Involutive factorisation systems & Dold-Kan correspondences

Clemens Berger¹

University of Nice

CT 2019 Edinburgh, July 11, 2019

¹joint with Christophe Cazanave and Ingo Waschkies $\rightarrow \langle B \rangle \langle B \rangle \langle B \rangle \langle B \rangle \langle B \rangle$

- 2 Simplicial objects
- Involutive factorisation systems
- 4 Dold-Kan correspondences

Theorem (Dold 1958, Kan 1958)

 $M: \underline{\operatorname{Ab}}^{\Delta^{\operatorname{op}}} \simeq \operatorname{Ch}(\mathbb{Z}): K$

Corollary

There is a simplicial abelian group K(A, n) such that $\pi_n(K(A, n)) = A$ and $\pi_i(K(A, n)) = 0$ for $i \neq n$.

Proof.

 $K : Ch(\mathbb{Z}) \to \underline{Ab}^{\Delta^{op}}$ takes homology into homotopy. K(A, n) is the image of the chain complex: $0 \leftarrow \cdots \leftarrow 0 \leftarrow \stackrel{n}{A} \leftarrow 0 \leftarrow \cdots$

Purpose of the talk

Theorem (Dold 1958, Kan 1958)

$$M: \underline{\operatorname{Ab}}^{\Delta^{\operatorname{op}}} \simeq \operatorname{Ch}(\mathbb{Z}): K$$

Corollary

There is a simplicial abelian group K(A, n) such that $\pi_n(K(A, n)) = A$ and $\pi_i(K(A, n)) = 0$ for $i \neq n$.

Proof.

 $K : \operatorname{Ch}(\mathbb{Z}) \to \underline{\operatorname{Ab}}^{\Delta^{\operatorname{op}}}$ takes homology into homotopy. K(A, n) is the image of the chain complex: $0 \leftarrow \cdots \leftarrow 0 \leftarrow \stackrel{n}{A} \leftarrow 0 \leftarrow \cdots$

Purpose of the talk

Theorem (Dold 1958, Kan 1958)

$$M: \underline{\operatorname{Ab}}^{\Delta^{\operatorname{op}}} \simeq \operatorname{Ch}(\mathbb{Z}): K$$

Corollary

There is a simplicial abelian group K(A, n) such that $\pi_n(K(A, n)) = A$ and $\pi_i(K(A, n)) = 0$ for $i \neq n$.

Proof.

 $K : \operatorname{Ch}(\mathbb{Z}) \to \underline{\operatorname{Ab}}^{\Delta^{\operatorname{op}}}$ takes homology into homotopy. K(A, n) is the image of the chain complex: $0 \leftarrow \cdots \leftarrow 0 \leftarrow \stackrel{n}{A} \leftarrow 0 \leftarrow \cdots$

Purpose of the talk

Theorem (Dold 1958, Kan 1958)

$$M: \underline{\operatorname{Ab}}^{\Delta^{\operatorname{op}}} \simeq \operatorname{Ch}(\mathbb{Z}): K$$

Corollary

There is a simplicial abelian group K(A, n) such that $\pi_n(K(A, n)) = A$ and $\pi_i(K(A, n)) = 0$ for $i \neq n$.

Proof.

 $K : Ch(\mathbb{Z}) \to \underline{Ab}^{\Delta^{op}}$ takes homology into homotopy. K(A, n) is the image of the chain complex: $0 \leftarrow \cdots \leftarrow 0 \leftarrow \stackrel{n}{A} \leftarrow 0 \leftarrow \cdots$

Purpose of the talk

Categorical structure of Δ inducing Dold-Kan correspondence.

Theorem (Dold 1958, Kan 1958)

$$M: \underline{\mathrm{Ab}}^{\Delta^{\mathrm{op}}} \simeq \mathrm{Ch}(\mathbb{Z}): K$$

Corollary

There is a simplicial abelian group K(A, n) such that $\pi_n(K(A, n)) = A$ and $\pi_i(K(A, n)) = 0$ for $i \neq n$.

Proof.

 $\mathcal{K}: \mathrm{Ch}(\mathbb{Z}) \to \underline{\mathrm{Ab}}^{\Delta^{\mathrm{op}}}$ takes homology into homotopy. $\mathcal{K}(A, n)$ is the image of the chain complex: $0 \leftarrow \cdots \leftarrow 0 \leftarrow \stackrel{n}{A} \leftarrow 0 \leftarrow \cdots$

Purpose of the talk

Definition (simplex category Δ)

 $\mathrm{Ob}\Delta = \{[n] = \{0, 1, \dots, n\}, n \ge 0\}, \mathrm{Mor}\Delta = \{\mathsf{monotone\ maps}\}$

Remark (epi-mono factorisation system)

The category Δ is generated by elementary

- face operators $\epsilon_i^n : [n-1] \rightarrow [n], 0 \le i \le n$, and
- degeneracy operators $\eta_i^n : [n+1] \rightarrow [n], 0 \le i \le n$.

Every simplicial operator $\phi : [m] \rightarrow [n]$ factors as

Definition (simplex category Δ)

 $\mathrm{Ob}\Delta = \{[n] = \{0, 1 \dots, n\}, n \ge 0\}, \, \mathrm{Mor}\Delta = \{\mathsf{monotone\ maps}\}$

Remark (epi-mono factorisation system)

The category Δ is generated by elementary

- face operators $\epsilon_i^n : [n-1] \to [n], 0 \le i \le n$, and
- degeneracy operators $\eta_i^n : [n+1] \rightarrow [n], 0 \le i \le n$.

Every simplicial operator $\phi : [m] \rightarrow [n]$ factors as

Definition (simplex category Δ)

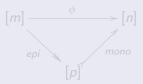
 $\mathrm{Ob}\Delta = \{[n] = \{0, 1 \dots, n\}, n \ge 0\}, \, \mathrm{Mor}\Delta = \{\mathsf{monotone\ maps}\}$

Remark (epi-mono factorisation system)

The category Δ is generated by elementary

- face operators $\epsilon_i^n : [n-1] \to [n], 0 \le i \le n$, and
- degeneracy operators $\eta_i^n : [n+1] \rightarrow [n], 0 \le i \le n$.

Every simplicial operator $\phi : [m] \rightarrow [n]$ factors as



Definition (simplex category Δ)

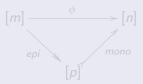
 $\mathrm{Ob}\Delta = \{[n] = \{0, 1 \dots, n\}, n \ge 0\}, \, \mathrm{Mor}\Delta = \{\mathsf{monotone\ maps}\}$

Remark (epi-mono factorisation system)

The category Δ is generated by elementary

- face operators $\epsilon_i^n : [n-1] \rightarrow [n], \ 0 \le i \le n$, and
- degeneracy operators $\eta_i^n : [n+1] \rightarrow [n], 0 \le i \le n$.

Every simplicial operator $\phi : [m] \rightarrow [n]$ factors as



Definition (simplex category Δ)

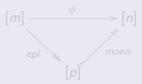
 $\mathrm{Ob}\Delta = \{[n] = \{0, 1 \dots, n\}, n \ge 0\}, \, \mathrm{Mor}\Delta = \{\mathsf{monotone\ maps}\}$

Remark (epi-mono factorisation system)

The category Δ is generated by elementary

- face operators $\epsilon_i^n : [n-1] \rightarrow [n], 0 \le i \le n$, and
- degeneracy operators $\eta_i^n : [n+1] \rightarrow [n], \ 0 \le i \le n$.

Every simplicial operator $\phi : [m] \rightarrow [n]$ factors as



Definition (simplex category Δ)

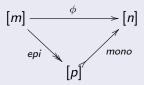
 $\mathrm{Ob}\Delta = \{[n] = \{0, 1 \dots, n\}, n \ge 0\}, \, \mathrm{Mor}\Delta = \{\mathsf{monotone\ maps}\}$

Remark (epi-mono factorisation system)

The category Δ is generated by elementary

- face operators $\epsilon_i^n : [n-1] \rightarrow [n], \ 0 \le i \le n$, and
- degeneracy operators $\eta_i^n : [n+1] \rightarrow [n], \ 0 \le i \le n$.

