Coherence for tricategories via weak vertical composition

Eugenia Cheng

School of the Art Institute of Chicago

Aim: show that tricategories with just weak vertical composition are "weak enough"

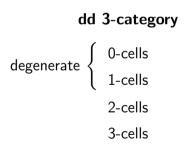
Aim: show that tricategories with just weak vertical composition are "weak enough" ...and thus shed light on the source of weakness in higher categories.

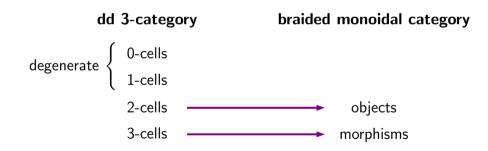
1. Overview: degeneracy and braidings

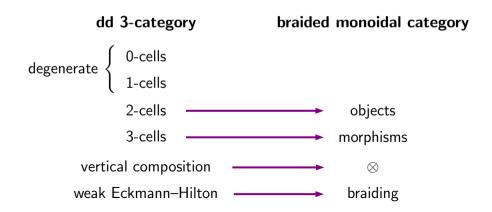
- 1. Overview: degeneracy and braidings
- 2. Warm-up: strictification via cliques

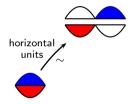
- 1. Overview: degeneracy and braidings
- 2. Warm-up: strictification via cliques
- 3. Construction

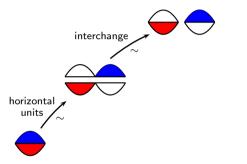
- 1. Overview: degeneracy and braidings
- 2. Warm-up: strictification via cliques
- 3. Construction
- 4. Equivalence.

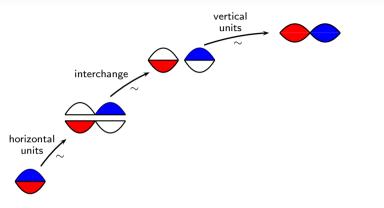


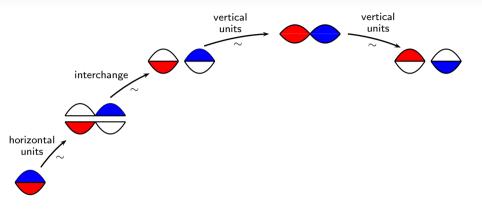


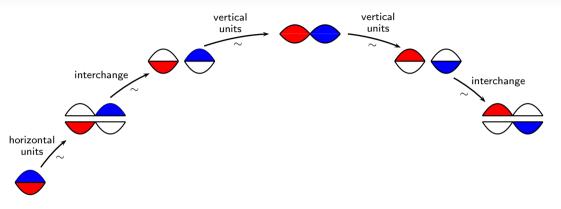


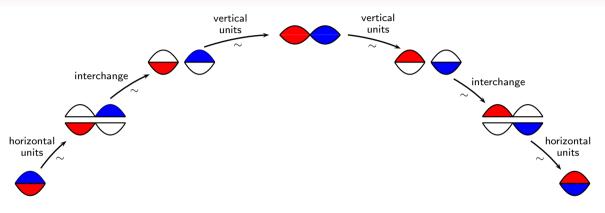


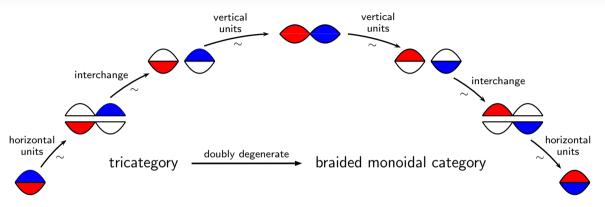


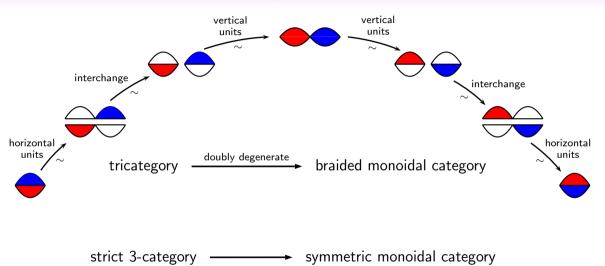


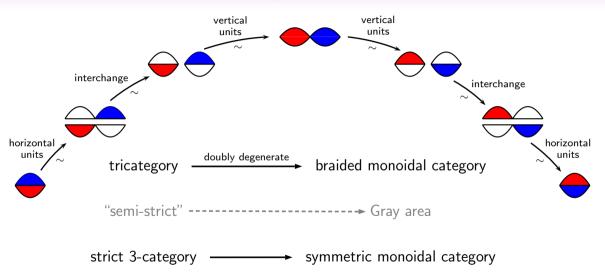












	vertical units	horizontal units	interchange
GPS	strict	strict	weak
JK	strict	weak	strict
С	weak	strict	strict

	vertical units	horizontal units	interchange	subtlety
GPS	strict	strict	weak	
JK	strict	weak	strict	not doubly degenerate
С	weak	strict	strict	need weak vertical associativity

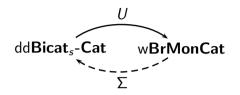
	vertical units	horizontal units	interchange	subtlety
GPS JK C	strict strict weak	strict weak strict	weak strict strict	not doubly degenerate need weak vertical associativity
			type of \otimes	
		(or type of functors	S

	vertical units	horizontal units	interchange	subtlety
GPS JK C	strict strict weak	strict weak strict pe of enrichment	weak strict strict type of ⊗ type of functors	not doubly degenerate need weak vertical associativity
		or	type of functors	

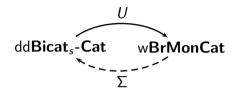
	vertical units	horizontal units	interchange	subtlety
GPS JK C	strict strict weak nat we enrich in	strict weak strict	weak strict strict	not doubly degenerate need weak vertical associativity
	typ	ا e of enrichment or	t type of ⊗ type of functors	i

	vertical units	horizontal units	interchange	subtlety
GPS JK C	strict strict <mark>weak</mark>	strict <mark>weak</mark> strict	weak strict strict	not doubly degenerate need weak vertical associativity
wh	at we enrich in typ	n a e of enrichmer	nt type of ⊗	We enrich in (Bicat _s , ×): • bicategories • strict functors • ordinary products
		c	or type of functors	 strict enrichment
"Law of conservation of complicatedness"				We write Bicat _s -Cat.

