Simplicial objects and relative monotone-light factorization in Mal'tsev categories

Arnaud Duvieusart

FNRS Research Fellow - UCLouvain

9 July 2019

Arnaud Duvieusart (FNRS-UCL)

Simplicial objects

9 July 2019 1 / 26

(4) (3) (4) (4) (4)

Framework that allows the study of extensions or coverings of objects of a category. Examples include

A (10) F (10) F (10)

Framework that allows the study of extensions or coverings of objects of a category. Examples include

- Galois theory of commutative rings
- Central extensions of groups, or more generally exact Mal'tsev categories
- Overings of locally connected spaces

Definition (Galois structure)

A Galois structure $\Gamma = (\mathcal{A}, \mathcal{X}, I, U, \mathcal{F})$ consists of a category \mathcal{A} together with a full reflective subcategory \mathcal{X} and a class \mathcal{F} of fibrations containing isomorphisms and stable under pullbacks, composition and preserved by the reflector I.

.

Definition (Galois structure)

A Galois structure $\Gamma = (\mathcal{A}, \mathcal{X}, I, U, \mathcal{F})$ consists of a category \mathcal{A} together with a full reflective subcategory \mathcal{X} and a class \mathcal{F} of fibrations containing isomorphisms and stable under pullbacks, composition and preserved by the reflector I.

.

Admissibility

We will be interested in cases where H^B is fully faithful. An object *B* with this property is called *admissible*, and a Galois structure is admissible if every object of A is admissible.

< ∃ > <

Admissibility

We will be interested in cases where H^B is fully faithful.

An object *B* with this property is called *admissible*, and a Galois structure is admissible if every object of A is admissible.

This is equivalent to the reflector I preserving the pullbacks of the form

$$\begin{array}{c} P \longrightarrow U(X) \\ \downarrow \qquad \qquad \downarrow^{U(f)} \\ Z \longrightarrow U(Y) \end{array}$$

where X, Y are in \mathcal{X} and $f \in \mathcal{F}$.

Trivial coverings

A fibration $f : A \rightarrow B$ lies in the essential image of the right adjoint H^B iff the square

is a pullback.

→ Ξ →

Trivial coverings

A fibration $f : A \rightarrow B$ lies in the essential image of the right adjoint H^B iff the square

is a pullback. These fibrations are called *trivial coverings*.

→ Ξ →

Coverings

Every fibration $h: X \to Y$ induces a pair of adjoint functors $h_! \dashv h^*$:

- the pullback $h^* : \mathcal{A} \downarrow_{\mathcal{F}} Y \to \mathcal{A} \downarrow_{\mathcal{F}} X$;
- the composition $h_! : \mathcal{A} \downarrow_{\mathcal{F}} X \to \mathcal{A} \downarrow_{\mathcal{F}} Y$.

h is an effective \mathcal{F} -descent morphism if h^* is monadic.

Example

If C is exact and $\mathcal{F} = \{\text{regular epis}\}$, then every $h \in \mathcal{F}$ is an effective \mathcal{F} -descent morphism.

(4) (日本)

Coverings

Every fibration $h: X \to Y$ induces a pair of adjoint functors $h_! \dashv h^*$:

- the pullback $h^* : \mathcal{A} \downarrow_{\mathcal{F}} Y \to \mathcal{A} \downarrow_{\mathcal{F}} X$;
- the composition $h_! : \mathcal{A} \downarrow_{\mathcal{F}} X \to \mathcal{A} \downarrow_{\mathcal{F}} Y$.

h is an effective \mathcal{F} -descent morphism if h^* is monadic.

Example

If C is exact and $\mathcal{F} = \{\text{regular epis}\}$, then every $h \in \mathcal{F}$ is an effective \mathcal{F} -descent morphism.

A fibration f is called a *covering* if it is a locally trivial covering, i.e. if $h^*(f)$ is a trivial covering for some effective \mathcal{F} -descent morphism h.

< □ > < 同 > < 回 > < 回 > < 回 >

Example : Groupoids and simplicial sets

Theorem (Gabriel, Zisman [8])

The nerve functor N : **Grpd** \rightarrow **Simp** is fully faithful, and has a left adjoint π_1 , the fundamental groupoid. Thus **Grpd** can be identified with a reflective subcategory of **Simp**.

