Q-coalgebra structure, and does so if and only if it is **cofibrant**, i.e. its underlying category is **free**.

Alasdair Caimbeul (CoACT)

The model cat of alg cofibrant 2-cats

7 / 31

The category of free categories I

Definition (atomic morphism)

A morphism f in a category is **atomic** if:

- (i) f is not an identity, and
- (ii) if f = hg, then g is an identity or h is an identity.

Definition (free category)

A category *C* is **free** if every morphism *f* in *C* can be uniquely expressed as a composite of atomic morphisms ($n \ge 0$, $f = f_n \circ \cdots \circ f_1$).

Definition (morphism of free categories)

A functor $C \longrightarrow D$ between free categories is a **morphism of free** categories if it sends each atomic morphism in C to an atomic morphism or an identity morphism in D.

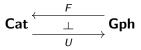
These objects and morphisms form the category of free categories.

Alasdair Caimbeul (CoACT)

8 / 31

The category of free categories II

Let **Gph** denote the category of **reflexive graphs**. Recall the free-forgetful adjunction:



Write P = FU for the induced comonad on **Cat**. A category admits at most one *P*-coalgebra structure, and does so if and only if it is free.

Proposition

The following three categories are isomorphic.

- The category of free categories and their morphisms.
- **2** The replete image of the (pseudomonic) functor F: **Gph** \rightarrow **Cat**.
- The category Cat_P of coalgebras for the comonad P on Cat.

Furthermore, each of these categories is equivalent to the category ${f Gph}$ of reflexive graphs.

イロト 不得下 イヨト イヨト

The category of cofibrant 2-categories

Definition (cofibrant 2-category)

A 2-category is **cofibrant** if its underlying category is free.

Definition (morphism of cofibrant 2-categories)

A 2-functor between cofibrant 2-categories is a **morphism of cofibrant** 2-categories if its underlying functor is a morphism of free categories.

Proposition (the elementary definition of $2-Cat_Q$)

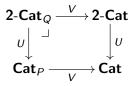
The category $2-Cat_Q$ is isomorphic to the (replete, non-full) subcategory of 2-Cat consisting of the cofibrant 2-categories and their morphisms.

The comonadic functor $V: 2\text{-}Cat_Q \longrightarrow 2\text{-}Cat$ is the replete subcategory inclusion.

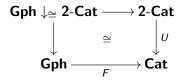
イロト イヨト イヨト イヨト

$2-Cat_Q$ as an iso-comma category

Thus the category $2-Cat_Q$ is the pullback:



Furthermore, $2-Cat_Q$ is equivalent to the iso-comma category



in which an object (X, A, φ) consists of a reflexive graph X, a 2-category A, and a boba 2-functor $\varphi \colon FX \longrightarrow A$.

CT2019 Dùn Èideann

Categorical properties of $2-Cat_Q$

It is immediate from either definition that:

Observation

The inclusion functor $V: 2\text{-}Cat_Q \longrightarrow 2\text{-}Cat$

- is pseudomonic (i.e. faithful, and full on isomorphisms),
- creates colimits,
- has a right adjoint.

$$2\operatorname{-Cat} \xrightarrow[Q]{} V \longrightarrow 2\operatorname{-Cat}_Q$$

Moreover, it is not difficult to prove that:

2 The left-induced model structure

3 Bicategories as fibrant objects

4 Monoidal structures

5 A counterexample

Lack's model structure for 2-categories

The goal of this section is to prove that $2-Cat_Q$ admits a model structure **left-induced** from **Lack's model structure for** 2-**categories** along the inclusion $V: 2-Cat_Q \longrightarrow 2-Cat$.

Lack's model structure on 2-Cat

Lack constructed a model structure on **2-Cat** in which a 2-functor $F: A \longrightarrow B$ is:

- a weak equivalence iff it is a biequivalence, i.e. is surjective on objects up to equivalence, and is an equivalence on hom-categories;
- a **fibration** iff it is an **equifibration**, i.e. has the equivalence lifting property, and is an isofibration on hom-categories;
- a **trivial fibration** iff it is surjective on objects, and is a surjective equivalence on hom-categories.