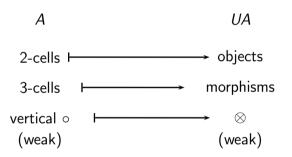


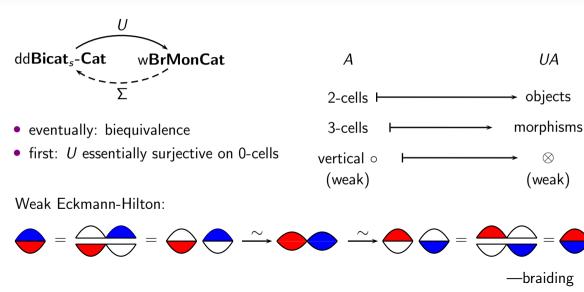


- eventually: biequivalence
- first: U essentially surjective on 0-cells



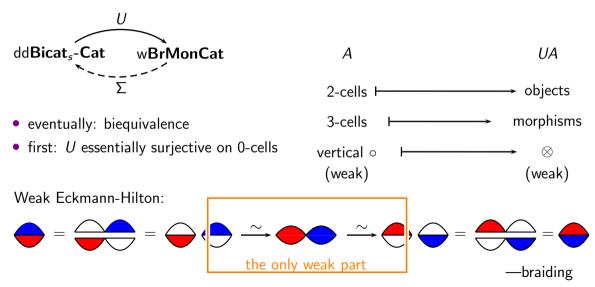
- eventually: biequivalence
- first: U essentially surjective on 0-cells





UΑ

 \otimes



We show $ddBicat_s$ -Cat \longrightarrow wBrMonCat is essentially surjective on objects:

We show $ddBicat_s$ -Cat \longrightarrow wBrMonCat is essentially surjective on objects:

• start with a braided monoidal category B (with strict \otimes wlog),

We show $ddBicat_s$ -Cat \longrightarrow wBrMonCat is essentially surjective on objects:

- start with a braided monoidal category B (with strict \otimes wlog),
- construct a dd**Bicat**_s-category ΣB , and

We show $ddBicat_s$ -Cat \longrightarrow wBrMonCat is essentially surjective on objects:

- start with a braided monoidal category B (with strict \otimes wlog),
- construct a dd**Bicat**_s-category ΣB , and
- a braided monoidal equivalence $B \xrightarrow{\sim} \Sigma B$.

We show $ddBicat_s$ -Cat \longrightarrow wBrMonCat is essentially surjective on objects:

- start with a braided monoidal category B (with strict \otimes wlog),
- construct a dd**Bicat**_s-category ΣB , and
- a braided monoidal equivalence $B \xrightarrow{\sim} \Sigma B$.

How do we get horizontal and vertical composition from \otimes ?

We show $ddBicat_s$ -Cat \longrightarrow wBrMonCat is essentially surjective on objects:

- start with a braided monoidal category B (with strict \otimes wlog),
- construct a dd**Bicat**_s-category ΣB , and
- a braided monoidal equivalence $B \xrightarrow{\sim} \Sigma B$.

How do we get horizontal and vertical composition from \otimes ?

For tricategories: Put both as \otimes and get interchange from the braiding γ

We show $ddBicat_s$ -Cat \longrightarrow wBrMonCat is essentially surjective on objects:

- start with a braided monoidal category B (with strict \otimes wlog),
- construct a dd**Bicat**_s-category ΣB , and
- a braided monoidal equivalence $B \xrightarrow{\sim} \Sigma B$.

How do we get horizontal and vertical composition from \otimes ?

For tricategories: Put both as \otimes and get interchange from the braiding γ

Issues: 1. We can't have both compositions strict so they can't both be \otimes .

We show $ddBicat_s$ -Cat \longrightarrow wBrMonCat is essentially surjective on objects:

- start with a braided monoidal category B (with strict \otimes wlog),
- construct a dd**Bicat**_s-category ΣB , and
- a braided monoidal equivalence $B \xrightarrow{\sim} \Sigma B$.

How do we get horizontal *and* vertical composition from \otimes ?

For tricategories: Put both as \otimes and get interchange from the braiding γ

Issues: 1. We can't have both compositions strict so they can't both be \otimes .

2. We want interchange to be strict so it can't be γ .

We show $ddBicat_s$ -Cat \longrightarrow wBrMonCat is essentially surjective on objects:

- start with a braided monoidal category B (with strict \otimes wlog),
- construct a dd**Bicat**_s-category ΣB , and
- a braided monoidal equivalence $B \xrightarrow{\sim} \Sigma B$.

How do we get horizontal and vertical composition from \otimes ?

For tricategories: Put both as \otimes and get interchange from the braiding γ

Issues: 1. We can't have both compositions strict so they can't both be \otimes .

2. We want interchange to be strict so it can't be γ .

Solution: Do "weakification" for the vertical direction.

Coherence: Every weak monoidal category is monoidal equivalent to a strict one.

Coherence: Every weak monoidal category is monoidal equivalent to a strict one. **Follows from:** F1 is monoidal equivalent to the discrete $(\mathbb{N}, +, 0)$.

8.

Coherence: Every weak monoidal category is monoidal equivalent to a strict one. **Follows from:** F1 is monoidal equivalent to the discrete $(\mathbb{N}, +, 0)$.

So • F1 splits into connected components C_n "bracketed words of length n".

Coherence: Every weak monoidal category is monoidal equivalent to a strict one. **Follows from:** F1 is monoidal equivalent to the discrete $(\mathbb{N}, +, 0)$.

- So F1 splits into connected components C_n "bracketed words of length n".
 - Each $C_n \simeq 1$ so all bracketings are uniquely isomorphic "all diagrams commute".

Coherence: Every weak monoidal category is monoidal equivalent to a strict one. **Follows from:** F1 is monoidal equivalent to the discrete $(\mathbb{N}, +, 0)$.

- So F1 splits into connected components C_n "bracketed words of length n".
 - Each $C_n \simeq 1$ so all bracketings are uniquely isomorphic "all diagrams commute".

Given a monoidal category M we construct **st** M "strictification"

Coherence: Every weak monoidal category is monoidal equivalent to a strict one. **Follows from:** F1 is monoidal equivalent to the discrete $(\mathbb{N}, +, 0)$.

- So F1 splits into connected components C_n "bracketed words of length n".
 - Each $C_n \simeq 1$ so all bracketings are uniquely isomorphic "all diagrams commute".

Given a monoidal category M we construct st M "strictification"

• objects: words in the objects of *M* (unbracketed)

Coherence: Every weak monoidal category is monoidal equivalent to a strict one. **Follows from:** F1 is monoidal equivalent to the discrete $(\mathbb{N}, +, 0)$.

- So F1 splits into connected components C_n "bracketed words of length n".
 - Each $C_n \simeq 1$ so all bracketings are uniquely isomorphic "all diagrams commute".

Given a monoidal category M we construct st M "strictification"

- objects: words in the objects of *M* (unbracketed)
- morphisms: evaluate words in M then take morphisms from M.

Coherence: Every weak monoidal category is monoidal equivalent to a strict one. **Follows from:** F1 is monoidal equivalent to the discrete $(\mathbb{N}, +, 0)$.

- So F1 splits into connected components C_n "bracketed words of length n".
 - Each $C_n \simeq 1$ so all bracketings are uniquely isomorphic "all diagrams commute".

Given a monoidal category M we construct **st** M "strictification"

- objects: words in the objects of *M* (unbracketed)
- morphisms: evaluate words in M then take morphisms from M.

Question: How do we evaluate strict words in a weak monoidal category?

Coherence: Every weak monoidal category is monoidal equivalent to a strict one. **Follows from:** F1 is monoidal equivalent to the discrete $(\mathbb{N}, +, 0)$.

- So F1 splits into connected components C_n "bracketed words of length n".
 - Each $C_n \simeq 1$ so all bracketings are uniquely isomorphic "all diagrams commute".

Given a monoidal category M we construct **st** M "strictification"

- objects: words in the objects of *M* (unbracketed)
- morphisms: evaluate words in M then take morphisms from M.

