Graphical regular logic

Brendan Fong, with David Spivak

Category Theory 2019 University of Edinburgh 8 July 2019

Baez, Pollard: A compositional framework for reaction networks

Rosebrugh, Sabadini, Walters: Calculating colimits compositionally

Bonchi, Sobocinski, Zanasi: A categorical semantics of signal flow graphs

Spivak: The operad of wiring diagrams

The category of cospan algebras is equivalent to the category of objectwise-free hypergraph categories

$$\left\{ \begin{array}{c} \mathbb{C}\mathsf{ospan}_T^{\mathsf{co}} \xrightarrow{\mathsf{lax} \; \mathsf{monoidal}} \mathbb{P}\mathsf{oset} \right\} \\ & \uparrow \downarrow \\ \left\{ & \mathsf{categories} \right\} \\ \end{array}$$

```
 \left\{ \mathbb{C}\mathsf{ospan}_T^\mathsf{co} \xrightarrow{\mathsf{right ajax monoidal}} \mathbb{P}\mathsf{oset} \right\}   \left\{ \qquad \qquad \mathsf{categories} \right\}
```

```
 \left\{ \begin{array}{c} \mathbb{C}\mathsf{ospan}_T^{\mathsf{co}} \xrightarrow{\mathsf{right ajax monoidal}} \mathbb{P}\mathsf{oset} \right\} \\ \\ \mathsf{subobject lattices} \\ \\ \left\{ \begin{array}{c} \mathit{regular categories} \end{array} \right\}
```

```
 \left\{ \mathbb{C}\mathsf{ospan}_T^\mathsf{co} \xrightarrow{\mathsf{right ajax monoidal}} \mathbb{P}\mathsf{oset} \right\}  \mathsf{subobject lattices} \uparrow \quad \downarrow \mathsf{syntactic category}   \left\{ \begin{array}{c} \mathit{regular categories} \end{array} \right\}
```

Key idea: Regular calculi present regular categories.

Outline

- I. Motivation
- II. The theorem
- III. Proof sketch

II. The theorem

RgCat

A **regular category** is a category with finite limits and pullback stable image factorisations.

A **regular functor** is a functor between regular categories that preserves finite limits and image factorisations.

Examples: FinSet, FinSet^{op}, Set, Set^{op}, FDVect, Vect, abelian categories, toposes, any category monadic over Set, . . .

Given a regular category \mathcal{R} , we may construct its **relations bicategory** \mathbb{R} el $_{\mathcal{R}}$ with the same objects, but where 1-morphisms are jointly-monic spans.

Ajax functors

A **right ajax (monoidal) functor** is a lax monoidal functor $P: \mathbb{C} \to \mathbb{D}$ in which the laxators are right adjoints.

$$I_{\mathbb{D}} \xrightarrow[\lambda_{I}]{\rho_{I}} P(I_{\mathbb{C}}) \qquad P(c_{1}) \otimes P(c_{2}) \xrightarrow[\lambda_{c_{1},c_{2}}]{\rho_{c_{1},c_{2}}} P(c_{1} \otimes c_{2}) .$$

Example: a right ajax functor $P: 1 \to \mathbb{P}$ oset is a meet semilattice.

$$1 \xrightarrow{\stackrel{\mathsf{T}}{\longleftarrow}} P(\bullet) \qquad P(\bullet) \times P(\bullet) \xrightarrow{\stackrel{\wedge}{\longleftarrow}} P(\bullet) .$$

RgCalc

A **regular calculus** (T, P) is a set T and a right ajax functor

$$P: \mathbb{C}\mathsf{ospan}_T^{\mathrm{co}} \longrightarrow \mathbb{P}\mathsf{oset}.$$

A morphism $(F, F^{\sharp}): (T, P) \to (T', P')$ of regular calculi is a function F and a monoidal natural transformation F^{\sharp} :