Every 2-category is fibrant in this model structure.

A 2-category is cofibrant in this model structure if and only if it is a cofibrant 2-category.

Alasdair Caimbeul (CoACT)

CT2019 Dùn Èideann

The goal of this section is to prove that $2-Cat_Q$ admits a model structure in which a morphism of cofibrant 2-categories is:

- a cofibration iff it is a cofibration in Lack's model structure on 2-Cat,
- a weak equivalence iff it is a weak equivalence in Lack's model structure on 2-Cat (i.e. a biequivalence).

Nec. & suff. conditions for existence of the left-induced model structure

The left-induced model structure on $2-Cat_Q$ exists if and only if

- **()** the cofibrations in $2-Cat_Q$ form the left class of a wfs on $2-Cat_Q$,
- the trivial cofibrations in 2-Cat_Q form the left class of a wfs on 2-Cat_Q, and
- the acyclicity condition holds: in 2-Cat_Q, any morphism with the RLP wrt all cofibrations is a biequivalence.

In general, the cofibrations in Lack's model structure on $2-Cat_Q$ are difficult to describe explicitly. However:

Proposition

Let $F : A \longrightarrow B$ be a 2-functor between cofibrant 2-categories. Then the following are equivalent.

- (i) F is a cofibration in Lack's model structure on 2-Cat.
- (ii) The underlying functor of F is free on a monomorphism of reflexive graphs.

Hence every cofibration in **2-Cat** between cofibrant 2-categories is a morphism of cofibrant 2-categories.

Trivial fibrations

The (monomorphism, trivial fibration) wfs on Gph

A morphism of reflexive graphs is said to be a **trivial fibration** if it is surjective on objects and full.

The classes (monomorphism, trivial fibration) form a wfs on the category **Gph** of reflexive graphs.

Definition (trivial fibration in $2-Cat_Q$)

A morphism of cofibrant 2-categories is a **trivial fibration** (as a morphism in 2-Cat_Q) if

- its underlying functor is free on a trivial fibration of reflexive graphs,
- 2 it is locally fully faithful.

Proposition

If a morphism of cofibrant 2-quasi-categories is a trivial fibration (as a morphism in $2-Cat_Q$), then it is a biequivalence.

Alasdair Caimbeul (CoACT)

The model cat of alg cofibrant 2-cats

17 / 31

The (cofib, triv fib) wfs & the acyclicity condition

Proposition

The classes (cofibration, trivial fibration) form a (cofibrantly generated) weak factorisation system on $2-Cat_Q$.

Proof.

Construct factorisations and diagonal fillers using:

- the equivalence of categories $2\text{-Cat}_Q \simeq \text{Gph} \downarrow_\cong 2\text{-Cat}$,
- the (monomonorphism, trivial fibration) wfs on Gph, and
- the (boba, loc ff) factorisation system on 2-Cat.

This is condition (1) for the existence of the left-induced model structure. We can also deduce condition (3).

Corollary (acyclicity condition)

In 2-Cat_Q, any morphism with the RLP wrt all cofibrations is a trivial fibration (in 2-Cat_Q), and hence a biequivalence.

Alasdair Caimbeul (CoACT)

The (trivial cofibration, fibration) wfs

Proposition

The trivial cofibrations in 2-Cat_Q form the left class of a (cofibrantly generated) wfs on 2-Cat_Q.

Proof.

In **2-Cat**, the trivial cofibrations and fibrations for Lack's model structure on **2-Cat** form a cofibrantly generated wfs.

The inclusion 2-Cat_Q \longrightarrow 2-Cat is a left adjoint functor between locally (finitely) presentable categories.

A theorem of Makkai–Rosický then implies that the trivial cofibrations in **2-Cat**_Q form the left class of a (cofibrantly generated) wfs on **2-Cat**_Q.