Question: How do we evaluate strict words in a weak monoidal category? **Answer:** Use cliques.

Thought experiment

Suppose we're trying to define morphisms $abc \longrightarrow y$ in **st** M.

Thought experiment

Suppose we're trying to define morphisms $abc \longrightarrow y$ in st M.

• I could take morphisms $(a \otimes b) \otimes c \longrightarrow y$.

Thought experiment

Suppose we're trying to define morphisms $abc \longrightarrow y$ in **st** M.

- I could take morphisms $(a \otimes b) \otimes c \longrightarrow y$.
- You could take morphisms $a \otimes (b \otimes c) \longrightarrow y$.

Thought experiment

Suppose we're trying to define morphisms $abc \longrightarrow y$ in **st** M.

- I could take morphisms $(a \otimes b) \otimes c \longrightarrow y$.
- You could take morphisms $a \otimes (b \otimes c) \longrightarrow y$.
- We could all take different ones by throwing in copies of *I*.

Thought experiment

Suppose we're trying to define morphisms $abc \longrightarrow y$ in **st** M.

- I could take morphisms $(a \otimes b) \otimes c \longrightarrow y$.
- You could take morphisms $a \otimes (b \otimes c) \longrightarrow y$.
- We could all take different ones by throwing in copies of *I*.

Key: they're not *really* different.

Thought experiment

Suppose we're trying to define morphisms $abc \longrightarrow y$ in **st** M.

- I could take morphisms $(a \otimes b) \otimes c \longrightarrow y$.
- You could take morphisms $a \otimes (b \otimes c) \longrightarrow y$.
- We could all take different ones by throwing in copies of *I*.

Key: they're not *really* different.

All bracketings of *abc* are uniquely isomorphic via coherence constraints.

Thought experiment

Suppose we're trying to define morphisms $abc \longrightarrow y$ in **st** M.

- I could take morphisms $(a \otimes b) \otimes c \longrightarrow y$.
- You could take morphisms $a \otimes (b \otimes c) \longrightarrow y$.
- We could all take different ones by throwing in copies of *I*.

Key: they're not *really* different.

All bracketings of *abc* are uniquely isomorphic via coherence constraints.

Thought experiment

Suppose we're trying to define morphisms $abc \longrightarrow y$ in **st** M.

- I could take morphisms $(a \otimes b) \otimes c \longrightarrow y$.
- You could take morphisms $a \otimes (b \otimes c) \longrightarrow y$.
- We could all take different ones by throwing in copies of *I*.

Key: they're not *really* different.

All bracketings of *abc* are uniquely isomorphic via coherence constraints.

$$(a \otimes b) \otimes c \xrightarrow{(f \otimes g) \otimes h} (a' \otimes b') \otimes c$$

Thought experiment

Suppose we're trying to define morphisms $abc \longrightarrow y$ in **st** M.

- I could take morphisms $(a \otimes b) \otimes c \longrightarrow y$.
- You could take morphisms $a \otimes (b \otimes c) \longrightarrow y$.
- We could all take different ones by throwing in copies of *I*.

Key: they're not *really* different.

All bracketings of *abc* are uniquely isomorphic via coherence constraints.

$$(a \otimes b) \otimes c \xrightarrow{(f \otimes g) \otimes h} (a' \otimes b') \otimes c$$

$$a \otimes (b \otimes c) \xrightarrow[f \otimes (g \otimes h)]{} a' \otimes (b' \otimes c')$$

Thought experiment

Suppose we're trying to define morphisms $abc \longrightarrow y$ in **st** M.

- I could take morphisms $(a \otimes b) \otimes c \longrightarrow y$.
- You could take morphisms $a \otimes (b \otimes c) \longrightarrow y$.
- We could all take different ones by throwing in copies of *I*.

Key: they're not *really* different.

All bracketings of *abc* are uniquely isomorphic via coherence constraints.

$$(a \otimes b) \otimes c \xrightarrow{(f \otimes g) \otimes h} (a' \otimes b') \otimes c$$

$$a \downarrow \sim \qquad a \downarrow \sim \qquad a \downarrow \sim$$

$$a \otimes (b \otimes c) \xrightarrow{f \otimes (g \otimes h)} a' \otimes (b' \otimes c')$$

Idea

A clique is essentially a collection of objects and unique isomorphisms between them.

Idea

A clique is essentially a collection of objects and unique isomorphisms between them.

Idea

A clique is essentially a collection of objects and unique isomorphisms between them.

Precisely/technically

A clique in a category \mathcal{C} is a functor $J \longrightarrow \mathcal{C}$ where $J \simeq 1$

Idea

A clique is essentially a collection of objects and unique isomorphisms between them.

Precisely/technically

A clique in a category ${\mathfrak C}$ is a functor $J \longrightarrow {\mathfrak C}$ where $J \simeq 1$

— clique objects are indexed by J but can repeat.

Idea

A clique is essentially a collection of objects and unique isomorphisms between them.

Precisely/technically

- A clique in a category ${\mathcal C}$ is a functor $J \longrightarrow {\mathcal C}$ where $J \simeq 1$
- clique objects are indexed by J but can repeat.
- The unique isomorphisms are called connecting isomorphisms.

Idea

A clique is essentially a collection of objects and unique isomorphisms between them.

Precisely/technically

A clique in a category ${\mathfrak C}$ is a functor $J \longrightarrow {\mathfrak C}$ where $J \simeq 1$

— clique objects are indexed by J but can repeat.

The unique isomorphisms are called connecting isomorphisms.

A clique map $\overline{x} \longrightarrow \overline{y}$

is a system of morphisms from each object of \overline{x} to each object of \overline{y} making everything commute.

Idea

A clique is essentially a collection of objects and unique isomorphisms between them.

Precisely/technically

A clique in a category ${\mathfrak C}$ is a functor $J \longrightarrow {\mathfrak C}$ where $J \simeq 1$

— clique objects are indexed by J but can repeat.

The unique isomorphisms are called connecting isomorphisms.

A clique map $\overline{x} \longrightarrow \overline{y}$

is a system of morphisms from each object of \overline{x} to each object of \overline{y} making everything commute.

We only have to specify one component to know what all the others are.

Idea

A clique is essentially a collection of objects and unique isomorphisms between them.

Precisely/technically

A clique in a category ${\mathfrak C}$ is a functor $J \longrightarrow {\mathfrak C}$ where $J \simeq 1$

— clique objects are indexed by J but can repeat.

The unique isomorphisms are called connecting isomorphisms.

A clique map $\overline{x} \longrightarrow \overline{y}$

is a system of morphisms from each object of \overline{x} to each object of \overline{y} making everything commute.

We only have to specify one component to know what all the others are.

Idea

A clique is essentially a collection of objects and unique isomorphisms between them.

Precisely/technically

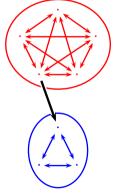
A clique in a category ${\mathfrak C}$ is a functor $J \longrightarrow {\mathfrak C}$ where $J \simeq 1$

— clique objects are indexed by J but can repeat.

The unique isomorphisms are called connecting isomorphisms.

A clique map $\overline{x} \longrightarrow \overline{y}$

is a system of morphisms from each object of \overline{x} to each object of \overline{y} making everything commute.