- **4 ∃ ≻ 4**

Example : Groupoids and simplicial sets

Theorem (Gabriel, Zisman [8])

The nerve functor N : **Grpd** \rightarrow **Simp** is fully faithful, and has a left adjoint π_1 , the fundamental groupoid. Thus **Grpd** can be identified with a reflective subcategory of **Simp**.

Theorem (Brown, Janelidze [1])

If \mathcal{F} is the class of all Kan fibrations, then every Kan simplicial object is admissible. The coverings are "second order coverings", characterized by a certain unique lifting property.

< □ > < 同 > < 回 > < 回 > < 回 >

Mal'tsev categories

A finitely complete category is a Mal'tsev category if every reflexive relation is an equivalence relation.

Proposition (Carboni, Lambek, Pedicchio, 1991 [3])

If ${\mathcal C}$ is a regular category, the following are equivalent:

- C is Mal'tsev.
- $R \circ S = S \circ R$ for any internal equivalence relations R, S.
- $R \circ S$ is an equivalence relation for any equivalence relations R, S. If C is a variety, then this is equivalent to the existence of a ternary operation p satisfying p(x, y, y) = x and p(y, y, z) = z.

Examples : **Grp** $(p(x, y, z) = xy^{-1}z)$, *R*-**Alg**, **Lie**, any additive category, **Grp**(**Top**), the dual of any topos...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Example : Birkhoff subcategories of Mal'tsev categories

Definition (Birkhoff subcategory)

A Birkhoff subcategory of a regular category C is a full reflective subcategory closed under quotients and subobjects.

Example

For varieties of universal algebras, Birkhoff subcategories coincide with subvarieties.

- **4 ∃ ≻ 4**

Theorem (Janelidze, Kelly [10])

Every Birkhoff subcategory \mathcal{X} of an exact Mal'tsev category \mathcal{A} gives an admissible Galois structure $(\mathcal{A}, \mathcal{X}, I, U, \mathcal{F})$ where \mathcal{F} is the class of regular epimorphisms.

(4) (日本)

Theorem (Janelidze, Kelly [10])

Every Birkhoff subcategory \mathcal{X} of an exact Mal'tsev category \mathcal{A} gives an admissible Galois structure $(\mathcal{A}, \mathcal{X}, I, U, \mathcal{F})$ where \mathcal{F} is the class of regular epimorphisms.

Example (Gran [9])

Any category C can be identified with the category of discrete internal groupoids. π_0 : **Grpd**(C) $\rightarrow C$ makes it a reflective, and in fact Birkhoff, subcategory. The coverings are precisely the regular epimorphic discrete fibrations.

イロト 不得 トイヨト イヨト 二日

Theorem (Carboni, Kelly, Pedicchio [2]/Everaert, Goedecke, Van der Linden [7, 6])

A regular category C is Mal'tsev if and only if every simplicial object in C satisfies the Kan property.

In that case every regular epimorphism in Simp(C) is a Kan fibration.

This generalizes Moore's theorem on simplicial groups.

▲ □ ▶ ▲ □ ▶ ▲ □

Theorem (Carboni, Kelly, Pedicchio [2]/Everaert, Goedecke, Van der Linden [7, 6])

A regular category C is Mal'tsev if and only if every simplicial object in C satisfies the Kan property.

In that case every regular epimorphism in $Simp(\mathcal{C})$ is a Kan fibration.

This generalizes Moore's theorem on simplicial groups. This raises the question : is the inclusion $\mathbf{Grpd}(\mathcal{C}) \to \mathbf{Simp}(\mathcal{C})$ part of an admissible Galois structure when \mathcal{C} is exact Mal'tsev ?

- 4 回 ト 4 ヨ ト 4 ヨ ト

A simplicial object is a groupoid if and only if every square

is a pullback.

When C is regular Mal'tsev, these are all regular pushouts : the canonical map $X_{n+2} \rightarrow X_{n+1} \times_{X_n} X_{n+1}$ is always a regular epi.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A simplicial object is a groupoid if and only if every square

is a pullback.

When C is regular Mal'tsev, these are all regular pushouts : the canonical map $X_{n+2} \rightarrow X_{n+1} \times_{X_n} X_{n+1}$ is always a regular epi.

