A unified framework for notions of algebraic theory

Soichiro Fujii

RIMS, Kyoto University

CT2019 (Edinburgh), July 8, 2019
Table of contents

Introduction

Metatheories and theories

Notions of model as enrichments

Notions of model as oplax actions

Metamodels and models

Morphisms of metatheories

Categories of models as double limits

Conclusion
Conceptual levels in study of algebra

1. **Algebra**
 A set (an object) equipped with an algebraic structure.
 E.g., the group \mathfrak{S}_5, the ring \mathbb{Z}.

2. **Algebraic theory**
 Specification of a type of algebras.
 E.g., the clone of groups, the operad of monoids.

3. **Notion of algebraic theory**
 Framework for a type of algebraic theories.
 E.g., \{clones\}, \{operads\}.

This talk: unified account of **notions of algebraic theory**.
Examples of notions of algebraic theory

1. **Clones/Lawvere theories** [Lawvere, 1963]
 Categorical equivalent of **universal algebra**.
 Applications to computational effects [Plotkin–Power 2002, ...].

2. **Symmetric operads, non-symmetric operads** [May, 1972]
 Originates in homotopy theory for **algebras-up-to-homotopy**.

3. **Clubs/generalised operads** [Burroni, 1971; Kelly, 1972]
 Classical approach to **categories with structure** [Kelly 1972].
 The ‘globular operad’ approach to higher categories [Batanin 1998, Leinster 2004].

4. **PROPs, PROs** [Mac Lane 1965]
 ‘Many-in, many-out’ version of (non-)symmetric operads.

5. **Monads** [Godement, 1958; Linton, 1965; Eilenberg–Moore, 1965]
 Monads on **Set** = infinitary version of clones.
Table of contents

Introduction

Metatheories and theories

Notions of model as enrichments

Notions of model as oplax actions

Metamodels and models

Morphisms of metatheories

Categories of models as double limits

Conclusion
Definition

1. A *metatheory* is a monoidal category $\mathcal{M} = (\mathcal{M}, I, \otimes)$.
2. A *theory in* \mathcal{M} is a monoid $T = (T, e, m)$ in \mathcal{M}. That is,
 - T: an object of \mathcal{M};
 - $e: I \to T$;
 - $m: T \otimes T \to T$;

satisfying the associativity and unit laws.

‘*Metatheory*’ (technical term) formalises ‘*notion of algebraic theory*’ (non-technical term).
Example: clones

Definition

The category \mathbf{F}

- object: the sets $[n] = \{1, \ldots, n\}$ for all $n \in \mathbb{N}$;
- morphism: all functions.
Example: clones

Definition

The **metatheory of clones** is the monoidal category \(([\mathbf{F}, \mathbf{Set}], I, \bullet)\) where \(\bullet\) is the *substitution monoidal product* [Kelly–Power 1993; Fiore–Plotkin–Turi 1999].

- \(I = \mathbf{F}([1], -) \in [\mathbf{F}, \mathbf{Set}]\);
- for \(X, Y \in [\mathbf{F}, \mathbf{Set}]\),

\[
(Y \bullet X)_n = \int_{[m] \in \mathbf{F}} Y_m \times (X_n)^m.
\]
Example: clones

\[\theta \in X_n \]

An element of \((Y \cdot X)_n = \int_{[m] \in F} Y_m \times (X_n)^m\) is:

\[\phi \in Y_m, \theta_i \in X_n \]

modulo action of \(F\).
Example: clones

Definition (classical; see e.g., [Taylor, 1993])

A *clone* C is given by

- $(C_n)_{n \in \mathbb{N}}$: a family of sets;
- $\forall n \in \mathbb{N}, \forall i \in \{1, \ldots, n\}$, an element $p_i^{(n)} \in C_n$;
- $\forall n, m \in \mathbb{N}$, a function

$$\circ_{(n)}^{(m)} : C_m \times (C_n)^m \rightarrow C_n$$

satisfying the associativity and the unit axioms.