We only have to specify one component to know what all the others are.

Example

There is a clique in M of all bracketings of abc (evaluated)

Example

There is a clique in M of all bracketings of *abc* (evaluated)

$$(a \otimes b) \otimes c \xleftarrow{\sim} a \otimes (b \otimes c)$$

Example

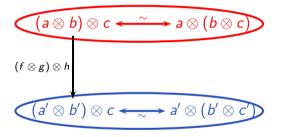
There is a clique in M of all bracketings of *abc* (evaluated)

$$(a \otimes b) \otimes c \xleftarrow{\sim} a \otimes (b \otimes c)$$

$$(a' \otimes b') \otimes c \longleftrightarrow a' \otimes (b' \otimes c')$$

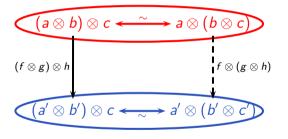
Example

There is a clique in M of all bracketings of *abc* (evaluated)



Example

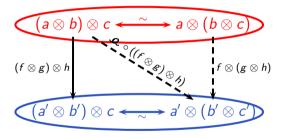
There is a clique in M of all bracketings of abc (evaluated)



---->

Example

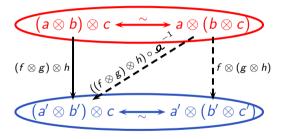
There is a clique in M of all bracketings of abc (evaluated)



----→

Example

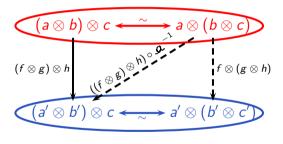
There is a clique in M of all bracketings of abc (evaluated)



----→

Example

There is a clique in M of all bracketings of abc (evaluated)



We can compose components that don't look composable via connecting isos

$$(a \otimes b) \otimes c$$

$$\downarrow$$

$$(a' \otimes b') \otimes c'$$

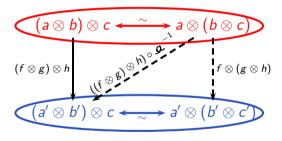
$$a' \otimes (b' \otimes c')$$

$$\downarrow$$

$$a'' \otimes (b'' \otimes c'')$$

Example

There is a clique in M of all bracketings of abc (evaluated)



other components of the same clique map

We can compose components that don't look composable via connecting isos

$$(a \otimes b) \otimes c \longleftrightarrow a \otimes (b \otimes c)$$

$$(a'\otimes b')\otimes c' \longleftrightarrow a'\otimes (b'\otimes c')$$

 $(a'' \otimes b'') \otimes c'' \longleftrightarrow a'' \otimes (b'' \otimes c'')$

Coherence for braided monoidal categories relates F1 to the braid category.

Coherence for braided monoidal categories relates F1 to the braid category. Braids come from configurations of points in \mathbb{R}^2 , and paths.

Coherence for braided monoidal categories relates F1 to the braid category. Braids come from configurations of points in \mathbb{R}^2 , and paths.

We use configurations of points in the interior of I^2

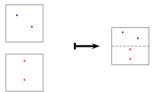
•			
	•		
		•	

Coherence for braided monoidal categories relates F1 to the braid category. Braids come from configurations of points in \mathbb{R}^2 , and paths.

We use configurations of points in the interior of I^2

· . .

• Vertical composition



Coherence for braided monoidal categories relates F1 to the braid category. Braids come from configurations of points in \mathbb{R}^2 , and paths.

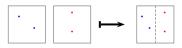
We use configurations of points in the interior of ${\cal I}^2$

· . .

Vertical composition

.

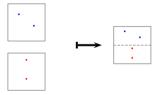
• Horizontal composition



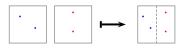
Coherence for braided monoidal categories relates F1 to the braid category. Braids come from configurations of points in \mathbb{R}^2 , and paths.

We use configurations of points in the interior of ${\cal I}^2$

• Vertical composition



• Horizontal composition



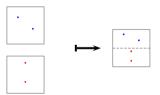
Problem: Both weak.

Coherence for braided monoidal categories relates F1 to the braid category. Braids come from configurations of points in \mathbb{R}^2 , and paths.

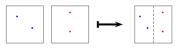
We use configurations of points in the interior of ${\cal I}^2$

· . .

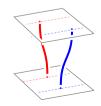
• Vertical composition



Horizontal composition



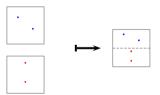
Solution: Take "horizontal path" classes — paths that do not change any *y* coordinate



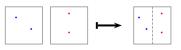
Coherence for braided monoidal categories relates F1 to the braid category. Braids come from configurations of points in \mathbb{R}^2 , and paths.

We use configurations of points in the interior of ${\cal I}^2$

• Vertical composition

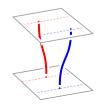


• Horizontal composition



Problem: Both weak.

Solution: Take "horizontal path" classes — paths that do not change any *y* coordinate



"strictification in the horizontal direction"

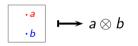
Aim: construct a dd**Bicat**_s-category ΣB from a braided monoidal category B

Aim: construct a dd \mathbf{Bicat}_s -category ΣB from a braided monoidal category B

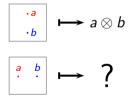
Objects: horizontal path classes of points in I^2 , labelled by objects of B

- similarity: there are many different ways to do so
- difference: they are not uniquely isomorphic "not all diagrams commute"

- similarity: there are many different ways to do so
- difference: they are not uniquely isomorphic "not all diagrams commute"



- similarity: there are many different ways to do so
- difference: they are not uniquely isomorphic "not all diagrams commute"



Aim: construct a dd**Bicat**_s-category ΣB from a braided monoidal category B Objects: horizontal path classes of points in I^2 , labelled by objects of B Morphisms (cf strictification): start by evaluating the configuration as a word

- similarity: there are many different ways to do so
- difference: they are not uniquely isomorphic "not all diagrams commute"

$$\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\rightarrow}}} \mapsto \stackrel{\circ}{\stackrel{\circ}{}} \stackrel{clockwise}{\rightarrow} \stackrel{a \otimes b}{anti-clockwise} \stackrel{a \otimes b}{b \otimes a}$$

 $| a | \rightarrow a \otimes b$

Aim: construct a dd**Bicat**_s-category ΣB from a braided monoidal category BObjects: horizontal path classes of points in I^2 , labelled by objects of BMorphisms (cf strictification): start by evaluating the configuration as a word

- similarity: there are many different ways to do so
- difference: they are not uniquely isomorphic "not all diagrams commute"

There are many isomorphisms connecting these eg

XX

13

$$\begin{vmatrix} \cdot a \\ \cdot b \end{vmatrix} \longrightarrow a \otimes b$$

$$\stackrel{?}{\overset{b}{\cdot}} \stackrel{b}{\longmapsto} \stackrel{\textbf{?}}{\overset{\text{clockwise}}{\overset{\text{a }\otimes b}{\overset{\text{d}\otimes a}}}} \stackrel{a \otimes b}{\overset{\text{a }\otimes b}{\overset{\text{clockwise}}{\overset{\text{b}\otimes a}{\overset{\text{clockwise}}}{\overset{\text{clockwise}}{\overset{\text{clockwise}}{\overset{\text{clockwise}}{\overset{\text{clockwise}}{\overset{\text{clockwise}}{\overset{\text{clockwise}}}{\overset{\text{clockwise}}{\overset{\text{clockwise}}{\overset{\text{clockwise}}{\overset{\text{clockwise}}{\overset{\text{clockwise}}{\overset{\text{clockwise}}}{\overset{\text{clockwise}}{\overset{\text{clockwise}}{\overset{\text{clockwise}}{\overset{\text{clockwise}}{\overset{\text{clockwise}}{\overset{\text{clockwise}}$$

Aim: construct a dd**Bicat**_s-category ΣB from a braided monoidal category BObjects: horizontal path classes of points in I^2 , labelled by objects of BMorphisms (cf strictification): start by evaluating the configuration as a word

• similarity: there are many different ways to do so

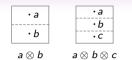
clockwise anti-clockwise

• difference: they are not uniquely isomorphic "not all diagrams commute"

 $a \otimes b$ se $b \otimes a$ There are many isomorphisms connecting these eg

Solution: remember the journey, not just the destination.

