
homotopy-coherent algebras and polynomial
monads
arXiv:1907.03977

Hongyi Chu1 Rune Haugseng2

Category Theory 2019
1Max Planck Institute for Mathematics
Bonn, Germany

2Center for Geometry and Physics
Institute for Basic Science
Pohang, Republic of Korea

0



homotopy-coherent algebras

Homotopy coherent algebras: identities are replaced by an
infinite hierarchy of compatible coherence equivalences.

Example

In 1974 Segal defined “special Γ-spaces” = commutative (or
E∞-)monoids in spaces.

Let F∗ = category of pointed finite sets and let S =∞-category
of spaces. A special Γ-space is a functor

F : F∗ → S

satisfying the Segal condition (F(⟨n⟩) ∼→
∏n
i=1 F(⟨1⟩)).

1



homotopy-coherent algebras

Homotopy coherent algebras: identities are replaced by an
infinite hierarchy of compatible coherence equivalences.

Example

In 1974 Segal defined “special Γ-spaces” = commutative (or
E∞-)monoids in spaces.

Let F∗ = category of pointed finite sets and let S =∞-category
of spaces. A special Γ-space is a functor

F : F∗ → S

satisfying the Segal condition (F(⟨n⟩) ∼→
∏n
i=1 F(⟨1⟩)).

1



homotopy-coherent algebras

Homotopy coherent algebras: identities are replaced by an
infinite hierarchy of compatible coherence equivalences.

Example

In 1974 Segal defined “special Γ-spaces” = commutative (or
E∞-)monoids in spaces.

Let F∗ = category of pointed finite sets and let S =∞-category
of spaces. A special Γ-space is a functor

F : F∗ → S

satisfying the Segal condition (F(⟨n⟩) ∼→
∏n
i=1 F(⟨1⟩)).

1



homotopy-coherent algebras

Examples

∙ ∞-categories (Rezk’s Segal spaces): simplex category ∆op

∙ (∞,n)-categories: Joyal’s categories Θop
n

∙ n-fold∞-categories: ∆n,op

∙ ∞-operads: the dendroidal category Ωop of Moerdijk and
Weiss

∙ ∞-properads: Γop of Hackney, Robertson and Yau

2



homotopy-coherent algebras

Examples

∙ ∞-categories (Rezk’s Segal spaces): simplex category ∆op

∙ (∞,n)-categories: Joyal’s categories Θop
n

∙ n-fold∞-categories: ∆n,op

∙ ∞-operads: the dendroidal category Ωop of Moerdijk and
Weiss

∙ ∞-properads: Γop of Hackney, Robertson and Yau

2



homotopy-coherent algebras

Examples

∙ ∞-categories (Rezk’s Segal spaces): simplex category ∆op

∙ (∞,n)-categories: Joyal’s categories Θop
n

∙ n-fold∞-categories: ∆n,op

∙ ∞-operads: the dendroidal category Ωop of Moerdijk and
Weiss

∙ ∞-properads: Γop of Hackney, Robertson and Yau

2



homotopy-coherent algebras

Examples

∙ ∞-categories (Rezk’s Segal spaces): simplex category ∆op

∙ (∞,n)-categories: Joyal’s categories Θop
n

∙ n-fold∞-categories: ∆n,op

∙ ∞-operads: the dendroidal category Ωop of Moerdijk and
Weiss

∙ ∞-properads: Γop of Hackney, Robertson and Yau

2



homotopy-coherent algebras

Examples

∙ ∞-categories (Rezk’s Segal spaces): simplex category ∆op

∙ (∞,n)-categories: Joyal’s categories Θop
n

∙ n-fold∞-categories: ∆n,op

∙ ∞-operads: the dendroidal category Ωop of Moerdijk and
Weiss

∙ ∞-properads: Γop of Hackney, Robertson and Yau

2



homotopy-coherent algebras

We should ask the following natural question:

Question

Which homotopy-coherent algebraic structures can be
described by Segal conditions?

But in which generality can we talk about “Segal conditions”?

3



homotopy-coherent algebras

We should ask the following natural question:

Question

Which homotopy-coherent algebraic structures can be
described by Segal conditions?

But in which generality can we talk about “Segal conditions”?

3



algebraic patterns

We observe that all the examples have certain key features in
common. This leads us to the following definition.

Definition

An algebraic pattern P is an∞-category equipped with

∙ an inert-active factorization system (P int,Pact),
∙ a full subcategory Pel ⊆ P int (its objects are called
elementary).

4



algebraic patterns

We observe that all the examples have certain key features in
common. This leads us to the following definition.

Definition

An algebraic pattern P is an∞-category equipped with

∙ an inert-active factorization system (P int,Pact),

∙ a full subcategory Pel ⊆ P int (its objects are called
elementary).

4



algebraic patterns

We observe that all the examples have certain key features in
common. This leads us to the following definition.

Definition

An algebraic pattern P is an∞-category equipped with

∙ an inert-active factorization system (P int,Pact),
∙ a full subcategory Pel ⊆ P int (its objects are called
elementary).

4



algebraic patterns

Definition

Let P be an algebraic pattern and let Pel
X/ := Pel ×P int P int

X/ .

Then a Segal P-space or object is a functor F : P → S (or
C = Cat∞,∞-topos, ...) which satisfies the “Segal condition”, i.e.

F(X) ∼→ lim
E∈Pel

X/

F(E).

5



algebraic patterns

Definition

Let P be an algebraic pattern and let Pel
X/ := Pel ×P int P int

X/ .

Then a Segal P-space or object is a functor F : P → S (or
C = Cat∞,∞-topos, ...) which satisfies the “Segal condition”, i.e.

F(X) ∼→ lim
E∈Pel

X/

F(E).

5



algebraic patterns

The algebraic pattern P controls the algebraic structure:

∙ elementary objects F→ building blocks
∙ inert maps F→ geometric operations = “restriction maps”
which are used for the Segal condition

∙ active maps F→ algebraic operations (multiplications,
compositions,...)

6



algebraic patterns

The algebraic pattern P controls the algebraic structure:

∙ elementary objects F→ building blocks

∙ inert maps F→ geometric operations = “restriction maps”
which are used for the Segal condition

∙ active maps F→ algebraic operations (multiplications,
compositions,...)

6



algebraic patterns

The algebraic pattern P controls the algebraic structure:

∙ elementary objects F→ building blocks
∙ inert maps F→ geometric operations = “restriction maps”
which are used for the Segal condition

∙ active maps F→ algebraic operations (multiplications,
compositions,...)

6



algebraic patterns

The algebraic pattern P controls the algebraic structure:

∙ elementary objects F→ building blocks
∙ inert maps F→ geometric operations = “restriction maps”
which are used for the Segal condition

∙ active maps F→ algebraic operations (multiplications,
compositions,...)

6



examples

Notation

We write SegP(S) for the full subcategory of Fun(P,S)
spanned by Segal P-spaces.

SegP(C) may not have a model structure⇒ ∞-categories!

Examples

∙ P int is an algebraic pattern⇒ SegP int(S) ≃ Fun(Pel,S).
∙ Ξ = category of unrooted trees defined by HRY.⇒ Cyclic
∞-operads = Segal Ξop-spaces.

∙ O = Lurie’s (generalized)∞-operad⇒ AlgO(C) = Segal
O-objects in C.

7



examples

Notation

We write SegP(S) for the full subcategory of Fun(P,S)
spanned by Segal P-spaces.

SegP(C) may not have a model structure⇒ ∞-categories!

Examples

∙ P int is an algebraic pattern⇒ SegP int(S) ≃ Fun(Pel,S).
∙ Ξ = category of unrooted trees defined by HRY.⇒ Cyclic
∞-operads = Segal Ξop-spaces.

∙ O = Lurie’s (generalized)∞-operad⇒ AlgO(C) = Segal
O-objects in C.

7



examples

Notation

We write SegP(S) for the full subcategory of Fun(P,S)
spanned by Segal P-spaces.

SegP(C) may not have a model structure⇒ ∞-categories!

Examples

∙ P int is an algebraic pattern⇒ SegP int(S) ≃ Fun(Pel,S).

∙ Ξ = category of unrooted trees defined by HRY.⇒ Cyclic
∞-operads = Segal Ξop-spaces.

∙ O = Lurie’s (generalized)∞-operad⇒ AlgO(C) = Segal
O-objects in C.