Every simplicial operator $\phi : [m] \rightarrow [n]$ factors as



Definition (geometric realisation, Milnor 1957)

 $\Delta \hookrightarrow \operatorname{Top} : [n] \mapsto \Delta_n$ yields by left Kan extension along Yoneda

 $-|_{\Delta} : \operatorname{Sets}^{\Delta^{\operatorname{op}}} \to \operatorname{Top}.$

Theorem (Quillen 1968)

Geometric realisation is left part of a Quillen equivalence.

Definition (simplicial homology, Eilenberg 1944)

 $\operatorname{Sets}^{\Delta^{\operatorname{op}}} \longrightarrow \underline{\operatorname{Ab}}^{\Delta^{\operatorname{op}}} \xrightarrow{N} \operatorname{Ch}(\mathbb{Z}) \longrightarrow \underline{\operatorname{Ab}}^{\mathbb{N}}$

 $X_{\bullet} \longmapsto \mathbb{Z}[X_{\bullet}] \longmapsto (N_{\bullet}(X), d_{\bullet}) \longmapsto H_{\bullet}(X)$

where $(N_n(X) = \mathbb{Z}[X_n]/\mathbb{Z}[D_n(X)], d_n = \sum_k (-1)^k X(\epsilon_k^n))$

is isomorphic to the

Moore chain complex $(M_n(X) = \bigcap_{0 \le k < n} X(\epsilon_k^n), d_n = X(\epsilon_n^n))$

Definition (geometric realisation, Milnor 1957)

 $\Delta \hookrightarrow \operatorname{Top} : [n] \mapsto \Delta_n$ yields by left Kan extension along Yoneda

$$|-|_{\Delta} : \operatorname{Sets}^{\Delta^{\operatorname{op}}} \to \operatorname{Top}.$$

Theorem (Quillen 1968)

Geometric realisation is left part of a Quillen equivalence.

Definition (simplicial homology, Eilenberg 1944)

$$\operatorname{Sets}^{\Delta^{\operatorname{op}}} \longrightarrow \underline{\operatorname{Ab}}^{\Delta^{\operatorname{op}}} \xrightarrow{N} \operatorname{Ch}(\mathbb{Z}) \longrightarrow \underline{\operatorname{Ab}}^{\mathbb{N}}$$

$$X_{\bullet} \longmapsto \mathbb{Z}[X_{\bullet}] \longmapsto (N_{\bullet}(X), d_{\bullet}) \longmapsto H_{\bullet}(X)$$

where $(N_n(X) = \mathbb{Z}[X_n]/\mathbb{Z}[D_n(X)], d_n = \sum_k (-1)^k X(\epsilon_k^n))$

is isomorphic to the

Moore chain complex $(M_n(X) = \bigcap_{0 \le k < n} X(\epsilon_k^n), d_n = X(\epsilon_n^n))$

Definition (geometric realisation, Milnor 1957)

 $\Delta \hookrightarrow \operatorname{Top} : [n] \mapsto \Delta_n$ yields by left Kan extension along Yoneda

$$|-|_{\Delta} : \operatorname{Sets}^{\Delta^{\operatorname{op}}} \to \operatorname{Top}.$$

Theorem (Quillen 1968)

Geometric realisation is left part of a Quillen equivalence.

Definition (simplicial homology, Eilenberg 1944)

$$\operatorname{Sets}^{\Delta^{\operatorname{op}}} \longrightarrow \underline{\operatorname{Ab}}^{\Delta^{\operatorname{op}}} \xrightarrow{N} \operatorname{Ch}(\mathbb{Z}) \longrightarrow \underline{\operatorname{Ab}}^{\mathbb{N}}$$

$$X_{\bullet} \longmapsto \mathbb{Z}[X_{\bullet}] \longmapsto (N_{\bullet}(X), d_{\bullet}) \longmapsto H_{\bullet}(X)$$

where $(N_n(X) = \mathbb{Z}[X_n]/\mathbb{Z}[D_n(X)], d_n = \sum_k (-1)^k X(\epsilon_k^n))$

is isomorphic to the

Moore chain complex $(M_n(X) = \bigcap_{0 \le k < n} X(\epsilon_k^n), d_n = X(\epsilon_n^n))$

Definition (geometric realisation, Milnor 1957)

 $\Delta \hookrightarrow \operatorname{Top} : [n] \mapsto \Delta_n$ yields by left Kan extension along Yoneda

$$|-|_{\Delta} : \operatorname{Sets}^{\Delta^{\operatorname{op}}} \to \operatorname{Top}.$$

Theorem (Quillen 1968)

Geometric realisation is left part of a Quillen equivalence.

Definition (simplicial homology, Eilenberg 1944)

$$\operatorname{Sets}^{\Delta^{\operatorname{op}}} \longrightarrow \underline{\operatorname{Ab}}^{\Delta^{\operatorname{op}}} \xrightarrow{N} \operatorname{Ch}(\mathbb{Z}) \longrightarrow \underline{\operatorname{Ab}}^{\mathbb{N}}$$

$$X_{\bullet}\longmapsto \mathbb{Z}[X_{\bullet}]\longmapsto (N_{\bullet}(X), d_{\bullet})\longmapsto H_{\bullet}(X)$$

where $(N_n(X) = \mathbb{Z}[X_n]/\mathbb{Z}[D_n(X)], d_n = \sum_k (-1)^k X(\epsilon_k^n))$

is isomorphic to the

Moore chain complex $(M_n(X) = \bigcap_{0 \le k < n} X(\epsilon_k^n), d_n = X(\epsilon_n^n))$.

Definition (geometric realisation, Milnor 1957)

 $\Delta \hookrightarrow \operatorname{Top} : [n] \mapsto \Delta_n$ yields by left Kan extension along Yoneda

$$|-|_{\Delta} : \operatorname{Sets}^{\Delta^{\operatorname{op}}} \to \operatorname{Top}.$$

Theorem (Quillen 1968)

Geometric realisation is left part of a Quillen equivalence.

Definition (simplicial homology, Eilenberg 1944)

$$\operatorname{Sets}^{\Delta^{\operatorname{op}}} \longrightarrow \underline{\operatorname{Ab}}^{\Delta^{\operatorname{op}}} \xrightarrow{N} \operatorname{Ch}(\mathbb{Z}) \longrightarrow \underline{\operatorname{Ab}}^{\mathbb{N}}$$

$$X_{\bullet} \longmapsto \mathbb{Z}[X_{\bullet}] \longmapsto (N_{\bullet}(X), d_{\bullet}) \longmapsto H_{\bullet}(X)$$

where $(N_n(X) = \mathbb{Z}[X_n]/\mathbb{Z}[D_n(X)], d_n = \sum_{k} (-1)^k X(\epsilon_k^n)$

is isomorphic to the

Moore chain complex $(M_n(X) = \bigcap_{0 \le k \le n} X(\epsilon_k^n), d_n = X(\epsilon_n^n))$

Definition (geometric realisation, Milnor 1957)

 $\Delta \hookrightarrow \operatorname{Top} : [n] \mapsto \Delta_n$ yields by left Kan extension along Yoneda

$$|-|_{\Delta} : \operatorname{Sets}^{\Delta^{\operatorname{op}}} \to \operatorname{Top}.$$

Theorem (Quillen 1968)

Geometric realisation is left part of a Quillen equivalence.