• The free braided monoidal category embeds vertically:

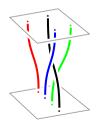


. . .

• The free braided monoidal category embeds vertically:

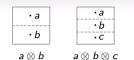
. . .

• We "flatten" our configuration to a canonical vertical one and remember what braid we used to do it.

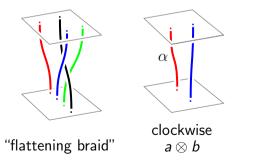


"flattening braid"

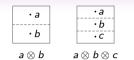
• The free braided monoidal category embeds vertically:



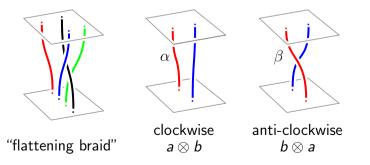
. . .



• The free braided monoidal category embeds vertically:

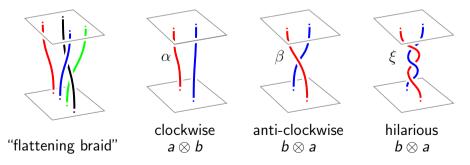


. . .



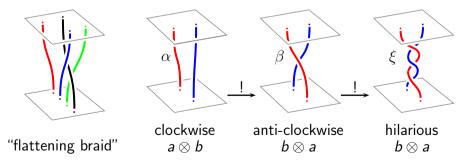
• The free braided monoidal category embeds vertically:

. . .

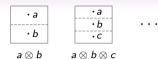


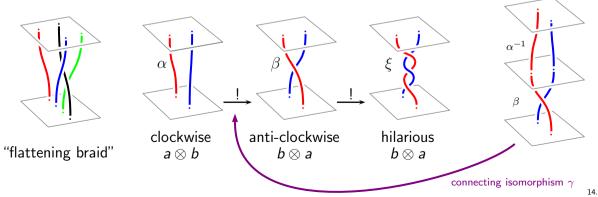
• The free braided monoidal category embeds vertically:

. . .



• The free braided monoidal category embeds vertically:





	3. Construction of ΣB : morphisms		
	st B	ΣB	
Objects:	strings of objects of <i>B</i>	configurations of points labelled by objects of <i>B</i>	

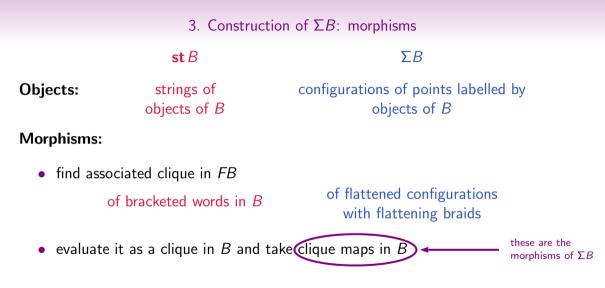
3. Construction of ΣB : morphisms **st** B ΣB **Objects:** strings of configurations of points labelled by objects of B objects of B **Morphisms:** • find associated clique in *FB*

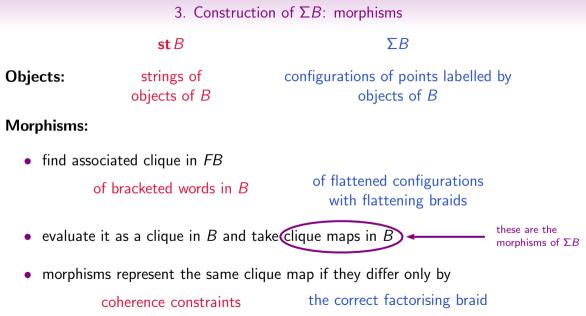
of bracketed words in B

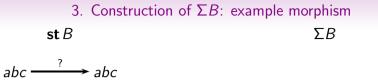
of flattened configurations with flattening braids

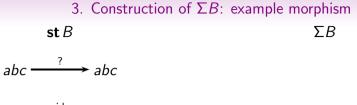
3. Construction of ΣB : morphisms						
	st B	ΣB				
Objects:	strings of objects of <i>B</i>	configurations of points labelled by objects of <i>B</i>				
Morphisms:						
• find associated clique in <i>FB</i> of bracketed words in <i>B</i>		of flattened configurations with flattening braids				

• evaluate it as a clique in B and take clique maps in B

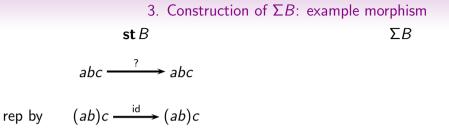




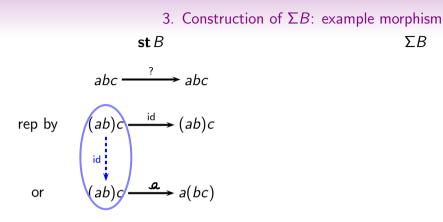


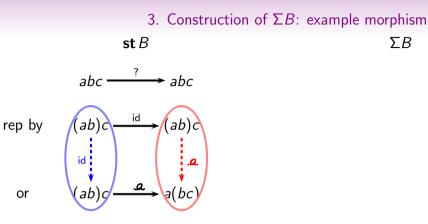


rep by $(ab)c \xrightarrow{id} (ab)c$

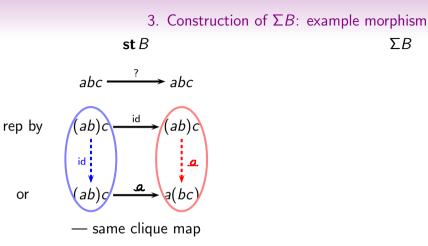


or
$$(ab)c \xrightarrow{a} a(bc)$$

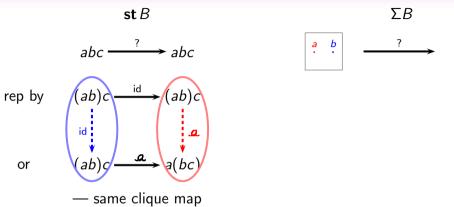




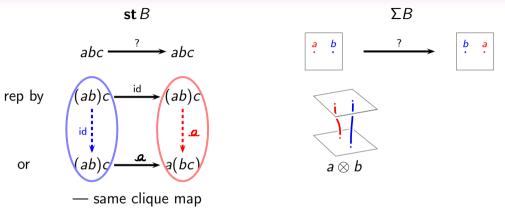
or

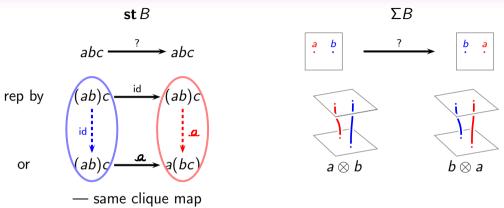


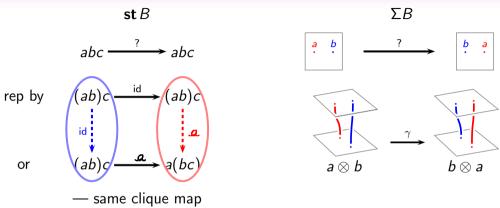
ΣΒ

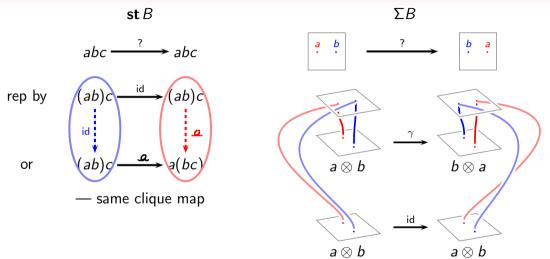


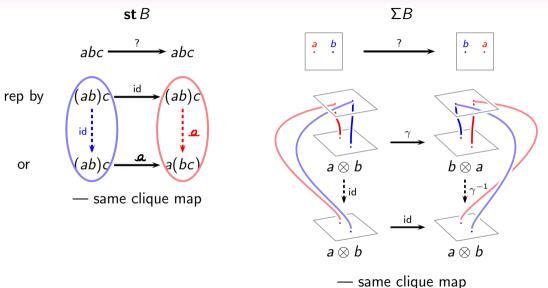
b a

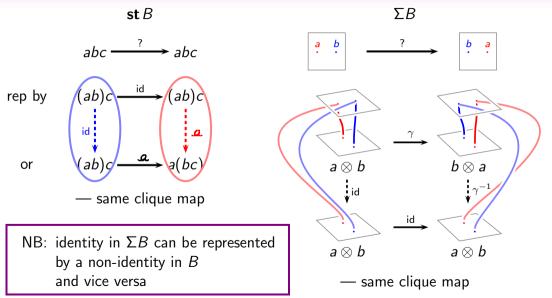












Write O for the objects of B, $\mathcal{F}O$ for the free braided monoidal category on O.

Write O for the objects of B, $\mathcal{F}O$ for the free braided monoidal category on O. We have functors

$$\Pi_1 C(I^2, \mathbb{O}) \xleftarrow{F}{\sim} \mathcal{F} \mathbb{O}$$

Write O for the objects of B, $\mathcal{F}O$ for the free braided monoidal category on O. We have functors

$$\Pi_1 C(I^2, \mathbb{O}) \xleftarrow{F}{\sim} \mathcal{F} \mathbb{O} \xrightarrow{G}{\operatorname{eval}} B$$

Write O for the objects of B, $\mathcal{F}O$ for the free braided monoidal category on O. We have functors

$$\Pi_1 C(I^2, \mathbb{O}) \xleftarrow{F}{\sim} \mathcal{F} \mathbb{O} \xrightarrow{G}{\operatorname{eval}} B$$

inducing functors on clique categories

$$\Pi_1 \widetilde{C(I^2, \mathbb{O})} \xrightarrow{F^*} \widetilde{\mathcal{F}} \widetilde{\mathbb{O}} \xrightarrow{G_!} \widetilde{B}$$

Write O for the objects of B, $\mathcal{F}O$ for the free braided monoidal category on O. We have functors

$$\Pi_1 C(I^2, \mathbb{O}) \xleftarrow{F}{\sim} \mathcal{F} \mathbb{O} \xrightarrow{G} B$$

inducing functors on clique categories

$$\Pi_1 \widetilde{C(I^2, \mathbb{O})} \xrightarrow{F^*} \widetilde{\mathcal{F}\mathbb{O}} \xrightarrow{G_1} \widetilde{B}$$

 ΣB is defined by

- objects: horizontal path cliques of $\Pi_1 C(I^2, \mathbb{O})$
- morphisms:

$$\Sigma B(\overline{X},\overline{Y}) := \widetilde{B}(G_!F^*\overline{X},G_!F^*\overline{Y})$$

Given
$$\overline{a} \xrightarrow{\overline{f}} \overline{a}'$$
 and $\overline{b} \xrightarrow{\overline{g}} \overline{b}'$

• for any components f and g respectively, take $f \otimes g$

Given $\overline{a} \xrightarrow{\overline{f}} \overline{a'}$ and $\overline{b} \xrightarrow{\overline{g}} \overline{b'}$

- for any components f and g respectively, take $f \otimes g$
- we need to specify what component of the clique map it is i.e. what flattening braids it refers to

Given $\overline{a} \xrightarrow{\overline{f}} \overline{a'}$ and $\overline{b} \xrightarrow{\overline{g}} \overline{b'}$

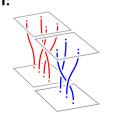
- for any components f and g respectively, take $f\otimes g$
- we need to specify what component of the clique map it is i.e. what flattening braids it refers to
- we know which flattening braids are referred to by f and g

Given $\overline{a} \xrightarrow{\overline{f}} \overline{a'}$ and $\overline{b} \xrightarrow{\overline{g}} \overline{b'}$

- for any components f and g respectively, take $f \otimes g$
- we need to specify what component of the clique map it is i.e. what flattening braids it refers to
- we know which flattening braids are referred to by f and g

Vertical composition:

stack braids vertically

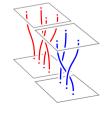


Given $\overline{a} \xrightarrow{\overline{f}} \overline{a'}$ and $\overline{b} \xrightarrow{\overline{g}} \overline{b'}$

- for any components f and g respectively, take $f\otimes g$
- we need to specify what component of the clique map it is i.e. what flattening braids it refers to
- we know which flattening braids are referred to by f and g

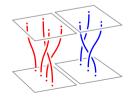
Vertical composition:

stack braids vertically



Horizonal composition:

stack braids horizontally...

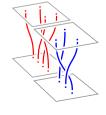


Given $\overline{a} \xrightarrow{\overline{f}} \overline{a'}$ and $\overline{b} \xrightarrow{\overline{g}} \overline{b'}$

- for any components f and g respectively, take $f \otimes g$
- we need to specify what component of the clique map it is i.e. what flattening braids it refers to
- we know which flattening braids are referred to by f and g

Vertical composition:

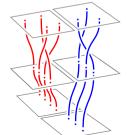
stack braids vertically

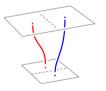


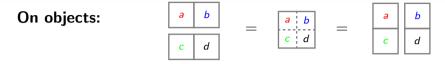
Horizonal composition:

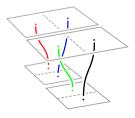
stack braids horizontally...