Thus \mathbb{X} is a groupoid if and only if these maps are all monomorphisms.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We denote D_i the kernel pair of $d_i : X_n \to X_{n-1}$. For $n \ge 2$, we define

$$H_n(\mathbb{X}) = \bigvee_{0 \leq i < j \leq n} D_i \wedge D_j.$$

< □ > < 同 > < 回 > < 回 > < 回 >

We denote D_i the kernel pair of $d_i : X_n \to X_{n-1}$. For $n \ge 2$, we define

$$H_n(\mathbb{X}) = \bigvee_{0 \leq i < j \leq n} D_i \wedge D_j.$$

Then \mathbb{X} is an internal groupoid if and only if $H_n(\mathbb{X}) = \Delta_{X_n}$ for all n.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We denote D_i the kernel pair of $d_i : X_n \to X_{n-1}$. For $n \ge 2$, we define

$$H_n(\mathbb{X}) = \bigvee_{0 \leq i < j \leq n} D_i \wedge D_j.$$

Then \mathbb{X} is an internal groupoid if and only if $H_n(\mathbb{X}) = \Delta_{X_n}$ for all n. For $n \ge 2$, $d_i(H_{n+1}(\mathbb{X})) = H_n(\mathbb{X})$, thus the d_i induce maps $\frac{X_{n+1}}{H_{n+1}(\mathbb{X})} \to \frac{X_n}{H_n(\mathbb{X})}$.

(日) (四) (日) (日) (日)

In order to factor $d_1: X_2 \to X_1$ through the quotient $X_2 \to \frac{X_2}{H_2(\mathbb{X})}$, we would need to check that $D_0 \wedge D_2 \leq D_1$, or equivalently $d_1(D_0 \wedge D_2) = \Delta$. So we define $H_1(\mathbb{X}) = d_1(D_0 \wedge D_2)$.

In order to factor $d_1: X_2 \to X_1$ through the quotient $X_2 \to \frac{X_2}{H_2(\mathbb{X})}$, we would need to check that $D_0 \wedge D_2 \leq D_1$, or equivalently $d_1(D_0 \wedge D_2) = \Delta$. So we define $H_1(\mathbb{X}) = d_1(D_0 \wedge D_2)$. In fact

$$d_1(D_0 \wedge D_2) = d_0(D_1 \wedge D_2) = d_2(D_0 \wedge D_1).$$

(日) (四) (日) (日) (日)

Theorem (D.)

Let C be an exact Mal'tsev category and $\mathbb{X} \in \text{Simp}(C)$, and let us define $\overline{X_n} = X_n/H_n(\mathbb{X})$. Then

- $\overline{\mathbb{X}}$ can be endowed with the structure of a simplicial object;
- $\overline{\mathbb{X}}$ is a groupoid;
- any morphism $f : \mathbb{X} \to \mathbb{Y}$ where \mathbb{Y} is a groupoid factorizes through $\overline{\mathbb{X}}$.

Corollary (D.)

Grpd(C) is a Birkhoff subcategory of **Simp**(C); in particular, if F is the class of regular epimorphisms in **Simp**(C), then $\Gamma = ($ **Simp**(C), **Grpd**(C), I, UF) is an admissible Galois structure.

イロト イポト イヨト イヨト 二日

A fibration $f : \mathbb{X} \to \mathbb{Y}$ is a trivial covering if and only if $F_n \wedge H_n(\mathbb{X}) = \Delta_{X_n}$ for all $n \ge 1$.

Theorem (D.)

A fibration is a covering if and only if

$$d_1(F_2 \wedge D_0 \wedge D_2) = \Delta_{X_1}$$

and

$$\bigvee_{0\leq i< j\leq n} (F_n \wedge D_i \wedge D_j) = \Delta_{X_n}$$

for all $n \geq 2$.

< □ > < 同 > < 回 > < 回 > < 回 >

Factorizations

Let $\Gamma = (\mathcal{A}, \mathcal{X}, I, U, \mathcal{F})$ be an admissible Galois structure, with \mathcal{F} the class of all morphisms.

Then any arrow f has a reflection in the subcategory of trivial coverings, given by

Then I(e) is an isomorphism. This gives a *factorization system* $(\mathcal{E}, \mathcal{M})$. Trivial coverings are pullback-stable, but *I*-invertible arrows need not be stable.

Image: A match a ma

Trivial coverings are pullback-stable, but *I*-invertible arrows need not be stable.