(In universal algebra, people sometimes omit C_0.)
Example: clones

Example

\(C \): category with finite products
\(C \in C \)

The clone \(\text{End}(C) \) of **endo-multimorphisms on** \(C \) is defined by:

- \(\text{End}(C)_n = C(C^n, C) \);
- \(p_i^{(n)} \in \text{End}(C)_n \) is the \(i \)-th projection \(p_i^{(n)} : C^n \to C \);
- \(\circ_m^{(n)} : \text{End}(C)_m \times (\text{End}(C)_n)^m \to \text{End}(C)_n \) maps \((g, f_1, \ldots, f_m) \) to \(g \circ \langle f_1, \ldots, f_m \rangle \):

\[
\begin{align*}
C^n & \xrightarrow{\langle f_1, \ldots, f_m \rangle} C^m \\
& \xrightarrow{g} C.
\end{align*}
\]

(In fact, every clone is isomorphic to \(\text{End}(C) \) for some \(C \) and \(C \in C \).

Fujii (Kyoto)
Example: clones

Proposition ([Kelly–Power, 1993; Fiore–Plotkin–Turi 1999])

There is an isomorphism of categories

\[\text{Clo} \cong \text{Mon}([F, \text{Set}], I, \bullet). \]
Example: clones

Recall again:

Definition

1. A **metatheory** is a monoidal category \(\mathcal{M} \).
2. A **theory in** \(\mathcal{M} \) is a monoid \(T \) in \(\mathcal{M} \).

and:

Definition

The **metatheory of clones** is the monoidal category \(([\mathbf{F}, \mathbf{Set}], I, \bullet) \).

Theories in \(([\mathbf{F}, \mathbf{Set}], I, \bullet) \) = clones.
Example: symmetric operads

Definition

The category P
- object: the sets $[n] = \{1, \ldots, n\}$ for all $n \in \mathbb{N}$;
- morphism: all bijections.

Definition (cf. [Kelly 2005; Curien 2012; Hyland 2014])

The **metatheory of symmetric operads** is the monoidal category $([P, \text{Set}], /, \bullet)$.

Variables can be permuted, but cannot be copied nor discarded.

- $x_1 \cdot x_2 = x_2 \cdot x_1$; $(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3)$.
- $x_1 \cdot x_1 = x_1$; $x_1 \cdot x_2 = x_1$.

Fujii (Kyoto)
Example: non-symmetric operads

Definition

The (discrete) category \mathbb{N}

- object: the sets $[n] = \{1, ..., n\}$ for all $n \in \mathbb{N}$;
- morphism: all identities.

Definition (cf. [Kelly 2005; Curien 2012; Hyland 2014])

The **metatheory of non-symmetric operads** is the monoidal category $([\mathbb{N}, \text{Set}], I, \bullet)$.

Variables cannot be permuted (nor discarded/copied).

- \checkmark $(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3)$; $\phi_m(\phi_{m'}(x_1)) = \phi_{mm'}(x_1)$.
- \times $x_1 \cdot x_2 \neq x_2 \cdot x_1$.
Definition ([Mac Lane 1965])

A PRO is given by:

- a monoidal category T;
- an identity-on-objects, strict monoidal functor J from the (strict) monoidal category $N = (N, [0], +)$ to T.

For $n, m \in \mathbf{Nat}$, an element $\theta \in T([n], [m])$ is depicted as

![Diagram](image-url)
Example: PROs

Definition ([Bénabou 1973; Lawvere 1973])

\[\mathcal{A}, \mathcal{B}: \text{(small)} \]

A profunctor (\(=\) distributor \(=\) bimodule) from \(\mathcal{A}\) to \(\mathcal{B}\) is a functor

\[H: \mathcal{B}^{\text{op}} \times \mathcal{A} \rightarrow \text{Set}. \]

Categories, profunctors and natural transformations form a bicategory.

\(\Rightarrow\) For any category \(\mathcal{A}\), the category \([\mathcal{A}^{\text{op}} \times \mathcal{A}, \text{Set}]\) of endo-profunctors on \(\mathcal{A}\) is monoidal.

\(^1\)In this talk, I am going to ignore the size issues.
Example: PROs

Proposition (Folklore)

A: category

To give a monoid in \([A^{op} \times A, \text{Set}]\) is equivalent to giving a category \(B\) together with an identity-on-objects functor \(J: A \rightarrow B\).

Recall:

Definition ([Mac Lane 1965])

A PRO is given by:

- a monoidal category \(T\);
- an identity-on-objects, strict monoidal functor \(J\) from the (strict) monoidal category \(N = (N, [0], +)\) to \(T\).

Idea: use a monoidal version of profunctors.
Example: PROs

Definition ([Im–Kelly 1986])

\(\mathcal{M} = (\mathcal{M}, I_{\mathcal{M}}, \otimes_{\mathcal{M}}), \mathcal{N} = (\mathcal{N}, I_{\mathcal{N}}, \otimes_{\mathcal{N}}) \): monoidal category

A monoidal profunctor from \(\mathcal{M} \) to \(\mathcal{N} \) is a lax monoidal functor

\[
(H, h., h) : \mathcal{N}^{\text{op}} \times \mathcal{M} \longrightarrow (\textbf{Set}, 1, \times).
\]

That is:

- a functor \(H : \mathcal{N}^{\text{op}} \times \mathcal{M} \longrightarrow \textbf{Set} \);
- a function \(h. : 1 \longrightarrow H(I_{\mathcal{N}}, I_{\mathcal{M}}) \);
- a natural transformation

\[
h_{\mathcal{N}, \mathcal{N}', \mathcal{M}, \mathcal{M}'} : H(N', M') \times H(N, M) \longrightarrow H(N' \otimes_{\mathcal{N}} N, M' \otimes_{\mathcal{M}} M)
\]

satisfying the coherence axioms.
Example: PROs

Monoidal categories, monoidal profunctors and monoidal natural transformations form a bicategory.
⇒ For any monoidal category \mathcal{M}, the category $\text{MonCat}(\mathcal{M}^{\text{op}} \times \mathcal{M}, \text{Set})$ is monoidal.

Proposition

\mathcal{M}: monoidal category

To give a monoid in $\text{MonCat}(\mathcal{M}^{\text{op}} \times \mathcal{M}, \text{Set})$ is equivalent to giving a monoidal category \mathcal{N} together with an identity-on-objects strict monoidal functor $J: \mathcal{M} \rightarrow \mathcal{N}$.

Definition

The metatheory of PROs is the monoidal category $\text{MonCat}(\mathcal{N}^{\text{op}} \times \mathcal{N}, \text{Set})$.
Other examples

Definition

The **metatheory of PROPs** is the monoidal category $\text{SymMonCat}(\mathbf{P}^{\text{op}} \times \mathbf{P}, \text{Set})$ of symmetric monoidal endo-profunctors on \mathbf{P}.

Definition

\mathcal{C}: category with finite limits; \mathcal{S}: cartesian monad on \mathcal{C}

The **metatheory of clubs over \mathcal{S}** is the monoidal category $(\mathcal{C}/\mathcal{S}1, \eta_1, \bullet)$.

Definition

\mathcal{C}: category.

The **metatheory of monads on \mathcal{C}** is the monoidal category $\mathcal{E}nd(\mathcal{C}) = ([\mathcal{C}, \mathcal{C}], \text{id}_\mathcal{C}, \circ)$.
Table of contents

Introduction

Metatheories and theories

Notions of model as enrichments

Notions of model as oplax actions

Metamodels and models

Morphisms of metatheories

Categories of models as double limits

Conclusion
One theory, various models

Important feature of notions of algebraic theory (esp. of clones, operads, PROs, PROPs): **a single theory can have models in many categories.**

Example

A clone can have its models in **any category with finite products.** Models of the clone of groups

- in **Set**: ordinary groups;
- in **FinSet**: finite groups;
- in **Top**: topological groups;
- in **Mfd**: Lie groups;
- in **Grp**: abelian groups.

How does it work?
Given a notion of algebraic theory, ...

1. first define a **notion of model**, i.e., what it means to be a model of a theory;

2. then consider a **model** of a theory following the notion of model.

Example

For clones, ...

1. C: category with finite product
 a model in C of a clone T is an object $C \in C$ together with a clone morphism $T \rightarrow \text{End}(C)$;

2. find a particular model, i.e., an object $C \in C$ together with a clone morphism $T \rightarrow \text{End}(C)$.
For **metatheories** (formalising notions of algebraic theory), we introduce **metamodels** (formalising notions of model) later.