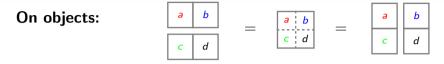
...and twist

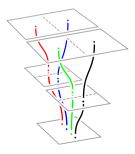


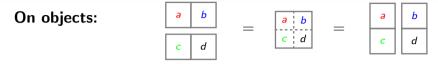


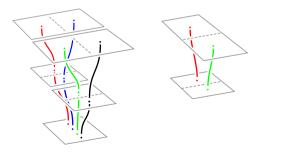


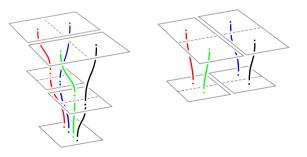












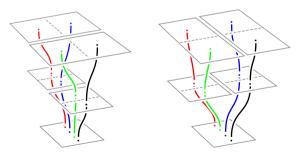
b

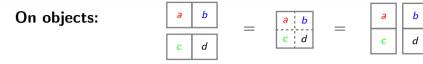
d

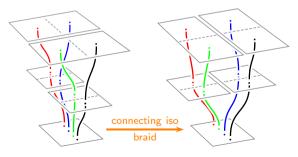
а

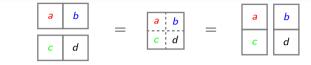
с

=

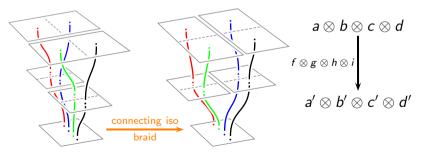




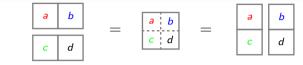




On morphisms: by the method above we get different representatives

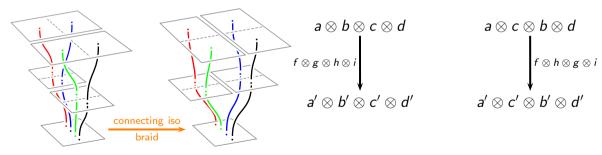


On objects:

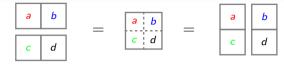


On morphisms: by the method above we get different representatives

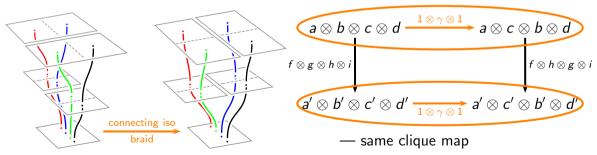
On objects:



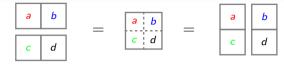
3. Construction of ΣB : interchange



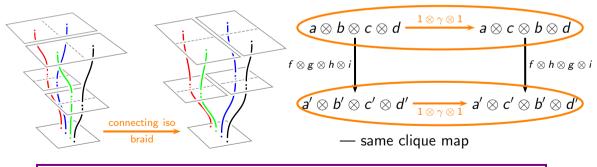
On morphisms: by the method above we get different representatives



3. Construction of ΣB : interchange



On morphisms: by the method above we get different representatives

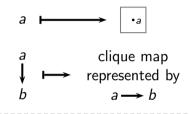


Interchange is strict but still comes from the braiding.

1. Define functor

2. Equivalence of categories

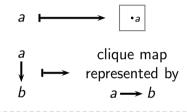
- 4. Braided monoidal equivalence $B \xrightarrow{\sim} U\Sigma B$
- 1. Define functor



3. Monoidal equivalence

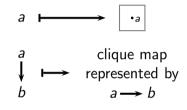
2. Equivalence of categories

- 4. Braided monoidal equivalence $B \xrightarrow{\sim} U\Sigma B$
- 1. Define functor



- 2. Equivalence of categories
 - full and faithful by construction

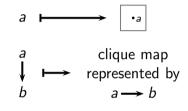
1. Define functor



- 2. Equivalence of categories
 - full and faithful by construction
 - essentially surjective on objects:

Given
$$\begin{array}{c} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ a_k \end{array} \overset{a_1}{\in} U\Sigma B$$

1. Define functor

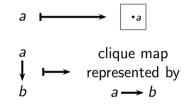


- 2. Equivalence of categories
 - full and faithful by construction
 - essentially surjective on objects:

Given
$$\begin{array}{c} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & a_k \end{array}^{a_1} \in U\Sigma B$$

 $a_1 \otimes \cdots \otimes a_k \in B \quad \longmapsto \quad \bullet \quad a_1 \otimes \cdots \otimes a_k$

1. Define functor



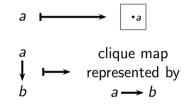
- 2. Equivalence of categories
 - full and faithful by construction
 - essentially surjective on objects:

Given
$$\begin{array}{c} & & & a_1 \\ & & & \vdots \\ & a_k \end{array} \in U\Sigma B$$

 $a_1 \otimes \cdots \otimes a_k \in B \quad \longmapsto \quad \bullet \quad a_1 \otimes \cdots \otimes a_k$
and we have

$$\begin{array}{c|c} & a_1 & & \\ \vdots & & \\ & \vdots & \\ & a_k & \end{array} \qquad \bullet \qquad a_k \otimes \cdots \otimes a_k$$

1. Define functor



3. Monoidal equivalence

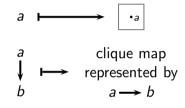
This isomorphism is a

- 2. Equivalence of categories
 - full and faithful by construction
 - essentially surjective on objects:

Given
$$A_{k}^{a_{1}} \in U\Sigma B$$

 $a_{1} \otimes \cdots \otimes a_{k} \in B \longmapsto \bullet a_{1} \otimes \cdots \otimes a_{k}$
and we have
 $A_{k} \otimes \cdots \otimes A_{k} = A \mapsto \bullet a_{k} \otimes \cdots \otimes a_{k}$
 $a_{k} \otimes \cdots \otimes a_{k} \otimes \cdots \otimes a_{k}$
clique map represented by an identity.

1. Define functor



3. Monoidal equivalence Need

 $a \otimes$

• a

۰b

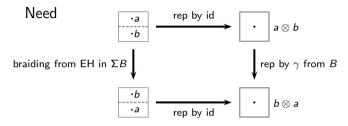
- 2. Equivalence of categories
 - full and faithful by construction
 - essentially surjective on objects:

For the map epresented by a
$$\rightarrow b$$

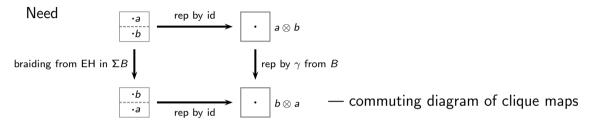
a $\rightarrow b$
a $\rightarrow b$
a $a \rightarrow b$
This isomorphism is a clique map represented by an identity.

