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Involutive factorisation systems & Dold-Kan correspondences

Introduction

Theorem (Dold 1958, Kan 1958)

M : Ab∆op ' Ch(Z) : K

Corollary

There is a simplicial abelian group K (A, n) such that
πn(K (A, n)) = A and πi (K (A, n)) = 0 for i 6= n.

Proof.

K : Ch(Z)→ Ab∆op
takes homology into homotopy. K (A, n) is

the image of the chain complex: 0← · · · ← 0←
n
A← 0← · · ·

Purpose of the talk

Categorical structure of ∆ inducing Dold-Kan correspondence.
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Simplicial objects

Definition (simplex category ∆)

Ob∆ = {[n] = {0, 1 . . . , n}, n ≥ 0}, Mor∆ = {monotone maps}

Remark (epi-mono factorisation system)

The category ∆ is generated by elementary

face operators εni : [n − 1]→ [n], 0 ≤ i ≤ n, and

degeneracy operators ηni : [n + 1]→ [n], 0 ≤ i ≤ n.

Every simplicial operator φ : [m]→ [n] factors as

[m]
φ //

epi     

[n]

[p]
>>

mono

>>

and every epi (resp. mono)morphism in ∆ is a canonical composite
of elementary degeneracy (resp. face) operators.
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Simplicial objects

Definition (geometric realisation, Milnor 1957)

∆ ↪→ Top : [n] 7→ ∆n yields by left Kan extension along Yoneda

|−|∆ : Sets∆op → Top.

Theorem (Quillen 1968)

Geometric realisation is left part of a Quillen equivalence.

Definition (simplicial homology, Eilenberg 1944)

Sets∆op // Ab∆op N // Ch(Z) // AbN

X•
� // Z[X•]

� // (N•(X ), d•)
� // H•(X )

where (Nn(X ) = Z[Xn]/Z[Dn(X )], dn =
∑

k(−1)kX (εnk))

is isomorphic to the

Moore chain complex (Mn(X ) =
⋂

0≤k<n X (εnk), dn = X (εnn)).
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Simplicial objects

Proposition (Dold 1958)

Moore normalisation M admits a left adjoint K assigning to a
chain complex (C•, d•) the simplicial abelian group

K (C•, d•)n =
⊕

[n]�[k]

Ck with K (φ) :
⊕

[n]�[k]

Ck →
⊕

[m]�[j]

Cj

where K (φ)ab =



dk if [m]
φ //

a ����

[n]

b����
[k − 1] //

εkk

// [k]

0 otherwise

Remark

unit: ∀C• ∈ Ch(Z) one has C• ∼= MKC•  easy

counit: ∀A• ∈ Ab∆op
one has KMA• ∼= A•  difficult
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Involutive factorisation systems

Definition (Involutive factorisation system)

A factorisation system (E ,M) on C is called involutive if there is a
specified faithful, identity-on-objects functor (−)∗ : Eop →M sth.

(I1) ee∗ = 1 (the split idempotent e∗e is called an E-projector);

(I2) the morphisms f ∗e form a subcategory of C;

(I3) ∀(A
m→ B) ∈M∀φ ∈ ProjE(A)∃ψ ∈ ProjE(B) : mφ = ψm;

(I4) ProjE(A) is finite. Primitive E-projectors can be linearly
ordered such that if φ precedes ψ then ψφ is an E-projector.

Remark (primitive E-projectors)

ProjE(A) ∼= QuotE(A). Primitive E-projectors are covered by 1A.

Remark (Involutive factorisation system for ∆)

Each epi e : [m]� [n] has a maximal section e∗ : [n]→ [m].
The primitive E-projectors of [n] are the η∗i ηi = εiηi , 0 ≤ i ≤ n.
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Dold-Kan correspondences

Definition (essential M-maps)

An M-map m : A→ B is called essential if 1B is the only
E-projector of B fixing m.

Remark (essential M-maps of ∆)

are precisely the “last” face operators εnn : [n − 1]� [n].

Lemma (quotienting out inessential M-maps)

By axiom (I3) the inessential M-maps form an ideal Miness in M.
In particular, there is a locally pointed category ΞC =M/Miness .

Remark (description of Ξ∆)

[0] //

0

((
[1] //

0

((
[2] //

0
**

[3] // [4] · · ·  [Ξop
∆ ,Ab]∗=Ch(Z)
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Dold-Kan correspondences

Theorem (generalised Dold-Kan correspondence, BCW 2019)

For each category C with involutive factorisation system (E ,M)
and each abelian category A there is an adjoint equivalence

MC : [Cop,A] ' [Ξop
C ,A]∗ : KC

Remark (constructing MC and KC for general C)

Denote j :M ↪→ C and q :M� ΞC =M/Miness . Then

MC : [Cop,A]
j∗

�
j!

[Mop,A]
q∗
�
q∗

[Ξop
C ,A]∗ : KC

Examples

Γ (Pirashvili 2000) and FI\ (Ellenberg-Church-Farb 2015)

Ωplanar (Gutierrez-Lukasc-Weiss 2011) and Ω (Basic-Moerdijk)

similar approaches (Helmstutler 2014 and Lack-Street 2015)
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Involutive factorisation systems & Dold-Kan correspondences

Joyal’s categories Θn

Definition (categorical wreath product over ∆)

For any small category A the category ∆ o A is defined by

Ob(∆ o A) =
∐

n≥0An = {([m];A1, . . . ,Am)}
(φ;φij) : ([m],A1, . . . ,Am)→ ([n],B1, . . . ,Bn)) is given by
φ : [m]→ [n] and Ai → Bj whenever φ(i − 1) < j ≤ φ(i)

Definition (Joyal 1997, B 2007)

Put Θ1 = ∆ and for n > 1 : Θn = ∆ oΘn−1

Theorem (Makkai-Zawadowski 2003, B 2003)

Θn embeds densely into nCat, i.e. there is a fully faithful functor

NΘn : nCat→ SetsΘop
n
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Joyal’s categories Θn

Definition (elegant Reedy category=skeletal EZ-category)

A Reedy category C has a strict (E ,M)-factorisation system, a
grading deg : ObC → N such that E (resp. M)-maps lower (resp.
increase) degree. C is elegant if E has absolute pushouts.

Lemma (generalised Eilenberg-Zilber)

For any presheaf X : Cop → Sets, each x ∈ X (c) equals X (φ)(y)
for unique φ : c → d in E and “non-degenerate” y ∈ X (d).

Proposition (Bergner-Rezk 2017)

If A is an elegant Reedy category then so is ∆ o A.
In particular, Θn is an elegant Reedy category.

Proposition (BCW 2019)

If A has an involutive Reedy factorisation then so has ∆ o A.
In particular, Θn has an involutive factorisation system.
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Joyal’s categories Θn

Theorem (BCW 2019)

AbΘop
n ' [Ξop

Θn
,Ab]∗

Remark (Θn-set model for Eilenberg-MacLane spaces)

For each abelian group A there is an abelian group object
BnA in nCat with one k-cell for 0 ≤ k < n;

|NΘn(BnA)| is a cellular model for K (A, n)

Its cellular chain complex is the “totalisation” of
corresponding Ξop

Θn
-complex.

Example (cells of K (Z/2Z, n) for n = 1, 2, 3)

# cells in dim 0 1 2 3 4 5 6 7 8 9

K (Z/2Z, 1) 1 1 1 1 1 1 1 1 1 1

K (Z/2Z, 2) 1 0 1 1 2 3 5 8 13 21

K (Z/2Z, 3) 1 0 0 1 1 2 4 7 13 24
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|NΘn(BnA)| is a cellular model for K (A, n)

Its cellular chain complex is the “totalisation” of
corresponding Ξop

Θn
-complex.

Example (cells of K (Z/2Z, n) for n = 1, 2, 3)

# cells in dim 0 1 2 3 4 5 6 7 8 9

K (Z/2Z, 1) 1 1 1 1 1 1 1 1 1 1

K (Z/2Z, 2) 1 0 1 1 2 3 5 8 13 21

K (Z/2Z, 3) 1 0 0 1 1 2 4 7 13 24
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