To make the factorization system stable, we must

- stabilize \mathcal{E} , by replacing it with the class \mathcal{E}' of morphisms stably in \mathcal{E} .
- localize \mathcal{M} , by replacing it with the class \mathcal{M}^* of coverings.

The resulting classes are still orthogonal, but it is not always true that every fibration has a factorization.

A B A A B A

Trivial coverings are pullback-stable, but *I*-invertible arrows need not be stable.

To make the factorization system stable, we must

- stabilize \mathcal{E} , by replacing it with the class \mathcal{E}' of morphisms stably in \mathcal{E} .
- localize \mathcal{M} , by replacing it with the class \mathcal{M}^* of coverings.

The resulting classes are still orthogonal, but it is not always true that every fibration has a factorization.

When this happens, we say that Γ has an associated monotone-light factorization system ($\mathcal{E}', \mathcal{M}^*$).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Relative factorization systems

But what if \mathcal{F} is not the class of all morphisms?

- E

Relative factorization systems

But what if \mathcal{F} is not the class of all morphisms? Not every morphism has a factorization, but every fibration does. Moreover the orthogonality is preserved, and $\mathcal{M} \subset \mathcal{F}$.

Relative factorization systems

But what if \mathcal{F} is not the class of all morphisms? Not every morphism has a factorization, but every fibration does. Moreover the orthogonality is preserved, and $\mathcal{M} \subset \mathcal{F}$. This is a *relative* factorization system for \mathcal{F} in the sense of Chikhladze [4]. Stabilization/localization can be generalized the relative case, to give a stable *relative* factorization system ($\mathcal{E}', \mathcal{M}^*$) where

- *E'* is the class of morphisms where every pullback along a morphism in *F* is in *E*;
- \mathcal{M}^* is again the class of locally trivial covering.

Proposition (Carboni, Janelidze, Kelly, Paré / Chikhladze)

If for every B there exists an \mathcal{F} -effective descent morphism $p: E \to B$ where E has the property that the factorization of every $g: C \to E$ in \mathcal{F} is stable under pullbacks along maps in \mathcal{F} , then $(\mathcal{E}', \mathcal{M}^*)$ is a relative factorization system.

Such an object *E* is called a *stabilizing object*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Example (Chikhladze [4])

The Galois structure of Brown and Janelidze, given by the nerve functor between groupoids and Kan complexes, admits a relative monotone-light factorization system for Kan fibrations.

(4) (日本)

Example (Chikhladze [4])

The Galois structure of Brown and Janelidze, given by the nerve functor between groupoids and Kan complexes, admits a relative monotone-light factorization system for Kan fibrations.

Example (Cigoli, Everaert, Gran [5])

When C is exact Mal'tsev, the Galois structure (**Grpd**(C), C, π_0 , D, F) admits a relative monotone-light factorization system for regular epimorphisms.

Coverings are discrete fibrations and \mathcal{E}' is the class of final functors ; so this monotone-light relative factorization system is the restriction of the comprehensive factorization system to regular epimorphism.

Both proofs rely on showing that $Dec(\mathbb{X})$ is a stabilizing object.

< □ > < 同 > < 回 > < 回 > < 回 >

Definition

A simplicial object \mathbb{X} is called exact if the canonical maps $\kappa_n : X_n \to K_n(\mathbb{X})$ to the simplicial kernels of \mathbb{X} are all regular epimorphisms.

Example

For a simplicial object $\mathbb{X} = (X_n)_{n \geq 0}$, let $Dec(\mathbb{X})$ be the simplicial object $(X_{n+1})_{n \geq 0}$, with the same face and degeneracies except the $d_{n+2} : X_{n+2} \to X_{n+1}$ and $s_{n+1} : X_{n+1} \to X_{n+2}$. Then $Dec(\mathbb{X})$ is an exact simplicial object.

イロト 不得 トイヨト イヨト 二日

Theorem (D.)

In an exact Mal'tsev category C, every exact simplicial object is a stabilizing object. In particular, since for every object X we have a regular epimorphism $Dec(X) \to X$ defined by the $d_{n+1} : X_{n+1} \to X_n$, the Galois structure $\Gamma = (Simp(C), Grpd(C), I, U, \mathcal{F})$ admits a relative monotone-light factorization system.

イロト イポト イヨト イヨト 二日

R. Brown and G. Janelidze.

Galois theory of second order covering maps of simplicial sets. *J. Pure Appl. Algebra*, 135(1):23–31, 1999.

- A. