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Introduction

Categorical Galois Theory

Framework that allows the study of extensions or coverings of objects of a
category. Examples include

1 Galois theory of commutative rings
2 Central extensions of groups, or more generally exact Mal’tsev

categories
3 Coverings of locally connected spaces
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Categorical Galois Theory

Categorical Galois Theory

Definition (Galois structure)
A Galois structure Γ = (A,X , I,U,F) consists of a category A together
with a full reflective subcategory X and a class F of fibrations containing
isomorphisms and stable under pullbacks, composition and preserved by
the reflector I.

This data induces an adjunction A ↓F B X ↓F IB.

IB

HB=η∗
B

a
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Categorical Galois Theory

Admissibility

We will be interested in cases where HB is fully faithful.
An object B with this property is called admissible, and a Galois structure
is admissible if every object of A is admissible.

This is equivalent to the reflector I preserving the pullbacks of the form

P U(X )

Z U(Y )

U(f )

where X ,Y are in X and f ∈ F .
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Categorical Galois Theory

Trivial coverings

A fibration f : A→ B lies in the essential image of the right adjoint HB iff
the square

A UI(A)

B UI(B)

f

ηA

UI(f )

ηB

is a pullback.

These fibrations are called trivial coverings.
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Categorical Galois Theory

Coverings

Every fibration h : X → Y induces a pair of adjoint functors h! a h∗:
the pullback h∗ : A ↓F Y → A ↓F X ;
the composition h! : A ↓F X → A ↓F Y .

h is an effective F-descent morphism if h∗ is monadic.

Example
If C is exact and F = {regular epis}, then every h ∈ F is an effective
F-descent morphism.

A fibration f is called a covering if it is a locally trivial covering, i.e. if
h∗(f ) is a trivial covering for some effective F-descent morphism h.
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Categorical Galois Theory

Example : Groupoids and simplicial sets

Theorem (Gabriel, Zisman [8])
The nerve functor N : Grpd→ Simp is fully faithful, and has a left adjoint
π1, the fundamental groupoid. Thus Grpd can be identified with a
reflective subcategory of Simp.

Theorem (Brown, Janelidze [1])
If F is the class of all Kan fibrations, then every Kan simplicial object is
admissible. The coverings are "second order coverings", characterized by a
certain unique lifting property.
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Categorical Galois Theory

Mal’tsev categories

A finitely complete category is a Mal’tsev category if every reflexive
relation is an equivalence relation.

Proposition (Carboni, Lambek, Pedicchio, 1991 [3])
If C is a regular category, the following are equivalent:

C is Mal’tsev.
R ◦ S = S ◦ R for any internal equivalence relations R,S.
R ◦ S is an equivalence relation for any equivalence relations R,S.

If C is a variety, then this is equivalent to the existence of a ternary
operation p satisfying p(x , y , y) = x and p(y , y , z) = z.

Examples : Grp (p(x , y , z) = xy−1z), R-Alg, Lie, any additive category,
Grp(Top), the dual of any topos...
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Categorical Galois Theory

Example : Birkhoff subcategories of Mal’tsev categories

Definition (Birkhoff subcategory)
A Birkhoff subcategory of a regular category C is a full reflective
subcategory closed under quotients and subobjects.

Example
For varieties of universal algebras, Birkhoff subcategories coincide with
subvarieties.

Arnaud Duvieusart (FNRS-UCL) Simplicial objects 9 July 2019 9 / 26



Categorical Galois Theory

Theorem (Janelidze, Kelly [10])
Every Birkhoff subcategory X of an exact Mal’tsev category A gives an
admissible Galois structure (A,X , I,U,F) where F is the class of regular
epimorphisms.

Example (Gran [9])
Any category C can be identified with the category of discrete internal
groupoids. π0 : Grpd(C)→ C makes it a reflective, and in fact Birkhoff,
subcategory. The coverings are precisely the regular epimorphic discrete
fibrations.
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Categorical Galois Theory

Theorem (Carboni, Kelly, Pedicchio [2]/Everaert, Goedecke, Van der
Linden [7, 6])
A regular category C is Mal’tsev if and only if every simplicial object in C
satisfies the Kan property.
In that case every regular epimorphism in Simp(C) is a Kan fibration.

This generalizes Moore’s theorem on simplicial groups.

This raises the question : is the inclusion Grpd(C)→ Simp(C) part of an
admissible Galois structure when C is exact Mal’tsev ?
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Categorical Galois Theory

A simplicial object is a groupoid if and only if every square

Xn+2 Xn+1

Xn+1 Xn

dj

di di

dj−1

is a pullback.
When C is regular Mal’tsev, these are all regular pushouts : the canonical
map Xn+2 → Xn+1 ×Xn Xn+1 is always a regular epi.

Thus X is a groupoid if and only if these maps are all monomorphisms.
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Categorical Galois Theory

We denote Di the kernel pair of di : Xn → Xn−1. For n ≥ 2, we define

Hn(X) =
∨

0≤i<j≤n
Di ∧ Dj .

Then X is an internal groupoid if and only if Hn(X) = ∆Xn for all n.
For n ≥ 2, di (Hn+1(X)) = Hn(X), thus the di induce maps

Xn+1
Hn+1(X) →

Xn
Hn(X) .
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Categorical Galois Theory

In order to factor d1 : X2 → X1 through the quotient X2 → X2
H2(X) , we

would need to check that D0 ∧D2 ≤ D1, or equivalently d1(D0 ∧D2) = ∆.
So we define H1(X) = d1(D0 ∧ D2).

In fact
d1(D0 ∧ D2) = d0(D1 ∧ D2) = d2(D0 ∧ D1).
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Categorical Galois Theory

Theorem (D.)
Let C be an exact Mal’tsev category and X ∈ Simp(C), and let us define
Xn = Xn/Hn(X). Then

X can be endowed with the structure of a simplicial object;
X is a groupoid;
any morphism f : X→ Y where Y is a groupoid factorizes through X.

Corollary (D.)
Grpd(C) is a Birkhoff subcategory of Simp(C); in particular, if F is the
class of regular epimorphisms in Simp(C), then
Γ = (Simp(C),Grpd(C), I,UF) is an admissible Galois structure.
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Categorical Galois Theory

A fibration f : X→ Y is a trivial covering if and only if Fn ∧ Hn(X) = ∆Xn

for all n ≥ 1.

Theorem (D.)
A fibration is a covering if and only if

d1(F2 ∧ D0 ∧ D2) = ∆X1

and ∨
0≤i<j≤n

(Fn ∧ Di ∧ Dj) = ∆Xn

for all n ≥ 2.
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Monotone-light factorizations

Factorizations

Let Γ = (A,X , I,U,F) be an admissible Galois structure, with F the class
of all morphisms.
Then any arrow f has a reflection in the subcategory of trivial coverings,
given by

A

B ×I(B) I(A) I(A)

B I(B).

f

e

ηA

m I(f )

ηB

Then I(e) is an isomorphism.
This gives a factorization system (E ,M).
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Monotone-light factorizations

Trivial coverings are pullback-stable, but I-invertible arrows need not be
stable.

To make the factorization system stable, we must
stabilize E , by replacing it with the class E ′ of morphisms stably in E .
localizeM, by replacing it with the classM∗ of coverings.

The resulting classes are still orthogonal, but it is not always true that
every fibration has a factorization.
When this happens, we say that Γ has an associated monotone-light
factorization system (E ′,M∗).
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Monotone-light factorizations

Relative factorization systems

But what if F is not the class of all morphisms?

Not every morphism has a factorization, but every fibration does.
Moreover the orthogonality is preserved, andM⊂ F .
This is a relative factorization system for F in the sense of Chikhladze [4].
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Monotone-light factorizations

Stabilization/localization can be generalized the relative case, to give a
stable relative factorization system (E ′,M∗) where

E ′ is the class of morphisms where every pullback along a morphism
in F is in E ;
M∗ is again the class of locally trivial covering.

Proposition (Carboni, Janelidze, Kelly, Paré / Chikhladze)
If for every B there exists an F-effective descent morphism p : E → B
where E has the property that the factorization of every g : C → E in F is
stable under pullbacks along maps in F , then (E ′,M∗) is a relative
factorization system.

Such an object E is called a stabilizing object.
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Monotone-light factorizations

Example (Chikhladze [4])
The Galois structure of Brown and Janelidze, given by the nerve functor
between groupoids and Kan complexes, admits a relative monotone-light
factorization system for Kan fibrations.

Example (Cigoli, Everaert, Gran [5])
When C is exact Mal’tsev, the Galois structure (Grpd(C), C, π0,D,F)
admits a relative monotone-light factorization system for regular
epimorphisms.
Coverings are discrete fibrations and E ′ is the class of final functors ; so
this monotone-light relative factorization system is the restriction of the
comprehensive factorization system to regular epimorphism.

Both proofs rely on showing that Dec(X) is a stabilizing object.
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Monotone-light factorizations

Definition
A simplicial object X is called exact if the canonical maps κn : Xn → Kn(X)
to the simplicial kernels of X are all regular epimorphisms.

Example
For a simplicial object X = (Xn)n≥0, let Dec(X) be the simplicial object
(Xn+1)n≥0, with the same face and degeneracies except the
dn+2 : Xn+2 → Xn+1 and sn+1 : Xn+1 → Xn+2. Then Dec(X) is an exact
simplicial object.
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Monotone-light factorizations

Theorem (D.)
In an exact Mal’tsev category C, every exact simplicial object is a
stabilizing object. In particular, since for every object X we have a regular
epimorphism Dec(X)→ X defined by the dn+1 : Xn+1 → Xn, the Galois
structure Γ = (Simp(C),Grpd(C), I,U,F) admits a relative
monotone-light factorization system.
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