7



examples

Notation

We write SegP(S) for the full subcategory of Fun(P,S)
spanned by Segal P-spaces.

SegP(C) may not have a model structure⇒ ∞-categories!

Examples

∙ P int is an algebraic pattern⇒ SegP int(S) ≃ Fun(Pel,S).
∙ Ξ = category of unrooted trees defined by HRY.⇒ Cyclic
∞-operads = Segal Ξop-spaces.

∙ O = Lurie’s (generalized)∞-operad⇒ AlgO(C) = Segal
O-objects in C.

7



examples

Notation

We write SegP(S) for the full subcategory of Fun(P,S)
spanned by Segal P-spaces.

SegP(C) may not have a model structure⇒ ∞-categories!

Examples

∙ P int is an algebraic pattern⇒ SegP int(S) ≃ Fun(Pel,S).
∙ Ξ = category of unrooted trees defined by HRY.⇒ Cyclic
∞-operads = Segal Ξop-spaces.

∙ O = Lurie’s (generalized)∞-operad⇒ AlgO(C) = Segal
O-objects in C.

7



Kan extensions

Remark

A functor f : P → Q induces adjunctions

f! : Fun(P,S) ⇄ Fun(Q,S) : f∗ and f∗ : Fun(Q,S) ⇄ Fun(P,S) : f∗.

Under certain checkable conditions f∗, f! and f∗ restrict to
functors

f∗ : SegQ(S) → SegP(S) and f!, f∗ : SegP(S) → SegQ(S).

P is extendable if i! : Fun(Pel,S) ≃ SegP int(S) → SegP(S) is
given by restriction, where i : P int ↪→ P is the inclusion.

8



Kan extensions

Remark

A functor f : P → Q induces adjunctions

f! : Fun(P,S) ⇄ Fun(Q,S) : f∗ and f∗ : Fun(Q,S) ⇄ Fun(P,S) : f∗.

Under certain checkable conditions f∗, f! and f∗ restrict to
functors

f∗ : SegQ(S) → SegP(S) and f!, f∗ : SegP(S) → SegQ(S).

P is extendable if i! : Fun(Pel,S) ≃ SegP int(S) → SegP(S) is
given by restriction, where i : P int ↪→ P is the inclusion.

8



Kan extensions

Remark

A functor f : P → Q induces adjunctions

f! : Fun(P,S) ⇄ Fun(Q,S) : f∗ and f∗ : Fun(Q,S) ⇄ Fun(P,S) : f∗.

Under certain checkable conditions f∗, f! and f∗ restrict to
functors

f∗ : SegQ(S) → SegP(S) and f!, f∗ : SegP(S) → SegQ(S).

P is extendable if i! : Fun(Pel,S) ≃ SegP int(S) → SegP(S) is
given by restriction, where i : P int ↪→ P is the inclusion.

8



Kan extensions

Applications

By checking conditions

∙ for right Kan extensions f∗: The forgetful functor
CycOpd∞ → Opd∞ has a right adjoint.

∙ for left Kan extensions f!: We recover the formula for
operadic left Kan extensions in the sense of Lurie.

∙ for extendability: Θop
n , ∆n,op and Ωop are extendable. ⇒

Formula for free (∞,n)-categories, free n-fold∞-categories
and free∞-operads.

9



Kan extensions

Applications

By checking conditions

∙ for right Kan extensions f∗: The forgetful functor
CycOpd∞ → Opd∞ has a right adjoint.

∙ for left Kan extensions f!: We recover the formula for
operadic left Kan extensions in the sense of Lurie.

∙ for extendability: Θop
n , ∆n,op and Ωop are extendable. ⇒

Formula for free (∞,n)-categories, free n-fold∞-categories
and free∞-operads.

9



Kan extensions

Applications

By checking conditions

∙ for right Kan extensions f∗: The forgetful functor
CycOpd∞ → Opd∞ has a right adjoint.

∙ for left Kan extensions f!: We recover the formula for
operadic left Kan extensions in the sense of Lurie.

∙ for extendability: Θop
n , ∆n,op and Ωop are extendable. ⇒

Formula for free (∞,n)-categories, free n-fold∞-categories
and free∞-operads.