Definition (simplicial homology, Eilenberg 1944)

$$\operatorname{Sets}^{\Delta^{\operatorname{op}}} \longrightarrow \underline{\operatorname{Ab}}^{\Delta^{\operatorname{op}}} \xrightarrow{N} \operatorname{Ch}(\mathbb{Z}) \longrightarrow \underline{\operatorname{Ab}}^{\mathbb{N}}$$

$$X_{\bullet} \longmapsto \mathbb{Z}[X_{\bullet}] \longmapsto (N_{\bullet}(X), d_{\bullet}) \longmapsto H_{\bullet}(X)$$

where $(N_{n}(X) = \mathbb{Z}[X_{n}]/\mathbb{Z}[D_{n}(X)], d_{n} = \sum_{k} (-1)^{k} X(\epsilon_{k}^{n})$

is isomorphic to the

Moore chain complex $(M_n(X) = \bigcap_{0 \le k < n} X(\epsilon_k^n), d_n = X(\epsilon_n^n)).$

Moore normalisation M admits a left adjoint K assigning to a chain complex $(C_{\bullet}, d_{\bullet})$ the simplicial abelian group

$$K(C_{\bullet}, d_{\bullet})_{n} = \bigoplus_{[n] \to [k]} C_{k} \text{ with } K(\phi) : \bigoplus_{[n] \to [k]} C_{k} \to \bigoplus_{[m] \to [j]} C_{j}$$
where $K(\phi)_{ab} = \begin{cases} d_{k} \text{ if } [m] \xrightarrow{\phi} [n] \\ a_{k} & b \\ [k-1] \xrightarrow{c_{k}} [k] \\ 0 \text{ otherwise} \end{cases}$

Remark

• $unit: \forall C_{\bullet} \in Ch(\mathbb{Z})$ one has $C_{\bullet} \cong MKC_{\bullet} \longrightarrow$ easy • $counit: \forall A_{\bullet} \subseteq Ab^{op}$ one has $KMA_{\bullet} \cong A_{\bullet} \longrightarrow$ diffici

Moore normalisation M admits a left adjoint K assigning to a chain complex $(C_{\bullet}, d_{\bullet})$ the simplicial abelian group

$$\mathcal{K}(C_{\bullet}, d_{\bullet})_{n} = \bigoplus_{[n] \to [k]} C_{k} \text{ with } \mathcal{K}(\phi) : \bigoplus_{[n] \to [k]} C_{k} \to \bigoplus_{[m] \to [j]} C_{j}$$
where $\mathcal{K}(\phi)_{ab} = \begin{cases} d_{k} \text{ if } [m] \xrightarrow{\phi} [n] \\ a_{k} & \downarrow b \\ [k-1] \xrightarrow{\phi} [k] \\ 0 \text{ otherwise} \end{cases}$

- $\mathit{unit}: \, orall C_ullet \in \operatorname{Ch}(\mathbb{Z})$ one has $C_ullet\cong \mathit{MKC}_ullet \quad \leadsto$ easy
- *counit*: $\forall A_{\bullet} \in \underline{Ab}^{\Delta^{op}}$ one has $KMA_{\bullet} \cong A_{\bullet} \longrightarrow difficult$

Moore normalisation M admits a left adjoint K assigning to a chain complex $(C_{\bullet}, d_{\bullet})$ the simplicial abelian group

$$\mathcal{K}(C_{\bullet}, d_{\bullet})_{n} = \bigoplus_{[n] \to [k]} C_{k} \text{ with } \mathcal{K}(\phi) : \bigoplus_{[n] \to [k]} C_{k} \to \bigoplus_{[m] \to [j]} C_{j}$$
where $\mathcal{K}(\phi)_{ab} = \begin{cases} d_{k} \text{ if } [m] \xrightarrow{\phi} [n] \\ a_{k} & \downarrow b \\ [k-1] \xrightarrow{\phi} [k] \\ 0 \text{ otherwise} \end{cases}$

- *unit*: $\forall C_{\bullet} \in Ch(\mathbb{Z})$ one has $C_{\bullet} \cong MKC_{\bullet} \longrightarrow$ easy
- *counit*: $\forall A_{\bullet} \in \underline{Ab}^{\Delta^{\mathrm{op}}}$ one has $KMA_{\bullet} \cong A_{\bullet} \longrightarrow \text{difficult}$

Moore normalisation M admits a left adjoint K assigning to a chain complex $(C_{\bullet}, d_{\bullet})$ the simplicial abelian group

$$\mathcal{K}(C_{\bullet}, d_{\bullet})_{n} = \bigoplus_{[n] \to [k]} C_{k} \text{ with } \mathcal{K}(\phi) : \bigoplus_{[n] \to [k]} C_{k} \to \bigoplus_{[m] \to [j]} C_{j}$$
where $\mathcal{K}(\phi)_{ab} = \begin{cases} d_{k} \text{ if } [m] \xrightarrow{\phi} [n] \\ \downarrow & \downarrow b \\ [k-1] \xrightarrow{\phi} [k] \\ 0 \text{ otherwise} \end{cases}$

- *unit*: $\forall C_{\bullet} \in Ch(\mathbb{Z})$ one has $C_{\bullet} \cong MKC_{\bullet} \longrightarrow$ easy
- *counit*: $\forall A_{\bullet} \in \underline{Ab}^{\Delta^{\mathrm{op}}}$ one has $KMA_{\bullet} \cong A_{\bullet} \longrightarrow \mathsf{difficult}$

Moore normalisation M admits a left adjoint K assigning to a chain complex $(C_{\bullet}, d_{\bullet})$ the simplicial abelian group

$$\mathcal{K}(C_{\bullet}, d_{\bullet})_{n} = \bigoplus_{[n] \to [k]} C_{k} \text{ with } \mathcal{K}(\phi) : \bigoplus_{[n] \to [k]} C_{k} \to \bigoplus_{[m] \to [j]} C_{j}$$
where $\mathcal{K}(\phi)_{ab} = \begin{cases} d_{k} \text{ if } [m] \xrightarrow{\phi} [n] \\ \stackrel{a \downarrow}{\downarrow} & \downarrow b \\ [k-1] \xrightarrow{\epsilon_{k}^{k}} [k] \\ 0 \text{ otherwise} \end{cases}$

- *unit*: $\forall C_{\bullet} \in Ch(\mathbb{Z})$ one has $C_{\bullet} \cong MKC_{\bullet} \longrightarrow$ easy
- counit: $\forall A_{\bullet} \in \underline{Ab}^{\Delta^{\mathrm{op}}}$ one has $KMA_{\bullet} \cong A_{\bullet} \longrightarrow \mathsf{difficult}$

A factorisation system $(\mathcal{E}, \mathcal{M})$ on \mathcal{C} is called *involutive* if there is a specified faithful, identity-on-objects functor $(-)^* : \mathcal{E}^{\mathrm{op}} \to \mathcal{M}$ sth.

11) $ee^* = 1$ (the split idempotent e^*e is called an \mathcal{E} -projector);

- 12) the morphisms f^*e form a subcategory of \mathcal{C} ;
- $(A \xrightarrow{m} B) \in \mathcal{M} \,\forall \phi \in \operatorname{Proj}_{\mathcal{E}}(A) \,\exists \psi \in \operatorname{Proj}_{\mathcal{E}}(B) : m\phi = \psi m;$
- (4) Proj_ε(A) is finite. Primitive ε-projectors can be linearly ordered such that if φ precedes ψ then ψφ is an ε-projector.

Remark (primitive *E*-projectors)

 $\operatorname{Proj}_{\mathcal{E}}(A) \cong \operatorname{Quot}_{\mathcal{E}}(A)$. Primitive \mathcal{E} -projectors are *covered* by 1_A .

Remark (Involutive factorisation system for $\Delta)$

A factorisation system $(\mathcal{E}, \mathcal{M})$ on \mathcal{C} is called *involutive* if there is a specified faithful, identity-on-objects functor $(-)^* : \mathcal{E}^{\mathrm{op}} \to \mathcal{M}$ sth.

(1) $ee^* = 1$ (the split idempotent e^*e is called an \mathcal{E} -projector);

(12) the morphisms f^*e form a subcategory of C;

 $(13) \ \forall (A \xrightarrow{m} B) \in \mathcal{M} \ \forall \phi \in \operatorname{Proj}_{\mathcal{E}}(A) \ \exists \psi \in \operatorname{Proj}_{\mathcal{E}}(B) : m\phi = \psi m;$

14) $\operatorname{Proj}_{\mathcal{E}}(A)$ is finite. *Primitive* \mathcal{E} -projectors can be linearly ordered such that if ϕ precedes ψ then $\psi\phi$ is an \mathcal{E} -projector.

Remark (primitive *E*-projectors)

 $\operatorname{Proj}_{\mathcal{E}}(A) \cong \operatorname{Quot}_{\mathcal{E}}(A)$. Primitive \mathcal{E} -projectors are *covered* by 1_A .