First we look at two simple subclasses of metamodels:

- enrichment;
- (left) oplax action.
Definitions

Definition

\[\mathcal{M} = (\mathcal{M}, I, \otimes): \text{metatheory};\ T = (T, e, m): \text{theory in} \ \mathcal{M}. \]

1. An **enrichment in** \(\mathcal{M} \) is a category \(\mathcal{C} \) equipped with
 - \(\langle -, - \rangle : \mathcal{C}^{\text{op}} \times \mathcal{C} \rightarrow \mathcal{M} \): a functor;
 - \(j_C : I \rightarrow \langle C, C \rangle \): a nat. tr.;
 - \(M_{A,B,C} : \langle B, C \rangle \otimes \langle A, B \rangle \rightarrow \langle A, C \rangle \): a nat. tr.

 satisfying the suitable coherence axioms.

\[(\forall C \in \mathcal{C}, \text{End}(C) = (\langle C, C \rangle, j_C, M_{C,C,C}): \text{monoid in} \ \mathcal{M}.)\]

2. A **model of** \(T \) **with respect to** \((\mathcal{C}, \langle -, - \rangle)\) is an object \(C \) of \(\mathcal{C} \) together with a monoid morphism \(T \rightarrow \text{End}(C) \). That is,
 - \(\chi : T \rightarrow \langle C, C \rangle \): a morphism in \(\mathcal{M} \)

 commuting with multiplication and unit.
Definitions

\(\mathcal{M} \): metatheory

\(T \): theory in \(\mathcal{M} \)

\((C, \langle -, - \rangle) \): enrichment in \(\mathcal{M} \)

We obtain the category

\[\text{Mod}(T, (C, \langle -, - \rangle)) \]

of \textit{models} and \textit{homomorphisms} together with a forgetful functor

\[\text{Mod}(T, (C, \langle -, - \rangle)) \xrightarrow{U} C \]
Example: clones \([F, \text{Set}]\)

Definition

\(C\): category with finite products

The **standard** \(C\)-metamodel of clones is the enrichment
\[
\langle - , - \rangle: \mathcal{C}^{\text{op}} \times \mathcal{C} \rightarrow [F, \text{Set}] \text{ given by}
\]

- for \(A, B \in \mathcal{C}\) and \([m] \in F\),

\[
\langle A, B \rangle_m = \mathcal{C}(A^m, B)。
\]

So a model of a theory \(T = (T, e, m)\) consists of

- an object \(C \in \mathcal{C}\);

- a nat. tr. \(\chi: T \rightarrow \langle C, C \rangle \) (w/ cond.)

- \(\forall m \in \mathbb{N}\), a function \(\chi_m: T_m \rightarrow \mathcal{C}(C^m, C)\) (w/ cond.)

- \(\forall m \in \mathbb{N}, \forall \theta \in T_m\), a morphism \([\theta]\chi: C^m \rightarrow C\) (w/ cond.).
Example: PROs $\mathcal{MonCat}(\mathbf{N}^{\text{op}} \times \mathbf{N}, \mathbf{Set})$

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{C} = (\mathcal{C}, I, \otimes)$: monoidal category</td>
</tr>
</tbody>
</table>

The **standard \mathcal{C}-metamodel of PROs** is the enrichment $\langle - , - \rangle : \mathcal{C}^{\text{op}} \times \mathcal{C} \rightarrow \mathcal{MonCat}(\mathbf{N}^{\text{op}} \times \mathbf{N}, \mathbf{Set})$ given by

- for $A, B \in \mathcal{C}$ and $n, m \in \mathbf{N}$,

 $$\langle A, B \rangle([n], [m]) = \mathcal{C}(A^{\otimes m}, B^{\otimes n}).$$

There are analogous enrichments for non-symmetric operads, symmetric operads and PROPs.
Table of contents

Introduction

Metatheories and theories

Notions of model as enrichments

Notions of model as oplax actions

Metamodels and models

Morphisms of metatheories

Categories of models as double limits

Conclusion
Definition

\(\mathcal{M} = (\mathcal{M}, I, \otimes) \): metatheory; \(T = (T, e, m) \): theory in \(\mathcal{M} \).

1. A **(left) oplax action of** \(\mathcal{M} \) is a category \(C \) equipped with

 - \(\ast: \mathcal{M} \times C \to C \): a functor;
 - \(\varepsilon_C: I \ast C \to C \): a nat. tr.;
 - \(\delta_{X,Y,C}: (Y \otimes X) \ast C \to Y \ast (X \ast C) \): a nat. tr.

 satisfying the suitable coherence axioms.

2. A **model of** \(T \) **with respect to** \((C, \ast) \) is an object \(C \) of \(C \) together with a left \(T \)-action \(\gamma \) on \(C \). That is,

 - \(\gamma: T \ast C \to C \): a morphism in \(C \)

 satisfying the associativity and left unit axioms.
Definitions

\(\mathcal{M} \): metatheory
\(T \): theory in \(\mathcal{M} \)
\((\mathcal{C}, \ast) \): oplax action of \(\mathcal{M} \)

We obtain the category

\[
\text{Mod}(T, (\mathcal{C}, \ast))
\]

of models and homomorphisms together with a forgetful functor

\[
\text{Mod}(T, (\mathcal{C}, \ast)) \xrightarrow{U} \mathcal{C}
\]
Example: monads $[C, C]$

Definition

C: category

The **standard C-metamodel of monads on C** is the action $ev_C: [C, C] \times C \to C$ given by evaluation.

So a model of a theory $T = (T, m, e)$ consists of

- an object $C \in C$;
- a morphism $\gamma: TC \to C$ in C

satisfying the associativity and left unit axioms. That is, an **Eilenberg–Moore algebra** of T.

$$\text{Mod}(T, (C, ev_C)) \cong C^T$$
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>Metatheories and theories</td>
<td></td>
</tr>
<tr>
<td>Notions of model as enrichments</td>
<td></td>
</tr>
<tr>
<td>Notions of model as oplax actions</td>
<td></td>
</tr>
<tr>
<td>Metamodels and models</td>
<td></td>
</tr>
<tr>
<td>Morphisms of metatheories</td>
<td></td>
</tr>
<tr>
<td>Categories of models as double limits</td>
<td></td>
</tr>
<tr>
<td>Conclusion</td>
<td></td>
</tr>
</tbody>
</table>
Unifying the two approaches

A unified approach?

Action
- Monad
- Generalised operad

Enrichment
- Clone
- Symmetric operad
- Non-symmetric operad
- PROP
- PRO

Action-enrichment adjunction
Unifying the two approaches via metamodels

Metamodell

- Action
 - Monad
 - Generalised operad
- Enrichment
 - Clone
 - Symmetric operad
 - Non-symmetric operad
 - PROP
 - PRO

Action-enrichment adjunction
Definition

\(\mathcal{M} = (\mathcal{M}, I, \otimes) \): metatheory; \(\mathcal{T} = (\mathcal{T}, e, m) \): theory in \(\mathcal{M} \).

1. A **metamodel of** \(\mathcal{M} \) is a category \(\mathcal{C} \) together with:
 - \(\Phi: \mathcal{M}^{\text{op}} \times \mathcal{C}^{\text{op}} \times \mathcal{C} \rightarrow \text{Set} \): a functor;
 - \((X, A, B) \mapsto \Phi_X(A, B) \)
 - \((\cdot)_C: 1 \rightarrow \Phi_I(C, C) \): a nat. tr.;
 - \((\phi_{X, Y})_{A, B, C}: \Phi_Y(B, C) \times \Phi_X(A, B) \rightarrow \Phi_{Y \otimes X}(A, C) \): nat. tr.
 satisfying the suitable coherence axioms.

2. A **model of** \(\mathcal{T} \) **with respect to** \((\mathcal{C}, \Phi) \) is \((\mathcal{C}, \xi) \) where
 - \(C \in \mathcal{C} \);
 - \(\xi \in \Phi_T(C, C) \);
 satisfying the suitable coherence axioms.
Incorporating enrichments

Given an enrichment

\[\langle -, - \rangle : C^{\text{op}} \times C \rightarrow \mathcal{M}, \]

define a metamodel

\[\Phi : \mathcal{M}^{\text{op}} \times C^{\text{op}} \times C \rightarrow \text{Set} \]

by

\[\Phi_{\mathcal{X}}(A, B) = \mathcal{M}(\mathcal{X}, \langle A, B \rangle). \]

For any theory \(T = (T, e, m) \) in \(\mathcal{M} \), we have

- a model \((C, \chi : T \rightarrow \langle C, C \rangle)\) (via enrichment)
- a model \((C, \xi \in \Phi_T(C, C))\) (via metamodel).
Incorporating oplax actions

Given an oplax action

\[* : M \times C \rightarrow C, \]

define a metamodel

\[\Phi : M^{\text{op}} \times C^{\text{op}} \times C \rightarrow \text{Set} \]

by

\[\Phi_X(A, B) = C(X \ast A, B). \]

For any theory \(T = (T, e, m) \) in \(M \), we have

- a model \((C, \gamma : T \ast C \rightarrow C) \) (via oplax action)
- a model \((C, \xi \in \Phi_T(C, C)) \) (via metamodel).
Categories of models as hom-categories

\[\mathcal{M}: \text{metatheory} \]