Theorem (existence of the left-induced model structure)

There exists a (combinatorial) model structure on 2-Cat_Q whose cofibrations and weak equivalences are created by the inclusion functor $2\text{-Cat}_Q \longrightarrow 2\text{-Cat}$ from Lack's model structure for 2-categories.

A Quillen equivalence

Theorem

The adjunction

$$2\text{-Cat} \xrightarrow[Q]{} V 2\text{-Cat}_Q$$

is a Quillen equivalence between Lack's model structure on 2-Cat and the left-induced model structure on 2-Cat_Q.

Proof.

By definition of the model structure on 2-Cat_Q , the left adjoint preserves cofibrations, and preserves and reflects weak equivalences. For each 2-category *A*, the counit morphism $QA \longrightarrow A$ is a weak equivalence in 2-Cat.

20 / 31

- 2 The left-induced model structure
- Bicategories as fibrant objects
- 4 Monoidal structures
- 5 A counterexample

21 / 31

Fibrant objects

The functor $Q: 2\text{-}Cat \longrightarrow 2\text{-}Cat_Q$ is a right Quillen functor. Hence, for every 2-category A, QA is a fibrant object in $2\text{-}Cat_Q$.

Proposition

A cofibrant 2-category is a fibrant object in the left-induced model structure on $2-Cat_Q$ if and only if it is a retract in $2-Cat_Q$ of the normal pseudofunctor classifier QA of some 2-category A.

Proof.

Sufficiency: A retract of a fibrant object is fibrant. Necessity: For every cofibrant 2-category A, the Q-coalgebra structure map $\alpha: A \longrightarrow QA$ is a trivial cofibration in **2-Cat**_Q.

The full subcategory of fibrant objects

The full image of the functor $Q: 2\text{-Cat} \longrightarrow 2\text{-Cat}_Q$ is the category 2-Cat_{nps} of 2-categories and normal pseudofunctors (= the Kleisli category for the comonad Q on 2-Cat).

 $2\operatorname{\mathsf{-Cat}}_Q(QA,QB)\cong 2\operatorname{\mathsf{-Cat}}(QA,B)\cong 2\operatorname{\mathsf{-Cat}}_{\operatorname{\mathsf{nps}}}(A,B)$

So we have a functor $Q \colon 2\text{-}\mathsf{Cat}_{\mathsf{nps}} \longrightarrow (2\text{-}\mathsf{Cat}_Q)_{\mathrm{fib}}$ which is

- fully faithful, and
- surjective on objects up to retracts.

Hence this functor witnesses $(2\text{-}Cat_{Q})_{\rm fib}$ as the Cauchy completion of $2\text{-}Cat_{nps}.$

But the Cauchy completion of 2-Cat_{nps} is none other than Bicat_{nps}.

Theorem

The normal strictification functor Q: Bicat_{nps} \longrightarrow 2-Cat_Q is fully faithful, and its essential image consists of the fibrant objects for the left-induced model structure.

Theorem

Let A be a cofibrant 2-category. Then the following are equivalent.

- (i) A is a fibrant object in the left-induced model structure on $2-Cat_Q$.
- (ii) $A \cong QB$ for some bicategory B.
- (iii) Every non-identity morphism in A is isomorphic (via an invertible 2-cell) to an atomic morphism in A.
- (iv) A has the RLP in 2-Cat_Q wrt $3 \rightarrow Q3$.

Proof.

The step (iii) \Rightarrow (ii) uses two-dimensional monad theory.

Theorem

Let $F : A \longrightarrow B$ be a normal pseudofunctor between bicategories. Then the following are equivalent.

- (i) $QF: QA \longrightarrow QB$ is a fibration in the left-induced model structure on **2-Cat**_Q.
- (ii) $F: A \longrightarrow B$ is an equifibration, i.e. has the equivalence lifting property and is an isofibration on hom-categories.

This theorem characterises the fibrations with fibrant codomain in $2-Cat_Q$.