Remark (Involutive factorisation system for $\Delta)$

A factorisation system (E, M) on C is called *involutive* if there is a specified faithful, identity-on-objects functor (-)* : E^{op} → M sth.
(11) ee* = 1 (the split idempotent e*e is called an E-projector);
(12) the morphisms f*e form a subcategory of C;
(13) ∀(A → B) ∈ M ∀φ ∈ Proj_E(A) ∃ψ ∈ Proj_E(B) : mφ = ψm;
(14) Proj_E(A) is finite. Primitive E-projectors can be linearly ordered such that if φ precedes ψ then ψφ is an E-projector.

Remark (primitive ${\mathcal E}$ -projectors)

 $\operatorname{Proj}_{\mathcal{E}}(A) \cong \operatorname{Quot}_{\mathcal{E}}(A)$. Primitive \mathcal{E} -projectors are *covered* by 1_A .

Remark (Involutive factorisation system for $\Delta)$

A factorisation system (E, M) on C is called *involutive* if there is a specified faithful, identity-on-objects functor (-)*: E^{op} → M sth.
(11) ee* = 1 (the split idempotent e*e is called an E-projector);
(12) the morphisms f*e form a subcategory of C;
(13) ∀(A → B) ∈ M ∀φ ∈ Proj_E(A) ∃ψ ∈ Proj_E(B) : mφ = ψm;
(14) Proj_E(A) is finite. Primitive E-projectors can be linearly ordered such that if φ precedes ψ then ψφ is an E-projector.

Remark (primitive ${\mathcal E}$ -projectors)

 $\operatorname{Proj}_{\mathcal{E}}(A) \cong \operatorname{Quot}_{\mathcal{E}}(A)$. Primitive \mathcal{E} -projectors are *covered* by 1_A .

Remark (Involutive factorisation system for Δ)

A factorisation system (E, M) on C is called *involutive* if there is a specified faithful, identity-on-objects functor (-)*: E^{op} → M sth.
(11) ee* = 1 (the split idempotent e*e is called an E-projector);
(12) the morphisms f*e form a subcategory of C;
(13) ∀(A → B) ∈ M ∀φ ∈ Proj_E(A) ∃ψ ∈ Proj_E(B) : mφ = ψm;
(14) Proj_E(A) is finite. Primitive E-projectors can be linearly ordered such that if φ precedes ψ then ψφ is an E-projector.

Remark (primitive ${\mathcal E}$ -projectors)

 $\operatorname{Proj}_{\mathcal{E}}(A) \cong \operatorname{Quot}_{\mathcal{E}}(A)$. Primitive \mathcal{E} -projectors are *covered* by 1_A .

Remark (Involutive factorisation system for $\Delta)$

A factorisation system (E, M) on C is called *involutive* if there is a specified faithful, identity-on-objects functor (-)* : E^{op} → M sth.
(I1) ee* = 1 (the split idempotent e*e is called an E-projector);
(I2) the morphisms f*e form a subcategory of C;
(I3) ∀(A → B) ∈ M ∀φ ∈ Proj_E(A) ∃ψ ∈ Proj_E(B) : mφ = ψm;
(I4) Proj_E(A) is finite. Primitive E-projectors can be linearly ordered such that if φ precedes ψ then ψφ is an E-projector.

Remark (primitive ${\mathcal E}$ -projectors)

 $\operatorname{Proj}_{\mathcal{E}}(A) \cong \operatorname{Quot}_{\mathcal{E}}(A)$. Primitive \mathcal{E} -projectors are *covered* by 1_A .

Remark (Involutive factorisation system for $\Delta)$

A factorisation system $(\mathcal{E}, \mathcal{M})$ on \mathcal{C} is called *involutive* if there is a specified faithful, identity-on-objects functor $(-)^* : \mathcal{E}^{\mathrm{op}} \to \mathcal{M}$ sth.

- (1) $ee^* = 1$ (the split idempotent e^*e is called an \mathcal{E} -projector);
- (12) the morphisms f^*e form a subcategory of C;

$$(\mathsf{I3}) \ \forall (A \stackrel{m}{\rightarrow} B) \in \mathcal{M} \ \forall \phi \in \operatorname{Proj}_{\mathcal{E}}(A) \ \exists \psi \in \operatorname{Proj}_{\mathcal{E}}(B) : m\phi = \psi m;$$

(14) $\operatorname{Proj}_{\mathcal{E}}(A)$ is finite. *Primitive* \mathcal{E} -projectors can be linearly ordered such that if ϕ precedes ψ then $\psi\phi$ is an \mathcal{E} -projector.

Remark (primitive *E*-projectors)

 $\operatorname{Proj}_{\mathcal{E}}(A) \cong \operatorname{Quot}_{\mathcal{E}}(A)$. Primitive \mathcal{E} -projectors are *covered* by 1_A .

Remark (Involutive factorisation system for $\Delta)$

A factorisation system $(\mathcal{E}, \mathcal{M})$ on \mathcal{C} is called *involutive* if there is a specified faithful, identity-on-objects functor $(-)^* : \mathcal{E}^{\mathrm{op}} \to \mathcal{M}$ sth.

- (1) $ee^* = 1$ (the split idempotent e^*e is called an \mathcal{E} -projector);
- (12) the morphisms f^*e form a subcategory of C;

$$(\mathsf{I3}) \ \forall (A \stackrel{m}{\rightarrow} B) \in \mathcal{M} \ \forall \phi \in \operatorname{Proj}_{\mathcal{E}}(A) \ \exists \psi \in \operatorname{Proj}_{\mathcal{E}}(B) : m\phi = \psi m;$$

(14) $\operatorname{Proj}_{\mathcal{E}}(A)$ is finite. *Primitive* \mathcal{E} -projectors can be linearly ordered such that if ϕ precedes ψ then $\psi\phi$ is an \mathcal{E} -projector.

Remark (primitive *E*-projectors)

 $\operatorname{Proj}_{\mathcal{E}}(A) \cong \operatorname{Quot}_{\mathcal{E}}(A)$. Primitive \mathcal{E} -projectors are *covered* by 1_A .

Remark (Involutive factorisation system for Δ)

Each epi $e : [m] \rightarrow [n]$ has a *maximal* section $e^* : [n] \rightarrow [m]$.

A factorisation system $(\mathcal{E}, \mathcal{M})$ on \mathcal{C} is called *involutive* if there is a specified faithful, identity-on-objects functor $(-)^* : \mathcal{E}^{\mathrm{op}} \to \mathcal{M}$ sth.

- (1) $ee^* = 1$ (the split idempotent e^*e is called an \mathcal{E} -projector);
- (12) the morphisms f^*e form a subcategory of C;

$$(\mathsf{I3}) \ \forall (A \stackrel{m}{\to} B) \in \mathcal{M} \ \forall \phi \in \operatorname{Proj}_{\mathcal{E}}(A) \ \exists \psi \in \operatorname{Proj}_{\mathcal{E}}(B) : m\phi = \psi m;$$

(14) $\operatorname{Proj}_{\mathcal{E}}(A)$ is finite. *Primitive* \mathcal{E} -projectors can be linearly ordered such that if ϕ precedes ψ then $\psi\phi$ is an \mathcal{E} -projector.

Remark (primitive *E*-projectors)

 $\operatorname{Proj}_{\mathcal{E}}(A) \cong \operatorname{Quot}_{\mathcal{E}}(A)$. Primitive \mathcal{E} -projectors are *covered* by 1_A .

Remark (Involutive factorisation system for Δ)

Dold-Kan correspondences

Definition (essential \mathcal{M} -maps)

An \mathcal{M} -map $m : A \to B$ is called *essential* if 1_B is the only \mathcal{E} -projector of B fixing m.

Remark (essential \mathcal{M} -maps of Δ)

are precisely the "last" face operators $\epsilon_n^n : [n-1] \rightarrow [n]$.

_emma (quotienting out inessential $\mathcal M$ -maps)

By axiom (13) the inessential \mathcal{M} -maps form an ideal \mathcal{M}_{iness} in \mathcal{M} . In particular, there is a *locally pointed* category $\Xi_{\mathcal{C}} = \mathcal{M}/\mathcal{M}_{iness}$.