- Metamodes of \(\mathcal{M} \) form a 2-category \(\mathcal{M}\text{Mod}(\mathcal{M}) \).
- A theory \(T = (\mathcal{T}, e, m) \) in \(\mathcal{M} \) can be considered as a metamodel \(\Phi^T \) of \(\mathcal{M} \) in the terminal category \(1 \):

 \[
 \Phi^T : \mathcal{M}^{\text{op}} \times 1^{\text{op}} \times 1 \rightarrow \text{Set} \\
 (X, *, *, *) \mapsto \mathcal{M}(X, T).
 \]

- For any theory \(T \) in \(\mathcal{M} \) and a metamodel \((\mathcal{C}, \Phi) \) of \(\mathcal{M} \), the category of models \(\text{Mod}(T, (\mathcal{C}, \Phi)) \) is isomorphic to the hom-category

 \[\mathcal{M}\text{Mod}(\mathcal{M})((1, \Phi^T), (\mathcal{C}, \Phi)). \]
Table of contents

Introduction

Metatheories and theories

Notions of model as enrichments

Notions of model as oplax actions

Metamodels and models

Morphisms of metatheories

Categories of models as double limits

Conclusion
Morphisms of metatheories

Motivation: uniform method to relate different notions of algebraic theory.

⇒ We want a notion of morphism of metatheories, which suitably acts on metamodels.
Morphisms of metatheories

Definition (cf. [Im–Kelly 1986])

\(\mathcal{M} = (\mathcal{M}, I_{\mathcal{M}}, \otimes_{\mathcal{M}}), \mathcal{N} = (\mathcal{N}, I_{\mathcal{N}}, \otimes_{\mathcal{N}}) \): metatheories

A morphism of metatheories from \(\mathcal{M} \) to \(\mathcal{N} \), written as

\[H = (H, h, h) : \mathcal{M} \rightarrow \mathcal{N}, \]

is a monoidal profunctor from \(\mathcal{M} \) to \(\mathcal{N} \), i.e., a lax monoidal functor

\[(H, h, h) : \mathcal{N}^{\text{op}} \times \mathcal{M} \rightarrow (\text{Set}, 1, \times). \]

Specifically:

- a functor \(H : \mathcal{N}^{\text{op}} \times \mathcal{M} \rightarrow \text{Set}; \)
- a function \(h : 1 \rightarrow H(I_{\mathcal{N}}, I_{\mathcal{M}}); \)
- a natural transformation

\[h_{N,N',M,M'} : H(N', M') \times H(N, M) \rightarrow H(N' \otimes_{\mathcal{N}} N, M' \otimes_{\mathcal{M}} M) \]

satisfying the coherence axioms.
Relation to lax/oplax monoidal functors

- A **lax** monoidal functor $F : \mathcal{M} \to \mathcal{N}$ induces a morphism $F_* : \mathcal{M} \to \mathcal{N}$ defined as
 \[
 F_* : \mathcal{N}^{\text{op}} \times \mathcal{M} \to \text{Set}
 \]
 \[
 (N, M) \mapsto \mathcal{N}(N, FM).
 \]

- An **oplax** monoidal functor $F : \mathcal{M} \to \mathcal{N}$ induces a morphism $F^* : \mathcal{N} \to \mathcal{M}$ defined as
 \[
 F^* : \mathcal{M}^{\text{op}} \times \mathcal{N} \to \text{Set}
 \]
 \[
 (M, N) \mapsto \mathcal{N}(FM, N).
 \]

- A **strong** monoidal functor $F : \mathcal{M} \to \mathcal{N}$ induces both F_* and F^*, and they form an adjunction (in the bicategory of metatheories)

\[
\begin{array}{ccc}
\mathcal{M} & \\ & F_* & \\
\downarrow & & \\
F^* & \\
& \mathcal{N} & \\
\end{array}
\]
Morphisms of metatheories act on metamodules

\(\mathcal{M}, \mathcal{N} \): metatheory
\(H = (H, h, h): \mathcal{M} \to \mathcal{N} \): morphism of metatheories
\((C, \Phi) \): metamodel of \(\mathcal{M} \)

\(\Rightarrow \) We have a metamodel \((C, H\Phi) \) of \(\mathcal{N} \) defined as:

\[
H\Phi: \mathcal{N}^{\text{op}} \times C^{\text{op}} \times C \to \textbf{Set}
\]

\[
(N, A, B) \mapsto \int^{M \in \mathcal{M}} H(N, M) \times \Phi_M(A, B).
\]