- 4. Braided monoidal equivalence $B \xrightarrow{\sim} U\Sigma B$
- 4. Braided monoidal equivalence

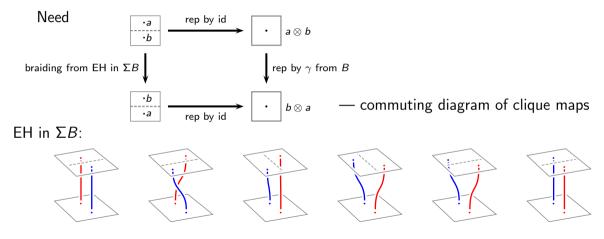
- 4. Braided monoidal equivalence $B \xrightarrow{\sim} U\Sigma B$
- 4. Braided monoidal equivalence

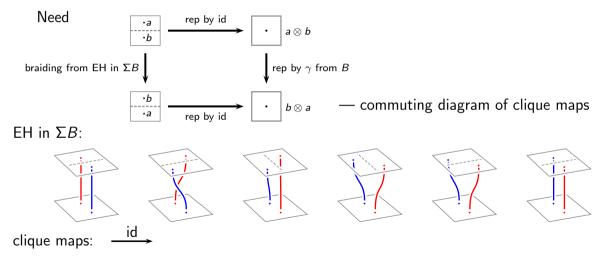


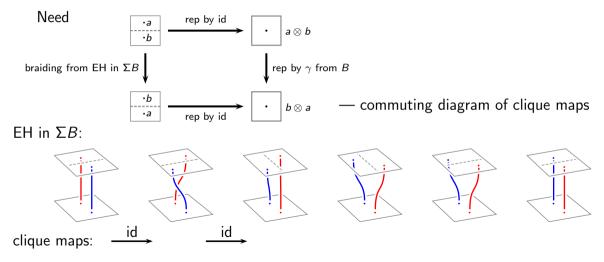
- 4. Braided monoidal equivalence $B \xrightarrow{\sim} U\Sigma B$
- 4. Braided monoidal equivalence

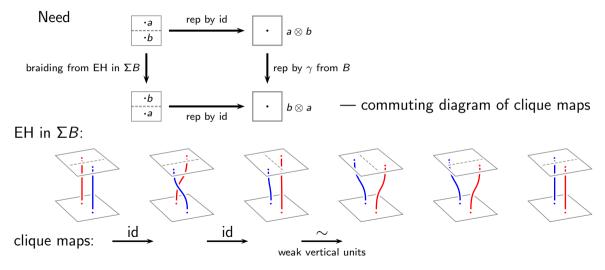


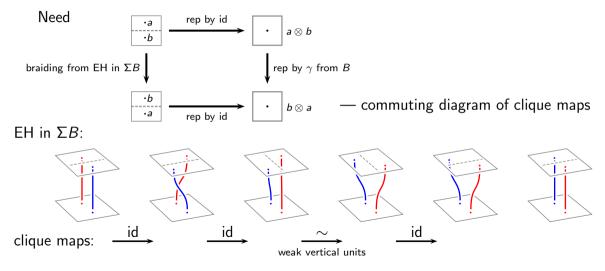
- 4. Braided monoidal equivalence $B \xrightarrow{\sim} U\Sigma B$
- 4. Braided monoidal equivalence

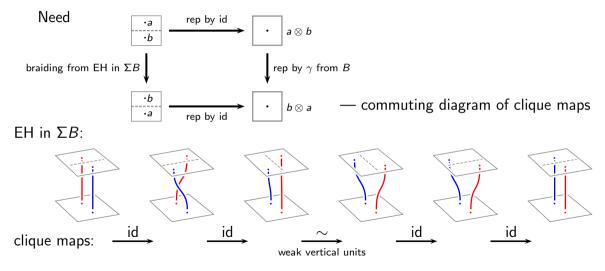


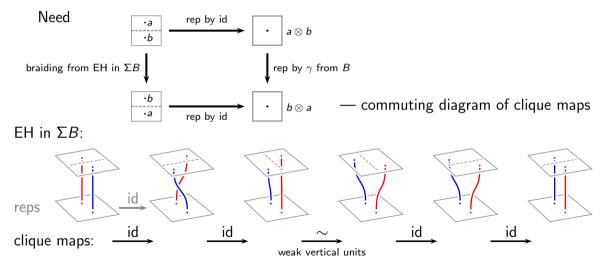


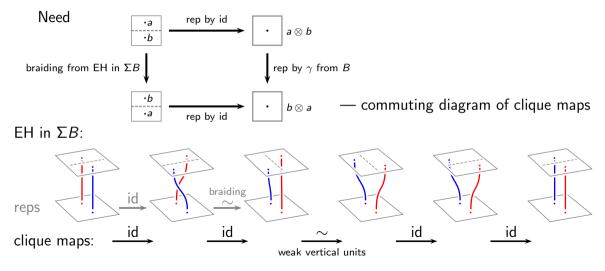


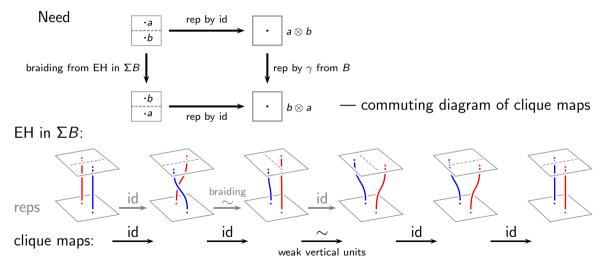


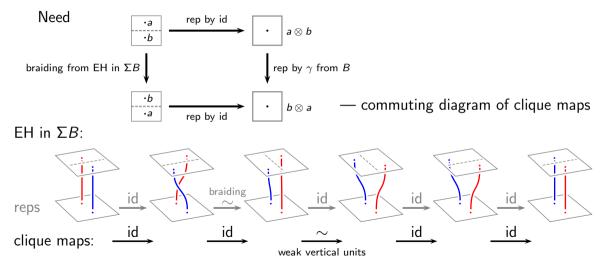




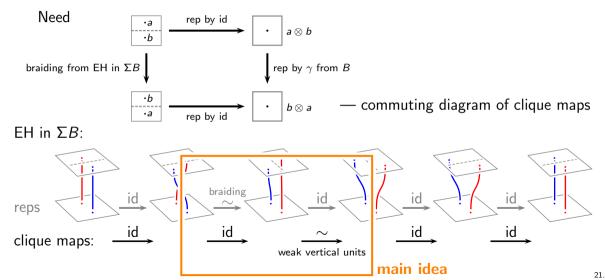








- 4. Braided monoidal equivalence $B \xrightarrow{\sim} U\Sigma B$
- 4. Braided monoidal equivalence



Conclusion

Main ideas

- Putting points in boxes gives us enough control.
- Using cliques exchanges the roles of units and interchange.

Conclusion

Main ideas

- Putting points in boxes gives us enough control.
- Using cliques exchanges the roles of units and interchange.

Conclusion

Main ideas

- Putting points in boxes gives us enough control.
- Using cliques exchanges the roles of units and interchange.

• It is biessentially surjective on objects.

Weak vertical composition is enough to produce braidings.

5. Further work

Done but no space in talk:

- Define weak functors of dd**Bicat**_s-categories using abstract EH (CT18).
- Assemble these into a 2-category with icon-like transformations.
- Extend $\boldsymbol{\Sigma}$ to a pseudo-functor of 2-categories.
- Show that we have a biequivalence of 2-categories.
- Analogous results for Trimble 3-categories.

Future:

- Rotate and get weak horizontal composition and strict vertical.
- Produce free doubly-degenerate structures by composing adjunctions.
- The non-degenerate case.
- Higher dimensions.