Remark (description of Ξ_{Δ})

Dold-Kan correspondences

Definition (essential \mathcal{M} -maps)

An \mathcal{M} -map $m : A \to B$ is called *essential* if 1_B is the only \mathcal{E} -projector of B fixing m.

Remark (essential \mathcal{M} -maps of Δ)

are precisely the "last" face operators $\epsilon_n^n : [n-1] \rightarrow [n]$.

_emma (quotienting out inessential $\mathcal M$ -maps)

By axiom (13) the inessential \mathcal{M} -maps form an ideal \mathcal{M}_{iness} in \mathcal{M} . In particular, there is a *locally pointed* category $\Xi_{\mathcal{C}} = \mathcal{M}/\mathcal{M}_{iness}$.

Remark (description of Ξ_{Δ})

Dold-Kan correspondences

Definition (essential \mathcal{M} -maps)

An \mathcal{M} -map $m : A \to B$ is called *essential* if 1_B is the only \mathcal{E} -projector of B fixing m.

Remark (essential \mathcal{M} -maps of Δ)

are precisely the "last" face operators $\epsilon_n^n : [n-1] \rightarrow [n]$.

Lemma (quotienting out inessential $\mathcal M$ -maps)

By axiom (I3) the inessential \mathcal{M} -maps form an ideal \mathcal{M}_{iness} in \mathcal{M} . In particular, there is a *locally pointed* category $\Xi_{\mathcal{C}} = \mathcal{M}/\mathcal{M}_{iness}$.

Remark (description of Ξ_{Δ})

Definition (essential \mathcal{M} -maps)

An \mathcal{M} -map $m : A \to B$ is called *essential* if 1_B is the only \mathcal{E} -projector of B fixing m.

Remark (essential \mathcal{M} -maps of Δ)

are precisely the "last" face operators $\epsilon_n^n : [n-1] \rightarrow [n]$.

Lemma (quotienting out inessential \mathcal{M} -maps)

By axiom (I3) the inessential \mathcal{M} -maps form an ideal \mathcal{M}_{iness} in \mathcal{M} . In particular, there is a *locally pointed* category $\Xi_{\mathcal{C}} = \mathcal{M}/\mathcal{M}_{iness}$.

Remark (description of Ξ_{Δ}) $0 \qquad 0 \qquad 0$ $[0] \longrightarrow [1] \longrightarrow [2] \longrightarrow [3] \longrightarrow [4] \cdots \implies [\Xi_{\Delta}^{op}, \underline{Ab}]_* = Ch(\mathbb{Z})$

Definition (essential \mathcal{M} -maps)

An \mathcal{M} -map $m : A \to B$ is called *essential* if 1_B is the only \mathcal{E} -projector of B fixing m.

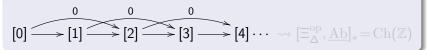
Remark (essential \mathcal{M} -maps of Δ)

are precisely the "last" face operators $\epsilon_n^n : [n-1] \rightarrow [n]$.

Lemma (quotienting out inessential \mathcal{M} -maps)

By axiom (13) the inessential \mathcal{M} -maps form an ideal \mathcal{M}_{iness} in \mathcal{M} . In particular, there is a *locally pointed* category $\Xi_{\mathcal{C}} = \mathcal{M}/\mathcal{M}_{iness}$.

Remark (description of Ξ_{Δ})



Definition (essential \mathcal{M} -maps)

An \mathcal{M} -map $m : A \to B$ is called *essential* if 1_B is the only \mathcal{E} -projector of B fixing m.

Remark (essential \mathcal{M} -maps of Δ)

are precisely the "last" face operators $\epsilon_n^n : [n-1] \rightarrow [n]$.

Lemma (quotienting out inessential \mathcal{M} -maps)

By axiom (13) the inessential \mathcal{M} -maps form an ideal \mathcal{M}_{iness} in \mathcal{M} . In particular, there is a *locally pointed* category $\Xi_{\mathcal{C}} = \mathcal{M}/\mathcal{M}_{iness}$.

Remark (description of Ξ_{Δ})

$$[0] \xrightarrow{0} [1] \xrightarrow{0} [2] \xrightarrow{0} [3] \xrightarrow{} [4] \cdots \rightsquigarrow [\Xi_{\Delta}^{\mathrm{op}}, \underline{\mathrm{Ab}}]_{*} = \mathrm{Ch}(\mathbb{Z})$$

Theorem (generalised Dold-Kan correspondence, BCW 2019)

For each category C with involutive factorisation system $(\mathcal{E}, \mathcal{M})$ and each abelian category \mathcal{A} there is an adjoint equivalence

 $M_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \simeq [\Xi^{\mathrm{op}}_{\mathcal{C}}, \mathcal{A}]_*: K_{\mathcal{C}}$

Remark (constructing $M_{\mathcal{C}}$ and $K_{\mathcal{C}}$ for general \mathcal{C}) .

Denote $j : \mathcal{M} \hookrightarrow \mathcal{C}$ and $q : \mathcal{M} \twoheadrightarrow \Xi_{\mathcal{C}} = \mathcal{M}/\mathcal{M}_{iness}$. Then

- $\Omega_{\textit{planar}}$ (Gutierrez-Lukasc-Weiss 2011) and Ω (Basic-Moerdijk)
- similar approaches (Helmstutler 2014 and Lack-Street 2015)

Theorem (generalised Dold-Kan correspondence, BCW 2019)

For each category C with involutive factorisation system $(\mathcal{E}, \mathcal{M})$ and each abelian category \mathcal{A} there is an adjoint equivalence

 $M_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \simeq [\Xi_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}]_*: K_{\mathcal{C}}$

Remark (constructing $M_{\mathcal{C}}$ and $K_{\mathcal{C}}$ for general $\mathcal{C})$.

Denote $j : \mathcal{M} \hookrightarrow \mathcal{C}$ and $q : \mathcal{M} \twoheadrightarrow \Xi_{\mathcal{C}} = \mathcal{M}/\mathcal{M}_{iness}$. Then

- Ω_{planar} (Gutierrez-Lukasc-Weiss 2011) and Ω (Basic-Moerdijk)
- similar approaches (Helmstutler 2014 and Lack-Street 2015)

Theorem (generalised Dold-Kan correspondence, BCW 2019)

For each category C with involutive factorisation system $(\mathcal{E}, \mathcal{M})$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$\textit{M}_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \simeq [\Xi^{\mathrm{op}}_{\mathcal{C}}, \mathcal{A}]_{*}: \textit{K}_{\mathcal{C}}$$

Remark (constructing $M_{\mathcal{C}}$ and $K_{\mathcal{C}}$ for general \mathcal{C}) Denote $j : \mathcal{M} \hookrightarrow \mathcal{C}$ and $q : \mathcal{M} \twoheadrightarrow \Xi_{\mathcal{C}} = \mathcal{M}/\mathcal{M}_{iness}$. Then $M_{\mathcal{C}} : [\mathcal{C}^{\operatorname{op}}, \mathcal{A}] \stackrel{j^*}{\underset{i}{\leftarrow}} [\mathcal{M}^{\operatorname{op}}, \mathcal{A}] \stackrel{q_*}{\underset{a^*}{\leftarrow}} [\Xi_{\mathcal{C}}^{\operatorname{op}}, \mathcal{A}]_* : K_{\mathcal{C}}$

- Γ (Pirashvili 2000) and Fl
 (Ellenberg-Church-Farb 2015)
- Ω_{planar} (Gutierrez-Lukasc-Weiss 2011) and Ω (Basic-Moerdijk)
- similar approaches (Helmstutler 2014 and Lack-Street 2015)

Theorem (generalised Dold-Kan correspondence, BCW 2019)

For each category C with involutive factorisation system $(\mathcal{E}, \mathcal{M})$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$\textit{M}_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \simeq [\Xi^{\mathrm{op}}_{\mathcal{C}}, \mathcal{A}]_{*}: \textit{K}_{\mathcal{C}}$$

Remark (constructing M_C and K_C for general C)

Denote $j: \mathcal{M} \hookrightarrow \mathcal{C}$ and $q: \mathcal{M} \twoheadrightarrow \Xi_{\mathcal{C}} = \mathcal{M}/\mathcal{M}_{iness}$. Then