\(\mathcal{M} Mod(-) \) extends to a pseudofunctor from the bicategory of metatheories to the 2-category of 2-categories \(2\text{-Cat} \).
Isomorphisms between categories of models

\(\mathcal{M}, \mathcal{N} \): metatheory
\(F: \mathcal{M} \to \mathcal{N} \): **strong monoidal functor**
\(T: \text{theory in } \mathcal{M} \)
\((C, \Phi): \text{metamodel of } \mathcal{N} \)

We can take ...

- the category of models \(\text{Mod}(F_* T, (C, \Phi)) \) (using \(\mathcal{N} \));
- the category of models \(\text{Mod}(T, (C, F^* \Phi)) \) (using \(\mathcal{M} \)).

By the 2-adjunction

\[
\begin{array}{ccc}
\mathcal{M Mod}(\mathcal{M}) & \cong & \mathcal{M Mod}(\mathcal{N}) \\
\downarrow & \swarrow_{F_*} & \searrow_{F^*}
\end{array}
\]

these two categories of models are canonically isomorphic.
Isomorphisms between categories of models

Example

\([F, \text{Set}]: \) the metatheory of clones
\([\text{Set}, \text{Set}]: \) the metatheory of monads on \(\text{Set}\)

Using the inclusion functor \(J: F \rightarrow \text{Set}\), we obtain a strong monoidal functor \(\text{Lan}_J: [F, \text{Set}] \rightarrow [\text{Set}, \text{Set}]\).

\(T: \) clone = theory in \([F, \text{Set}]\)
\((\text{Set}, \Phi): \) the standard \(\text{Set}\)-metammodel of \([\text{Set}, \text{Set}]\)

We have:

- \(\text{Lan}_J^* T: \) the finitary monad corresponding to \(T\);
- \((\text{Set}, \text{Lan}_J^* \Phi): \) the standard \(\text{Set}\)-metammodel of \([F, \text{Set}]\).

\(\Rightarrow \) The classical result on compatibility of semantics of clones (= Lawvere theories) and monads on \(\text{Set}\) [Linton, 1965].
Table of contents

Introduction

Metatheories and theories

Notions of model as enrichments

Notions of model as oplax actions

Metamodels and models

Morphisms of metatheories

Categories of models as double limits

Conclusion
The category of models

\[\mathcal{M} = (\mathcal{M}, I, \otimes) \]: metatheory; \[T = (T, e, m) \]: theory in \(\mathcal{M} \);

\((C, \Phi) \): metamodel of \(\mathcal{M} \)

We obtain a category

\[\text{Mod}(T, (C, \Phi)) \] (or, \(\text{Mod}(T, C) \) for short),

a functor

\[\text{Mod}(T, C) \]

\[\begin{array}{c}
\downarrow U \\
C
\end{array} \]

and a natural transformation

\[\text{Hom}_{\text{Mod}(T, C)} \]

\[\begin{array}{c}
U
\\
\downarrow
\\
\downarrow U \\
C
\end{array} \]

\[\Phi_T \]

\[\rightarrow C \]
The category of models

\[\text{Mod}(T, C) \xrightarrow{\text{Hom}} \text{Mod}(T, C) \]

\[U \downarrow \Phi_T \downarrow \Phi_m \]

\[\Phi_{T \otimes T} \]

\[\text{Mod}(T, C) \xrightarrow{\text{Hom}} \text{Mod}(T, C) \xrightarrow{\text{Hom}} \text{Mod}(T, C) \]

\[U \downarrow \Phi_T \downarrow U \]

\[\Phi_{T, T} \]

\[\Phi_{T \otimes T} \]
The category of models

\[\text{Mod}(T, C) \xrightarrow{\text{Hom}} \text{Mod}(T, C) \]

\[\Phi \]

\[\Phi_T \]

\[\Phi_e \]

\[\Phi_I \]

\[\Phi_I \]

\[\Phi_i \]

In fact, \((\text{Mod}(T, C), U, u)\) is the universal one as such.

\[\Rightarrow \] What is a suitable language to express this universality?
Categories of models as double limits

Definition ([Grandis–Paré 1999])

The pseudo double category \mathbf{Prof}

- object: category;
- vertical 1-cell: functor; $(G \circ H) \circ K = G \circ (H \circ K)$
- horizontal 1-cell: profunctor; $(X \circ Y) \circ Z \cong X \circ (Y \circ Z)$
- square: natural transformation.

Monoidal category \mathcal{M} defines a vertically trivial (one object, one vertical 1-cell) pseudo double category $\mathbb{H}\Sigma\mathcal{M}$.

$(\mathbf{Mod}(T, (\mathcal{C}, \Phi)), U, u)$ is the **double limit** [Grandis–Paré 1999] of the lax double functor

$$
\begin{array}{c}
\mathbb{H}\Sigma(\Delta^{op}) \\
\xrightarrow{T^{op}} \\
\mathbb{H}\Sigma(\mathcal{M}^{op}) \\
\xrightarrow{\phi} \\
\mathbf{Prof}
\end{array}
$$
Table of contents

Introduction
Metatheories and theories
Notions of model as enrichments
Notions of model as oplax actions
Metamodels and models
Morphisms of metatheories
Categories of models as double limits

Conclusion
Conclusion

- Unified account of various notions of algebraic theory and their semantics.
- Morphism of metatheories as a uniform method to compare different notions of algebraic theory.
 - Strong monoidal functor \mapsto adjoint pair of morphisms \mapsto isomorphisms of categories of models.

Future work:

- Clearer understanding of the scope of our framework.
 - In particular, intrinsic characterisation of the forgetful functors $U: \text{Mod}(T, (C, \Phi)) \rightarrow C$ arising in our framework (a Beck type theorem).
- Incorporate various constructions on algebraic theories: sums, distributive laws, tensor products, ...
The relation between action and enrichment

According to a categorical folklore [Kelly, Gordon–Power, ...]:

Proposition

\[\mathcal{M} = (\mathcal{M}, I, \otimes): \text{monoidal category (metatheory)}; \quad \mathcal{C}: \text{category} \]

1. \(\ast: \mathcal{M} \times \mathcal{C} \to \mathcal{C} \): oplax left action s.t. for each \(C \in \mathcal{C} \)

\[(_ \ast C) \]

\[\mathcal{M} \xrightarrow{\perp} \mathcal{C}. \]

\[\exists \langle C, _ \rangle \]

Then \(\langle -, - \rangle \) defines an enrichment.

2. \(\langle -, - \rangle: \mathcal{C}^{\text{op}} \times \mathcal{C} \to \mathcal{M} \): enrichment s.t. for each \(C \in \mathcal{C} \)

\[\exists (_ \ast C) \]

\[\mathcal{M} \xleftarrow{\perp} \mathcal{C}. \]

\[\langle C, _ \rangle \]

Then \(\ast \) defines an oplax left action.
The relation between action and enrichment

Proposition

\(\mathcal{M} = (\mathcal{M}, I, \otimes) \): metatheory; \(T = (T, e, m) \): theory in \(\mathcal{M} \)

\((C, * : \mathcal{M} \times C \to C) \): oplax action

\((C, \langle -,- \rangle : \mathcal{C}^{\text{op}} \times C \to \mathcal{M}) \): enrichment

If for each \(C \in \mathcal{C} \)

\[
\begin{array}{c}
\mathcal{M} \\
\downarrow \\
\langle C,- \rangle
\end{array}
\begin{array}{c}
\to C
\end{array}
\]

(compatible with structure morphisms \(\delta, \varepsilon, M, j \)) then

\[
\begin{array}{c}
g: \mathcal{T} \times C \to C \quad \text{(via oplax action)}
\end{array}
\]

\[
\begin{array}{c}
\chi: \mathcal{T} \to \langle C,C \rangle \quad \text{(via enrichment)}.
\end{array}
\]

So \(\text{Mod}(\mathcal{T},(C, *)) \cong \text{Mod}(\mathcal{T},(C, \langle -,- \rangle)) \).
The relation between action and enrichment

Example

([F, Set], I, ⋅): the metatheory of clones

For each $S \in \text{Set}$

$$(-) \diamond S$$

$$\begin{array}{ccc}
[F, \text{Set}] & \xleftarrow{\perp} & \text{Set} \\
\langle S, - \rangle & \xrightarrow{} & \\
\end{array}$$

where

$$X \diamond S = \int_{[m] \in F} X_m \times S^m$$

and

$$\langle S, R \rangle_m = \text{Set}(S^m, R)$$