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“Abelian” versus “semi-abelian”

Definition
A category C is abelian if
I C has a 0-object
I C has finite products
I any arrow f in C has a factorisation f = i ◦ p

X f //

p �� ��

Y

I
?? i

??

where p is a normal epi and i is a normal mono.



Ab is the typical example of abelian category :

I Ab has a 0-object : the trivial group {0}
I Ab has finite products
I any homomorphism f in Ab has a factorisation f = i ◦ p

X f //

p "" ""

Y

f (X )
<< i

<<

where p is a surjective homomorphism (= normal epi) and
i is an inclusion as a normal subgroup (= normal mono).



Grp is not abelian :

I Grp has a 0-object : the trivial group
I Grp has finite products
I Problem : an arrow f in Grp does not have a factorisation f = i ◦ p

X f //

p "" ""

Y

f (X )
<< i

<<

with p a surjective homomorphism and i an inclusion as a normal
subgroup.



Question : is there a list of simple axioms to develop a unified
treatment of the categories Grp, Rng, LieK,... ?

S. Mac Lane, Duality for groups, Bull. Amer. Math. Soc. (1950)
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Several proposals of “non-abelian contexts” for

radical theory :
S. A. Amitsur (1954), A.G. Kurosh (1959)

non-abelian homological algebra :
A. Frölich (1961), M. Gerstenhaber (1970), G. Orzech (1972)

commutator theory :
P. Higgins (1956), S.A. Huq (1968), etc.



Definition (G. Janelidze, L. Márki, W. Tholen, JPAA, 2002)
A finitely complete category C is semi-abelian if
I C has a 0-object
I C has A + B
I C is (Barr)-exact
I C is (Bourn)-protomodular :

0 // K

u

��

k // A

v

��

f
// B

oo

w

��
0 // K ′

k ′
// A′

f ′
// B′

oo

u,w isomorphisms⇒ v isomorphism.



Examples
Grp, Rng, LieK, XMod (more generally, any variety of Ω-groups)

Loop, Grp(Comp), Setop
∗ , Heyt, etc.

[ C is abelian ]⇔ [ C and Cop are semi-abelian] !

Many new connections have been discovered between semi-abelian
(co)homology and commutator theory in universal algebra.
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Let K be a field.

Bialgebras
A K -bialgebra (A,m,u,∆, ε) is both a K -algebra (A,m,u) and a
K -coalgebra (A,∆, ε), where m,u,∆, ε are linear maps such that

A⊗ A⊗ A
1A⊗m //

m⊗1A

��

A⊗ A

m
��

A⊗ K
1A⊗u //

rA
$$

A⊗ A

m
��

K ⊗ A
u⊗1Aoo

lAzz
A⊗ A m

// A A

and

A ∆ //

∆

��

A⊗ A

∆⊗1A

��

A⊗ K A⊗ A
ε⊗1A //1A⊗εoo K ⊗ A

A⊗ A
1A⊗∆

// A⊗ A⊗ A A

∆

OO

l−1
A

::

r−1
A

dd

commute, and m and u are K -coalgebra morphisms.



A Hopf algebra (A,m,u,∆, ε,S) is a K -bialgebra with an antipode,
a linear map S : A→ A making the following diagram commute :

A⊗ A
1A⊗S //
S⊗1A

// A⊗ A
m

""
A

∆

<<

ε
// K u

// A

(A,m,u,∆, ε,S) is cocommutative if the following triangle commutes :

A
∆

""

∆

||
A⊗ A tw

∼=
// A⊗ A

In Sweedler’s notations : ∆(a) = a1 ⊗ a2 = a2 ⊗ a1, for any a ∈ A.
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Example
Any group G gives the group-algebra

K [G] = {
∑

g

αgg | g ∈ G, },

which becomes a cocommutative Hopf algebra with

∆(g) = g ⊗ g, ε(g) = 1, S(g) = g−1.

In the category HopfK ,coc of cocommutative Hopf algebras there is the
full subcategory

GrpHopfK ⊂ HopfK ,coc

of group Hopf algebras (= generated by grouplike elements).
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Theorem (M. Gran, F. Sterck and J. Vercruysse, JPAA, 2019)
The category HopfK ,coc is semi-abelian.

Remark
The fact that HopfK ,coc is protomodular follows from

HopfK ,coc
∼= Grp(CoalgK,coc)

The most difficult part is to prove that HopfK ,coc is a regular category
(this was explained by F. Sterck in her talk).
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In particular, this result implies

Theorem (M. Takeuchi, Manuscr. Math., 1972)
The category Hopfcomm

K ,coc is abelian.

Indeed :
Hopfcomm

K ,coc = Ab(HopfK ,coc).