Theorem

We have an adjunction

$$\mathsf{RgCalc} \xrightarrow{\underset{\mathbf{prd}}{\overset{\mathbf{syn}}{\Longrightarrow}}} \mathsf{RgCat}.$$

where \mathbf{prd} is fully faithful, and for any regular category \mathcal{R} , the counit map $\mathbf{syn}(\mathbf{prd}(\mathcal{R})) \to \mathcal{R}$ is an equivalence.

```
 \left\{ \begin{array}{c} \mathbb{C}\mathsf{ospan}_T^{\mathsf{co}} \xrightarrow{\mathsf{right ajax monoidal}} \mathbb{P}\mathsf{oset} \right\} \\ \\ \mathsf{subobject lattices} \uparrow \quad \Big\downarrow \mathsf{syntactic category} \\ \\ \left\{ \begin{array}{c} \mathit{regular categories} \end{array} \right\}
```

Key idea: Regular calculi present regular categories.

```
 \left\{ \mathbb{R}el_{\mathsf{FreeReg}_T} \xrightarrow{\mathsf{right ajax monoidal}} \mathbb{P}\mathsf{oset} \right\}  \mathsf{subobject lattices} \uparrow \quad \downarrow \mathsf{syntactic category}   \left\{ \begin{array}{c} \mathit{regular categories} \end{array} \right\}
```

Key idea: Regular calculi present regular categories.

III. Proof sketch

$$RgCalc \xrightarrow{\sup_{\mathbf{prd}}} RgCat.$$

Given a regular category R, we construct the regular calculus

$$\operatorname{prd}(\mathcal{R})$$
: $\mathbb{C}\operatorname{ospan}_{\operatorname{Ob}\mathcal{R}}^{\operatorname{co}} \xrightarrow{\operatorname{\mathsf{Frob}}} \mathbb{R}\operatorname{\mathsf{el}}_{\mathcal{R}} \xrightarrow{\mathbb{R}\operatorname{\mathsf{el}}_{\mathcal{R}}(1,-)} \mathbb{P}\operatorname{oset}$

where Frob is given by the hypergraph structure on $\mathbb{R}el_{\mathcal{R}}$.

Given a regular calculus $P:\mathbb{C}ospan_T^{co}\to \mathbb{P}oset$, we may construct the bicategory $\mathbb{R}el_{\mathbf{syn}(P)}$:

objects:
$$\{(\Gamma, s) \mid \Gamma \in \mathbb{C} \text{ospan}_T^{\text{co}}, s \in P(\Gamma)\}$$

hom-posets:
$$\operatorname{Hom}((\Gamma, s), (\Gamma', s')) = P(\Gamma \oplus \Gamma')_{-\leq \rho(s, s')}$$

The *syntactic category* $\mathbf{syn}(P)$ is the category of left adjoints in $\mathbb{R}el_{\mathbf{syn}(P)}$.

Given any regular calculus, we may draw and interpret diagrams such as those below. The properties of regular calculi give 'deduction rules':

One might view this as a graphical regular logic, where **regular logic** is the fragment of first order logic given by =, \top , \wedge , \exists .

$$\psi(u,v,w,x,y,z) =$$

 $\exists a, b.\theta_1(u, b, y, y) \land \theta_2(a, b, u) \land \theta_3(b, x, y) \land (v = w) \land (z = z).$

Pullback:

$$\begin{pmatrix}
\Gamma_1 \oplus \Gamma_2, & \\
\downarrow & \\
(\Gamma_1, \varphi_1) & \\
& \theta_1
\end{pmatrix} \longrightarrow (\Gamma_2, \varphi_2) \\
\downarrow \theta_2 \\
(\Gamma_1, \varphi_1) & \\
& \theta_1
\end{pmatrix}$$

Equaliser:

$$\left(\Gamma, \xrightarrow{\theta}\right) \longrightarrow (\Gamma, s) \xrightarrow{\theta} (\Gamma', s')$$

Epi-mono factorisation:

$$\Gamma'$$
 - θ - Γ =

Theorem

We have an adjunction

$$\mathsf{RgCalc} \xrightarrow{\overset{\mathbf{syn}}{\longleftarrow}} \mathsf{RgCat}.$$

where prd is fully faithful, and for any regular category \mathcal{R} , the counit map $\operatorname{syn}(\operatorname{prd}(\mathcal{R})) \to \mathcal{R}$ is an equivalence.