- Γ (Pirashvili 2000) and Fl
 (Ellenberg-Church-Farb 2015)
- Ω_{planar} (Gutierrez-Lukasc-Weiss 2011) and Ω (Basic-Moerdijk)
- similar approaches (Helmstutler 2014 and Lack-Street 2015)

Theorem (generalised Dold-Kan correspondence, BCW 2019)

For each category C with involutive factorisation system $(\mathcal{E}, \mathcal{M})$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$\textit{M}_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \simeq [\Xi^{\mathrm{op}}_{\mathcal{C}}, \mathcal{A}]_{*}: \textit{K}_{\mathcal{C}}$$

Remark (constructing M_C and K_C for general C)

Denote $j: \mathcal{M} \hookrightarrow \mathcal{C}$ and $q: \mathcal{M} \twoheadrightarrow \Xi_{\mathcal{C}} = \mathcal{M}/\mathcal{M}_{iness}$. Then

$$M_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \underset{j_{!}}{\overset{j^{*}}{\longleftrightarrow}} [\mathcal{M}^{\mathrm{op}}, \mathcal{A}] \underset{q^{*}}{\overset{q_{*}}{\longleftrightarrow}} [\Xi_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}]_{*}: K_{\mathcal{C}}$$

- $\Omega_{\textit{planar}}$ (Gutierrez-Lukasc-Weiss 2011) and Ω (Basic-Moerdijk)
- similar approaches (Helmstutler 2014 and Lack-Street 2015)

Theorem (generalised Dold-Kan correspondence, BCW 2019)

For each category C with involutive factorisation system $(\mathcal{E}, \mathcal{M})$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$\textit{M}_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \simeq [\Xi^{\mathrm{op}}_{\mathcal{C}}, \mathcal{A}]_{*}: \textit{K}_{\mathcal{C}}$$

Remark (constructing M_C and K_C for general C)

Denote $j: \mathcal{M} \hookrightarrow \mathcal{C}$ and $q: \mathcal{M} \twoheadrightarrow \Xi_{\mathcal{C}} = \mathcal{M}/\mathcal{M}_{iness}$. Then

$$M_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \underset{j_{!}}{\overset{j^{*}}{\longleftrightarrow}} [\mathcal{M}^{\mathrm{op}}, \mathcal{A}] \underset{q^{*}}{\overset{q_{*}}{\longleftrightarrow}} [\Xi_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}]_{*}: K_{\mathcal{C}}$$

- Γ (Pirashvili 2000) and Fl
 (Ellenberg-Church-Farb 2015)
- Ω_{planar} (Gutierrez-Lukasc-Weiss 2011) and Ω (Basic-Moerdijk)
- similar approaches (Helmstutler 2014 and Lack-Street 2015)

Theorem (generalised Dold-Kan correspondence, BCW 2019)

For each category C with involutive factorisation system $(\mathcal{E}, \mathcal{M})$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$\textit{M}_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \simeq [\Xi^{\mathrm{op}}_{\mathcal{C}}, \mathcal{A}]_*: \textit{K}_{\mathcal{C}}$$

Remark (constructing $M_{\mathcal{C}}$ and $K_{\mathcal{C}}$ for general \mathcal{C})

Denote $j: \mathcal{M} \hookrightarrow \mathcal{C}$ and $q: \mathcal{M} \twoheadrightarrow \Xi_{\mathcal{C}} = \mathcal{M}/\mathcal{M}_{iness}$. Then

$$M_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \underset{j_{!}}{\overset{j^{*}}{\longleftrightarrow}} [\mathcal{M}^{\mathrm{op}}, \mathcal{A}] \underset{q^{*}}{\overset{q_{*}}{\longleftrightarrow}} [\Xi_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}]_{*}: K_{\mathcal{C}}$$

- Γ (Pirashvili 2000) and Fl
 (Ellenberg-Church-Farb 2015)
- Ω_{planar} (Gutierrez-Lukasc-Weiss 2011) and Ω (Basic-Moerdijk)
- similar approaches (Helmstutler 2014 and Lack-Street 2015)

Theorem (generalised Dold-Kan correspondence, BCW 2019)

For each category C with involutive factorisation system $(\mathcal{E}, \mathcal{M})$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$\textit{M}_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \simeq [\Xi^{\mathrm{op}}_{\mathcal{C}}, \mathcal{A}]_*: \textit{K}_{\mathcal{C}}$$

Remark (constructing $M_{\mathcal{C}}$ and $K_{\mathcal{C}}$ for general \mathcal{C})

Denote $j: \mathcal{M} \hookrightarrow \mathcal{C}$ and $q: \mathcal{M} \twoheadrightarrow \Xi_{\mathcal{C}} = \mathcal{M}/\mathcal{M}_{iness}$. Then

$$M_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \underset{j_{!}}{\overset{j^{*}}{\longleftrightarrow}} [\mathcal{M}^{\mathrm{op}}, \mathcal{A}] \underset{q^{*}}{\overset{q_{*}}{\longleftrightarrow}} [\Xi_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}]_{*}: K_{\mathcal{C}}$$

- Γ (Pirashvili 2000) and Fl
 (Ellenberg-Church-Farb 2015)
- Ω_{planar} (Gutierrez-Lukasc-Weiss 2011) and Ω (Basic-Moerdijk)
- similar approaches (Helmstutler 2014 and Lack-Street 2015)

Theorem (generalised Dold-Kan correspondence, BCW 2019)

For each category C with involutive factorisation system $(\mathcal{E}, \mathcal{M})$ and each abelian category \mathcal{A} there is an adjoint equivalence

$$\textit{M}_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \simeq [\Xi^{\mathrm{op}}_{\mathcal{C}}, \mathcal{A}]_{*}: \textit{K}_{\mathcal{C}}$$

Remark (constructing $M_{\mathcal{C}}$ and $K_{\mathcal{C}}$ for general \mathcal{C})

Denote $j: \mathcal{M} \hookrightarrow \mathcal{C}$ and $q: \mathcal{M} \twoheadrightarrow \Xi_{\mathcal{C}} = \mathcal{M}/\mathcal{M}_{iness}$. Then

$$M_{\mathcal{C}}: [\mathcal{C}^{\mathrm{op}}, \mathcal{A}] \underset{j_{\mathrm{I}}}{\overset{j^{*}}{\longleftrightarrow}} [\mathcal{M}^{\mathrm{op}}, \mathcal{A}] \underset{q^{*}}{\overset{q_{*}}{\longleftrightarrow}} [\Xi_{\mathcal{C}}^{\mathrm{op}}, \mathcal{A}]_{*}: \mathcal{K}_{\mathcal{C}}$$

- Γ (Pirashvili 2000) and Fl
 (Ellenberg-Church-Farb 2015)
- Ω_{planar} (Gutierrez-Lukasc-Weiss 2011) and Ω (Basic-Moerdijk)
- similar approaches (Helmstutler 2014 and Lack-Street 2015)

For any small category \mathcal{A} the category $\Delta \wr \mathcal{A}$ is defined by

- $\operatorname{Ob}(\Delta \wr \mathcal{A}) = \coprod_{n \ge 0} \mathcal{A}^n = \{([m]; A_1, \dots, A_m)\}$
- $(\phi; \phi_{ij}) : ([m], A_1, \dots, A_m) \to ([n], B_1, \dots, B_n))$ is given by $\phi : [m] \to [n]$ and $A_i \to B_i$ whenever $\phi(i-1) < j < \phi(i)$

Definition (Joyal 1997, B 2007)

Put $\Theta_1 = \Delta$ and for n > 1 : $\Theta_n = \Delta \wr \Theta_{n-1}$

Theorem (Makkai-Zawadowski 2003, B 2003)

 Θ_n embeds densely into nCat, i.e. there is a fully faithful functor

$$N_{\Theta_n}: \mathrm{nCat} \to \mathrm{Sets}^{\Theta_n^{\mathrm{op}}}$$

(日)

For any small category \mathcal{A} the category $\Delta \wr \mathcal{A}$ is defined by

- $\operatorname{Ob}(\Delta \wr \mathcal{A}) = \coprod_{n \ge 0} \mathcal{A}^n = \{([m]; A_1, \dots, A_m)\}$
- $(\phi; \phi_{ij}) : ([m], A_1, \dots, A_m) \to ([n], B_1, \dots, B_n))$ is given by $\phi : [m] \to [n]$ and $A_i \to B_j$ whenever $\phi(i-1) < j \le \phi(i)$