9



monads

Proposition

For every P the adjunction Fun(Pel,S) ⇄ SegP(S) is monadic.

If P is extendable, then the corresponding monad is given by
the explicit formula TPϕ(E) ≃ colimX∈ActO(E) limE′∈Oel

X/
ϕ(E′).

Questions

Which monads on presheaf∞-categories can be described as
the free Segal P-space monad for an extendable pattern P?
How far is this correspondence from being an equivalence?

10



monads

Proposition

For every P the adjunction Fun(Pel,S) ⇄ SegP(S) is monadic.
If P is extendable, then the corresponding monad is given by
the explicit formula TPϕ(E) ≃ colimX∈ActO(E) limE′∈Oel

X/
ϕ(E′).

Questions

Which monads on presheaf∞-categories can be described as
the free Segal P-space monad for an extendable pattern P?
How far is this correspondence from being an equivalence?

10



monads

Proposition

For every P the adjunction Fun(Pel,S) ⇄ SegP(S) is monadic.
If P is extendable, then the corresponding monad is given by
the explicit formula TPϕ(E) ≃ colimX∈ActO(E) limE′∈Oel

X/
ϕ(E′).

Questions

Which monads on presheaf∞-categories can be described as
the free Segal P-space monad for an extendable pattern P?
How far is this correspondence from being an equivalence?

10



patterns and polynomial monads

Notation

∙ We write ExtPatt for the∞-category of extendable algebraic
patterns.

∙ We define PolyMnd to be the∞-category
∙ where an object is a polynomial monadic right adjoints over
some functor category Fun(I,S), (a monad is polynomial if it is
cartesian and a local right adjoint)

∙ where a morphism is a commutative square whose mate
transformation is cartesian.

11



patterns and polynomial monads

Notation

∙ We write ExtPatt for the∞-category of extendable algebraic
patterns.

∙ We define PolyMnd to be the∞-category
∙ where an object is a polynomial monadic right adjoints over
some functor category Fun(I,S),

(a monad is polynomial if it is
cartesian and a local right adjoint)

∙ where a morphism is a commutative square whose mate
transformation is cartesian.

11



patterns and polynomial monads

Notation

∙ We write ExtPatt for the∞-category of extendable algebraic
patterns.

∙ We define PolyMnd to be the∞-category
∙ where an object is a polynomial monadic right adjoints over
some functor category Fun(I,S), (a monad is polynomial if it is
cartesian and a local right adjoint)

∙ where a morphism is a commutative square whose mate
transformation is cartesian.

11



patterns and polynomial monads

Notation

∙ We write ExtPatt for the∞-category of extendable algebraic
patterns.

∙ We define PolyMnd to be the∞-category
∙ where an object is a polynomial monadic right adjoints over
some functor category Fun(I,S), (a monad is polynomial if it is
cartesian and a local right adjoint)

∙ where a morphism is a commutative square whose mate
transformation is cartesian.

11



patterns from polynomial monads: existence

Theorem

If P is extendable, then the associated monad TP on
Fun(Pel,S) is polynomial. Hence, we have a functor

M : ExtPatt→ PolyMnd.

We now want to prove that this functor is essentially surjective.
For a given polynomial monad we want to construct the
associated algebraic pattern.

12



patterns from polynomial monads: existence

Theorem

If P is extendable, then the associated monad TP on
Fun(Pel,S) is polynomial. Hence, we have a functor

M : ExtPatt→ PolyMnd.

We now want to prove that this functor is essentially surjective.
For a given polynomial monad we want to construct the
associated algebraic pattern.

12



patterns from polynomial monads: existence

Remark

The main input for the proof for the essential surjectivity is an
∞-categorical version of work of Berger, Melliés and Weber
and it is closely related to the “nerve theorem” studied by
Leinster, Kock and Weber.

The difference between cartesian monads (induced by Σ-free
operads) and weakly cartesian monads in the 1-categorical
world vanishes by going to that of∞-categories.

13



patterns from polynomial monads: existence

Remark

The main input for the proof for the essential surjectivity is an
∞-categorical version of work of Berger, Melliés and Weber
and it is closely related to the “nerve theorem” studied by
Leinster, Kock and Weber.