A ∈ HopfK ,coc is abelian⇔ ∆: A→ A⊗ A is a normal mono

⇔ A is commutative : ab = ba

⇔ A ∈ Hopfcomm
K ,coc
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There is an adjunction

Hopfcomm
K ,coc = Ab(HopfK ,coc)

U
// HopfK ,coc

ab
⊥
oo

In general, if C is semi-abelian, Ab(C) is abelian

Ab(C)
U
// C

ab
⊥
oo

with unit of the adjunction

A
ηA // // A

[A,A]
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Commutators
For general normal Hopf subalgebras M,N of A ∈ HopfK ,coc

M // // A Noooo

one can compute the categorical commutator :

[M,N]Huq = 〈{m1n1S(m2)S(n2) | m ∈ M,n ∈ N}〉A

(where ∆(m) = m1 ⊗m2 and ∆(n) = n1 ⊗ n2).



In HopfK ,coc the condition [M,N]Huq = 0 is equivalent to the existence
of a (unique) morphism p : M ⊗ N → A making the diagram

M ⊗ N

p

��

M

(1M ,0)
;;

##

##

N

(0,1N )
cc

{{

{{
A

commute, where p(m ⊗ n) = mn, for any m ⊗ n ∈ M ⊗ N.

This allows one to apply methods of commutator theory to HopfK ,coc .
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Split extensions
In a semi-abelian category C a split extension is a diagram

0 // X κ // A
p
// B

soo // 0 (1)

where κ = Ker (p) and p ◦ s = 1B.

Example
In the category Grp of groups each split extension (1) is determined
by a morphism

χ : B → Aut(X )

where the action of B on X is given by

χ(b)(x) = s(b)xs(b)−1

for any b ∈ B and x ∈ X .
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Given any X ∈ Grp there is a universal split extension

0 // X
i1 // X o Aut(X)

p2

// Aut(X)
i2oo // 0

(with kernel X ) with the following universal property :

for any other split extension, there is a unique morphism

0 // X κ // A
p

//

∃!χ

��

B
soo //

∃!χ

��

0

0 // X
i1
// X o Aut(X)

p2

// Aut(X)
i2oo // 0.
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Given X ∈ Grp, the group Aut(X) is the split extension classifier :

0 // X κ // A
p

//

∃!χ

��

B
soo //

∃!χ

��

0

0 // X
i1
// X o Aut(X)

p2

// Aut(X)
i2oo // 0.

The category Grp has representable actions in the sense of
F. Borceux, G. Janelidze, G.M. Kelly, Comment. Math. Univ. Carolin.
2005.



The term “having representable actions” comes from the fact that

SplExt(−,X ) : Grpop → Set

is representable, with representing object Aut(X) :

SplExt(−,X ) ∼= hom(−,Aut(X)).

Split extensions in Grp correspond to actions :

Act(−,X ) ∼= SplExt(−,X ) ∼= hom(−,Aut(X))
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Split extensions in the category of Lie algebras
Similarly, for any L ∈ LieK the Lie algebra Der(L) of derivations is a
split extension classifier

0 // L κ // A
p

//

∃!ρ

��

B
soo //

∃!ρ

��

0

0 // L
i1
// L o Der(L)

p2

// Der(L)
i2oo // 0

where the Lie algebra action is

ρ(b)(l) = [s(b), l]

Act(−,L) ∼= SplExt(−,L) ∼= hom(−,Der(L))
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In general, a semi-abelian category C has representable actions if
any object X ∈ C has a split extension classifier, denoted by [X ], with

0 // X κ // X
p
// [X ]

soo // 0

a universal split extension (with kernel X ).
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Split extensions in cocommutative Hopf algebras
In HopfK ,coc any split extension

0 // X κ // A
p
// B

soo // 0

is canonically isomorphic to the semidirect product exact sequence

0 // X κ // A
p
// B

soo // 0

0 // X
i1
// X o B

p2

//

∼=

OO

B
i2oo // 0



Semidirect product
In the split exact sequence

0 // X
i1 // X o B

p2

// B
i2oo // 0 (2)

the semidirect product X o B is the vector space X ⊗ B equipped with
the cocommutative Hopf algebra structure :
• MXoB(x ⊗ b, x ′ ⊗ b′) = x(b1 · x ′)⊗ b2b′

• ∆XoB = (1X ⊗ tw ⊗ 1B)(∆X ⊗∆B)

• uXoB = uX ⊗ uB and εXoB = εX ⊗ εB
• S(x ⊗ b) = (SB(b1)) · SX (x)⊗ SB(b2)

(here b · x denotes the action of b on x corresponding to

0 // X κ // A
p
// B

soo // 0 )



When K is an algebraically closed field of characteristic 0 :

Theorem (Milnor-Moore, Ann. Math. 1965)
For any cocommutative Hopf K -algebra H there is a split extension

0 // U(LH)
i1 // H ∼= U(LH) o K[GH]

p2

// K[GH]
i2oo // 0

I U(LH) is the universal enveloping algebra of the Lie algebra

LH = {x ∈ H | ∆(x) = 1⊗ x + x ⊗ 1}

of primitive elements of H ;
I K[GH] is the group Hopf algebra generated by the grouplike

elements

GH = {x ∈ H | ∆(x) = x ⊗ x , ε(x) = 1}

of H.
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This result can be used to prove

Proposition (M.G., G. Kadjo and J. Vercruysse (APCS, 2016))
When K is an algebraically closed field with characteristic 0, the pair

(PrimHopfK,GrpHopfK)

of full subcategories of HopfK ,coc is a hereditary torsion theory.