Definition (Joyal 1997, B 2007)

Put $\Theta_1 = \Delta$ and for n > 1 : $\Theta_n = \Delta \wr \Theta_{n-1}$

Theorem (Makkai-Zawadowski 2003, B 2003)

 Θ_n embeds densely into nCat, i.e. there is a fully faithful functor

 $N_{\Theta_n}: \mathrm{nCat} \to \mathrm{Sets}^{\Theta_n^{\mathrm{op}}}$

For any small category \mathcal{A} the category $\Delta \wr \mathcal{A}$ is defined by

•
$$Ob(\Delta \wr A) = \coprod_{n \ge 0} A^n = \{([m]; A_1, \dots, A_m)\}$$

• $(\phi; \phi_{ij}) : ([m], A_1, \dots, A_m) \rightarrow ([n], B_1, \dots, B_n))$ is given by $\phi : [m] \rightarrow [n]$ and $A_i \rightarrow B_j$ whenever $\phi(i-1) < j \le \phi(i)$

Definition (Joyal 1997, B 2007)

Put $\Theta_1 = \Delta$ and for n > 1 : $\Theta_n = \Delta \wr \Theta_{n-1}$

Theorem (Makkai-Zawadowski 2003, B 2003)

 Θ_n embeds densely into nCat, i.e. there is a fully faithful functor

$$N_{\Theta_n}: \mathrm{nCat} \to \mathrm{Sets}^{\Theta_n^{\mathrm{op}}}$$

For any small category \mathcal{A} the category $\Delta \wr \mathcal{A}$ is defined by

•
$$\operatorname{Ob}(\Delta \wr \mathcal{A}) = \coprod_{n \ge 0} \mathcal{A}^n = \{([m]; A_1, \dots, A_m)\}$$

•
$$(\phi; \phi_{ij}) : ([m], A_1, \dots, A_m) \rightarrow ([n], B_1, \dots, B_n))$$
 is given by $\phi : [m] \rightarrow [n]$ and $A_i \rightarrow B_j$ whenever $\phi(i-1) < j \le \phi(i)$

Definition (Joyal 1997, B 2007)

Put $\Theta_1 = \Delta$ and for n > 1 : $\Theta_n = \Delta \wr \Theta_{n-1}$

Theorem (Makkai-Zawadowski 2003, B 2003)

 Θ_n embeds densely into nCat, i.e. there is a fully faithful functor

$$N_{\Theta_n}: \mathrm{nCat} \to \mathrm{Sets}^{\Theta_n^{\mathrm{op}}}$$

For any small category \mathcal{A} the category $\Delta \wr \mathcal{A}$ is defined by

•
$$\operatorname{Ob}(\Delta \wr \mathcal{A}) = \coprod_{n \ge 0} \mathcal{A}^n = \{([m]; A_1, \dots, A_m)\}$$

•
$$(\phi; \phi_{ij}) : ([m], A_1, \dots, A_m) \rightarrow ([n], B_1, \dots, B_n))$$
 is given by $\phi : [m] \rightarrow [n]$ and $A_i \rightarrow B_j$ whenever $\phi(i-1) < j \le \phi(i)$

Definition (Joyal 1997, B 2007)

Put $\Theta_1 = \Delta$ and for n > 1 : $\Theta_n = \Delta \wr \Theta_{n-1}$

Theorem (Makkai-Zawadowski 2003, B 2003)

 Θ_n embeds densely into nCat, i.e. there is a fully faithful functor

$$N_{\Theta_n}: \mathrm{nCat} \to \mathrm{Sets}^{\Theta_n^{\mathrm{op}}}$$

For any small category \mathcal{A} the category $\Delta \wr \mathcal{A}$ is defined by

•
$$\operatorname{Ob}(\Delta \wr \mathcal{A}) = \coprod_{n \ge 0} \mathcal{A}^n = \{([m]; A_1, \dots, A_m)\}$$

•
$$(\phi; \phi_{ij}) : ([m], A_1, \dots, A_m) \rightarrow ([n], B_1, \dots, B_n))$$
 is given by $\phi : [m] \rightarrow [n]$ and $A_i \rightarrow B_j$ whenever $\phi(i-1) < j \le \phi(i)$

Definition (Joyal 1997, B 2007)

Put $\Theta_1 = \Delta$ and for $n > 1 : \Theta_n = \Delta \wr \Theta_{n-1}$

Theorem (Makkai-Zawadowski 2003, B 2003)

 Θ_n embeds densely into nCat, i.e. there is a fully faithful functor

$$N_{\Theta_n}$$
: nCat \rightarrow Sets $^{\Theta_n^{\mathrm{op}}}$

A *Reedy category* C has a strict $(\mathcal{E}, \mathcal{M})$ -factorisation system, a grading deg : $ObC \to \mathbb{N}$ such that \mathcal{E} (resp. \mathcal{M})-maps lower (resp. increase) degree. C is *elegant* if \mathcal{E} has absolute pushouts.

Lemma (generalised Eilenberg-Zilber)

For any presheaf $X : \mathcal{C}^{\text{op}} \to \text{Sets}$, each $x \in X(c)$ equals $X(\phi)(y)$ for unique $\phi : c \to d$ in \mathcal{E} and "non-degenerate" $y \in X(d)$.

Proposition (Bergner-Rezk 2017)

If \mathcal{A} is an elegant Reedy category then so is $\Delta \wr \mathcal{A}$. In particular, Θ_n is an elegant Reedy category.

Proposition (BCW 2019)

A Reedy category \mathcal{C} has a strict $(\mathcal{E}, \mathcal{M})$ -factorisation system, a grading deg : $Ob\mathcal{C} \to \mathbb{N}$ such that \mathcal{E} (resp. \mathcal{M})-maps lower (resp. increase) degree. \mathcal{C} is *elegant* if \mathcal{E} has absolute pushouts.

_emma (generalised Eilenberg-Zilber)

For any presheaf $X : \mathcal{C}^{\text{op}} \to \text{Sets}$, each $x \in X(c)$ equals $X(\phi)(y)$ for unique $\phi : c \to d$ in \mathcal{E} and "non-degenerate" $y \in X(d)$.

Proposition (Bergner-Rezk 2017)

If \mathcal{A} is an elegant Reedy category then so is $\Delta \wr \mathcal{A}$. In particular, Θ_n is an elegant Reedy category.

Proposition (BCW 2019)

A Reedy category \mathcal{C} has a strict $(\mathcal{E}, \mathcal{M})$ -factorisation system, a grading deg : $Ob\mathcal{C} \to \mathbb{N}$ such that \mathcal{E} (resp. \mathcal{M})-maps lower (resp. increase) degree. \mathcal{C} is *elegant* if \mathcal{E} has absolute pushouts.

Lemma (generalised Eilenberg-Zilber)

For any presheaf $X : \mathcal{C}^{\mathrm{op}} \to \mathrm{Sets}$, each $x \in X(c)$ equals $X(\phi)(y)$ for unique $\phi : c \to d$ in \mathcal{E} and "non-degenerate" $y \in X(d)$.

Proposition (Bergner-Rezk 2017)

If \mathcal{A} is an elegant Reedy category then so is $\Delta \wr \mathcal{A}$. In particular, Θ_n is an elegant Reedy category.

Proposition (BCW 2019)

A Reedy category \mathcal{C} has a strict $(\mathcal{E}, \mathcal{M})$ -factorisation system, a grading deg : $Ob\mathcal{C} \to \mathbb{N}$ such that \mathcal{E} (resp. \mathcal{M})-maps lower (resp. increase) degree. \mathcal{C} is *elegant* if \mathcal{E} has absolute pushouts.

Lemma (generalised Eilenberg-Zilber)

For any presheaf $X : \mathcal{C}^{\mathrm{op}} \to \mathrm{Sets}$, each $x \in X(c)$ equals $X(\phi)(y)$ for unique $\phi : c \to d$ in \mathcal{E} and "non-degenerate" $y \in X(d)$.

Proposition (Bergner-Rezk 2017)

If \mathcal{A} is an elegant Reedy category then so is $\Delta \wr \mathcal{A}$. In particular, Θ_n is an elegant Reedy category.

Proposition (BCW 2019)

A Reedy category \mathcal{C} has a strict $(\mathcal{E}, \mathcal{M})$ -factorisation system, a grading deg : $Ob\mathcal{C} \to \mathbb{N}$ such that \mathcal{E} (resp. \mathcal{M})-maps lower (resp. increase) degree. \mathcal{C} is *elegant* if \mathcal{E} has absolute pushouts.

Lemma (generalised Eilenberg-Zilber)

For any presheaf $X : \mathcal{C}^{\mathrm{op}} \to \mathrm{Sets}$, each $x \in X(c)$ equals $X(\phi)(y)$ for unique $\phi : c \to d$ in \mathcal{E} and "non-degenerate" $y \in X(d)$.

Proposition (Bergner-Rezk 2017)

If \mathcal{A} is an elegant Reedy category then so is $\Delta \wr \mathcal{A}$. In particular, Θ_n is an elegant Reedy category.

Proposition (BCW 2019)

Theorem (BCW 2019)

$$\underline{\operatorname{Ab}}^{\Theta_n^{\operatorname{op}}} \simeq [\Xi_{\Theta_n}^{\operatorname{op}}, \underline{\operatorname{Ab}}]_*$$

Remark (Θ_n -set model for Eilenberg-MacLane spaces)

- For each abelian group A there is an abelian group object BⁿA in nCat with one k-cell for 0 ≤ k < n;
- $|N_{\Theta_n}(B^n A)|$ is a cellular model for K(A, n)
- Its cellular chain complex is the "totalisation" of corresponding Ξ^{op}_{Θ_a}-complex.

		1	2	3	4	5	6	7		9
$K(\mathbb{Z}/2\mathbb{Z},1)$	1	1	1	1	1	1	1	1	1	1
$K(\mathbb{Z}/2\mathbb{Z},2)$	1		1	1	2	3	5		13	21
$K(\mathbb{Z}/2\mathbb{Z},3)$	1			1	1	2	4	7	13	24

Theorem (BCW 2019)

$$\underline{\mathrm{Ab}}^{\Theta^{\mathrm{op}}_n} \simeq [\Xi^{\mathrm{op}}_{\Theta_n}, \underline{\mathrm{Ab}}]_*$$

Remark (Θ_n -set model for Eilenberg-MacLane spaces)

- For each abelian group A there is an abelian group object BⁿA in nCat with one k-cell for 0 ≤ k < n;
- $|N_{\Theta_n}(B^n A)|$ is a cellular model for K(A, n)
- Its cellular chain complex is the "totalisation" of corresponding Ξ^{op}_{Θ_a}-complex.

		1	2	3	4	5	6	7		9
$K(\mathbb{Z}/2\mathbb{Z},1)$	1	1	1	1	1	1	1	1	1	1
$K(\mathbb{Z}/2\mathbb{Z},2)$	1		1	1	2	3	5		13	21
$K(\mathbb{Z}/2\mathbb{Z},3)$	1			1	1	2	4	7	13	24

Theorem (BCW 2019)

$$\underline{\operatorname{Ab}}^{\Theta^{\operatorname{op}}_n} \simeq [\Xi^{\operatorname{op}}_{\Theta_n}, \underline{\operatorname{Ab}}]_*$$

Remark (Θ_n -set model for Eilenberg-MacLane spaces)

- For each abelian group A there is an abelian group object BⁿA in nCat with one k-cell for 0 ≤ k < n;
- $|N_{\Theta_n}(B^nA)|$ is a cellular model for K(A, n)
- Its cellular chain complex is the "totalisation" of corresponding Ξ^{op}_{Θ_n}-complex.

		1	2	3	4	5	6	7		9
$K(\mathbb{Z}/2\mathbb{Z},1)$	1	1	1	1	1	1	1	1	1	1
$K(\mathbb{Z}/2\mathbb{Z},2)$	1		1	1	2	3	5		13	21
$K(\mathbb{Z}/2\mathbb{Z},3)$	1			1	1	2	4	7	13	24

Theorem (BCW 2019)

$$\underline{\operatorname{Ab}}^{\Theta^{\operatorname{op}}_n} \simeq [\Xi^{\operatorname{op}}_{\Theta_n}, \underline{\operatorname{Ab}}]_*$$

Remark (Θ_n -set model for Eilenberg-MacLane spaces)

- For each abelian group A there is an abelian group object BⁿA in nCat with one k-cell for 0 ≤ k < n;
- $|N_{\Theta_n}(B^n A)|$ is a cellular model for K(A, n)
- Its cellular chain complex is the "totalisation" of corresponding Ξ^{op}_{Θ_n}-complex.

		1	2	3	4	5	6	7		9
$K(\mathbb{Z}/2\mathbb{Z},1)$	1	1	1	1	1	1	1	1	1	1
$K(\mathbb{Z}/2\mathbb{Z},2)$	1		1	1	2	3	5		13	21
$K(\mathbb{Z}/2\mathbb{Z},3)$	1			1	1	2	4	7	13	24

Theorem (BCW 2019)

$$\underline{\operatorname{Ab}}^{\Theta^{\operatorname{op}}_n} \simeq [\Xi^{\operatorname{op}}_{\Theta_n}, \underline{\operatorname{Ab}}]_*$$

Remark (Θ_n -set model for Eilenberg-MacLane spaces)

- For each abelian group A there is an abelian group object BⁿA in nCat with one k-cell for 0 ≤ k < n;
- $|N_{\Theta_n}(B^nA)|$ is a cellular model for K(A, n)
- Its cellular chain complex is the "totalisation" of corresponding Ξ^{op}_{Θn}-complex.

	m		1	2	3	4	5	6	7		9
$K(\mathbb{Z}/2\mathbb{Z},1)$		1	1	1	1	1	1	1	1	1	1
$K(\mathbb{Z}/2\mathbb{Z},2)$		1		1	1	2	3	5		13	21
$K(\mathbb{Z}/2\mathbb{Z},3)$		1			1	1	2	4	7	13	24

Theorem (BCW 2019)

$$\underline{\operatorname{Ab}}^{\Theta^{\operatorname{op}}_n} \simeq [\Xi^{\operatorname{op}}_{\Theta_n}, \underline{\operatorname{Ab}}]_*$$

Remark (Θ_n -set model for Eilenberg-MacLane spaces)

- For each abelian group A there is an abelian group object BⁿA in nCat with one k-cell for 0 ≤ k < n;
- $|N_{\Theta_n}(B^nA)|$ is a cellular model for K(A, n)
- Its cellular chain complex is the "totalisation" of corresponding Ξ^{op}_{Θ_α}-complex.

		1	2	3	4	5	6	7		9
$K(\mathbb{Z}/2\mathbb{Z},1)$	1	1	1	1	1	1	1	1	1	1
$K(\mathbb{Z}/2\mathbb{Z},2)$	1		1	1	2	3	5		13	21
$K(\mathbb{Z}/2\mathbb{Z},3)$	1			1	1	2	4	7	13	24

Theorem (BCW 2019)

$$\underline{\operatorname{Ab}}^{\Theta^{\operatorname{op}}_n} \simeq [\Xi^{\operatorname{op}}_{\Theta_n}, \underline{\operatorname{Ab}}]_*$$

Remark (Θ_n -set model for Eilenberg-MacLane spaces)

- For each abelian group A there is an abelian group object BⁿA in nCat with one k-cell for 0 ≤ k < n;
- $|N_{\Theta_n}(B^nA)|$ is a cellular model for K(A, n)
- Its cellular chain complex is the "totalisation" of corresponding Ξ^{op}_{Θ_α}-complex.

# cells in dim	0	1	2	3	4	5	6	7	8	9
$K(\mathbb{Z}/2\mathbb{Z},1)$	1	1	1	1	1	1	1	1	1	1
$K(\mathbb{Z}/2\mathbb{Z},2)$	1	0	1	1	2	3	5	8	13	21
$K(\mathbb{Z}/2\mathbb{Z},3)$	1	0	0	1	1	2	4	7	13	24