I do not have an explicit description of the fibrations in $2-Cat_Q$ with arbitrary codomain.

Remark

The left-induced model structure on $2-Cat_Q$ is not right proper.

(日) (同) (三) (三)

- 2 The left-induced model structure
- 3 Bicategories as fibrant objects
- 4 Monoidal structures
- 5 A counterexample

The (symmetric) Gray tensor product of two cofibrant 2-categories is cofibrant. Also, $\mathbf{1}$ is cofibrant.

Since the inclusion $2\text{-Cat}_Q \longrightarrow 2\text{-Cat}$ is full on isomorphisms, Gray's symmetric monoidal structure on 2-Cat restricts to one on 2-Cat_Q . By the adjoint functor theorem (or by direct construction), this symmetric monoidal structure on 2-Cat_Q is closed.

Theorem

2-Cat_Q is a monoidal model category wrt the Gray monoidal structure and the left-induced model structure. The adjunction $V \dashv Q: 2\text{-Cat} \longrightarrow 2\text{-Cat}_Q$ is a monoidal Quillen equivalence.

If A and B are bicategories, then [QA, QB] = QHom(A, B).

A category enriched over $2-Cat_Q$ (with the Gray monoidal structure) is a "locally cofibrant **Gray**-category". E.g. **Bicat_{nps}** underlies a locally cofibrant **Gray**-category with homs as above.

The cartesian closed structure

Unlike Lack's model structure on 2-Cat, the left-induced model structure on 2-Cat_Q is also cartesian.

Theorem

The category 2-Cat_Q is cartesian closed, and is a cartesian model category wrt the left-induced model structure.

The full embedding $Q: \operatorname{Bicat}_{\operatorname{nps}} \longrightarrow 2\operatorname{-Cat}_Q$ is a cartesian closed functor.

Let A and B be cofibrant 2-categories, and let $FX \longrightarrow A$ and $FY \longrightarrow B$ be boba 2-functors. The cartesian product $A \boxtimes B$ in **2-Cat**_Q can be constructed via the (boba, loc ff) factorisation of $F(X \times Y) \longrightarrow A \times B$

$$F(X \times Y) \xrightarrow{\text{boba}} A \boxtimes B \xrightarrow{\text{loc ff}} A \times B$$

$$2 \otimes 2 = \bigcup_{i \to i} \cong \bigcup_{i \to i} ; \quad 2 \boxtimes 2 = \bigcup_{i \to i} \cong \bigcup_{i \to i} \boxtimes A \otimes B$$

- 2 The left-induced model structure
- 3 Bicategories as fibrant objects
- 4 Monoidal structures
- 5 A counterexample

29 / 31

Model categories of algebraically cofibrant objects?

Nikolaus and Bourke have shown that, if \mathcal{M} is a "nice" (e.g. combinatorial) model category, then for any **fibrant replacement monad** T on \mathcal{M} , the category \mathcal{M}^T of T-algebras ("algebraically fibrant objects") admits a model structure, right-induced from \mathcal{M} along the forgetful functor $U: \mathcal{M}^T \longrightarrow \mathcal{M}$.

It has been asked (Ching–Riehl, Bourke): for any combinatorial model category \mathcal{M} and any **cofibrant replacement comonad** G on \mathcal{M} , does the category of G-coalgebras ("algebraically cofibrant objects") admit a model structure left-induced from \mathcal{M} along the forgetful functor $\mathcal{M}_G \longrightarrow \mathcal{M}$?

Counterexample

Let Q_{non} denote the **non-normal** pseudofunctor classifier comonad on **2-Cat**. Then the category of Q_{non} -coalgebras does **not** admit a model structure left-induced from **2-Cat** along **2-Cat**_{Q_{non}} \longrightarrow **2-Cat**. In **2-Cat**_{Q_{non}}, **1** + **1** \longrightarrow **1** has the RLP wrt all cofibrations, but is not a biequivalence.

э

イロト 不得下 イヨト イヨト

Tapadh leibh!

э