Moreover, the category of groups is a localization of HopfK ,coc

Grp
K [−]

// HopfK ,coc

F
⊥
oo

i.e. the reflector F : HopfK ,coc → Grp preserves finite limits.
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Split extension classifier in HopfK ,coc

The category HopfK ,coc has representable actions in the sense of
Borceux, Janelidze, Kelly (2005).

It is natural to look for an explicit description of the split extension
classifier [H] of any cocommutative Hopf algebra H.
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The “group Hopf algebra part” of [H] is

K[AutHopf (H)]

where AutHopf (H) is the group of Hopf automorphisms of H.

To define the “primitive part” of [H] one needs the following

Definition
A Hopf derivation of a Hopf algebra (H,m,u,∆, ε,S) is a linear
endomorphism ψ : H → H that is a derivation

ψ ◦m = m ◦ (ψ ⊗ id + id ⊗ ψ)

and a coderivation

∆ ◦Ψ = (ψ ⊗ id + id ⊗ ψ) ◦∆.



The “group Hopf algebra part” of [H] is

K[AutHopf (H)]

where AutHopf (H) is the group of Hopf automorphisms of H.

To define the “primitive part” of [H] one needs the following

Definition
A Hopf derivation of a Hopf algebra (H,m,u,∆, ε,S) is a linear
endomorphism ψ : H → H that is a derivation

ψ ◦m = m ◦ (ψ ⊗ id + id ⊗ ψ)

and a coderivation

∆ ◦Ψ = (ψ ⊗ id + id ⊗ ψ) ◦∆.



One writes DerHopf (H) for the Lie algebra of Hopf derivations, where

[ψ1, ψ2] = ψ1 ◦ ψ2 − ψ2 ◦ ψ1, ∀ψ1, ψ2 ∈ DerHopf (H).

By applying the universal enveloping algebra functor
U : LieK → HopfK ,coc one gets the primitive Hopf algebra

U(DerHopf (H))

One defines

[H] = U(DerHopf (H)) oρ K[AutHopf (H)]

where the action

ρ : K[AutHopf (H)]⊗U(DerHopf (H))→U(DerHopf (H))

is determined by ρ(φ⊗ ψ) = φ ◦ ψ ◦ φ−1.
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Theorem (M.G., G. Kadjo and J. Vercruysse, BBMS 2018)
Let K be an algebraically closed field of characteristic zero. Then

[H] = U(DerHopf (H)) oρ K[AutHopf (H)]

is the split extension classifier of H in HopfK ,coc

There is a universal split extension

0 // H // H o? [H] // [H]
oo // 0

where the action ? : [H]⊗ H → H is defined by

(φ⊗ ψ) ? h = ψ(φ(h))

for any φ⊗ ψ ∈ [H] = U(DerHopf (H)) oρ K[AutHopf (H)], and h ∈ H.
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Center
When a semi-abelian category C is action representable, the
categorical center Z(X ) of an object X can be obtained as the kernel
of the canonical arrow χ in

0

��
Z(X )

ker(χ)

��
0 // X // X × X

p1

//

χ

��

X
∆oo //

χ

��

0

0 // X
i1
// X o [X ]

p2

// [X ]
i2oo // 0

(see A. Cigoli and S. Mantovani, JPAA, 2012).



Example
In the case of groups, this corresponds to the fact that the center
Z(G) of a group G is the kernel of the conjugation map χ in

0

��
Z(G)

ker(χ)

��
0 // G // G ×G //

χ

��

Goo //

χ

��

0

0 // G // G o Aut(G) // Aut(G)
oo // 0

where χ(g)(h) = ghg−1, for any g,h ∈ G.



Definition (N. Andruskiewitsch, Canad. J. Math. 1996)
Given a Hopf algebra A, the Hopf center HZ(A) is the largest Hopf
subalgebra of A contained in the algebraic center Zalg(A) of A, where

Zalg(A) = {a ∈ A | ab = ba,∀b ∈ A}.

Proposition (M.G., G. Kadjo and J. Vercruysse, 2018)
When A is cocommutative, the categorical center Z(A) of A coincides
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Final remarks
It is interesting to adopt the approach based on semi-abelian
categories in the study of (cocommutative) Hopf algebras.

The case of general Hopf algebras is more subtle, since limits in
Hopf K are difficult to compute.

The approach based on Schreier split extensions (due to Sobral,
Martins-Ferreira, Montoli, Bourn) could be useful to study some
exactness properties of Hopf K .
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