The difference between cartesian monads (induced by Σ-free
operads) and weakly cartesian monads in the 1-categorical
world vanishes by going to that of∞-categories.

13



patterns from polynomial monads: existence

Construction

Given a polynomial monad T on the presheaf∞-category
Fun(I,S), define PT by

Pop
T AlgT(Fun(I,S))

Iop P int,op
T Fun(I,S)

UTFT FT

The construction defines an algebraic pattern PT with a
factorization system (P int

T ,Pact
T ) and Pel

T = I .

14



patterns from polynomial monads: existence

Construction

Given a polynomial monad T on the presheaf∞-category
Fun(I,S), define PT by

Pop
T AlgT(Fun(I,S))

Iop P int,op
T Fun(I,S)

UTFT FT

The construction defines an algebraic pattern PT with a
factorization system (P int

T ,Pact
T ) and Pel

T = I .

14



patterns from polynomial monads: existence

Theorem

The assignment T 7→ PT gives a functor

P : PolyMnd→ ExtPatt.

Moreover, this functor is fully faithful andMP ≃ id.

15



patterns from polynomial monads: existence

Theorem

The assignment T 7→ PT gives a functor

P : PolyMnd→ ExtPatt.

Moreover, this functor is fully faithful andMP ≃ id.

15



patterns from polynomial monads: uniqueness

Examples

∙ Free operad monad on Fun(I,S) (I = the category of trees
with at most one vertex) P7→ Ωop.

∙ Free (∞,n)-category monad P7→ Θop
n .

What is the essential image of the fully faithful functor
P : PolyMnd→ ExtPatt?

16



patterns from polynomial monads: uniqueness

Examples

∙ Free operad monad on Fun(I,S) (I = the category of trees
with at most one vertex) P7→ Ωop.

∙ Free (∞,n)-category monad P7→ Θop
n .

What is the essential image of the fully faithful functor
P : PolyMnd→ ExtPatt?

16



patterns from polynomial monads: uniqueness

Examples

∙ Free operad monad on Fun(I,S) (I = the category of trees
with at most one vertex) P7→ Ωop.

∙ Free (∞,n)-category monad P7→ Θop
n .

What is the essential image of the fully faithful functor
P : PolyMnd→ ExtPatt?

16



patterns from polynomial monads: uniqueness

Theorem

An extendable algebraic patterns lies in the essential image of
P iff it is nice, i.e. every object X ∈ P admits an active map
X→ E, E ∈ Pel and MapP int(X,−) ∈ SegP int(S).

Many algebraic patterns are nice: ∆n,op,Θop
n ,Ωop, . . .

F∗ is not nice, PM(F∗) ≃ Spaninj(F).

17



patterns from polynomial monads: uniqueness

Theorem

An extendable algebraic patterns lies in the essential image of
P iff it is nice, i.e. every object X ∈ P admits an active map
X→ E, E ∈ Pel and MapP int(X,−) ∈ SegP int(S).

Many algebraic patterns are nice: ∆n,op,Θop
n ,Ωop, . . .

F∗ is not nice, PM(F∗) ≃ Spaninj(F).

17



patterns from polynomial monads: uniqueness

Theorem

An extendable algebraic patterns lies in the essential image of
P iff it is nice, i.e. every object X ∈ P admits an active map
X→ E, E ∈ Pel and MapP int(X,−) ∈ SegP int(S).

Many algebraic patterns are nice: ∆n,op,Θop
n ,Ωop, . . .

F∗ is not nice, PM(F∗) ≃ Spaninj(F).

17



patterns from polynomial monads: uniqueness

ExtPattn = the full subcategory of ExtPatt spanned by nice
algebraic patterns.

Corollary

The adjunctionM : ExtPatt⇄ PolyMnd : P restricts to an
equivalence

ExtPattn ≃ PolyMnd.

In particular, PolyMnd is a localization of ExtPatt.

18



patterns from polynomial monads: uniqueness

ExtPattn = the full subcategory of ExtPatt spanned by nice
algebraic patterns.

Corollary

The adjunctionM : ExtPatt⇄ PolyMnd : P restricts to an
equivalence

ExtPattn ≃ PolyMnd.

In particular, PolyMnd is a localization of ExtPatt.

18


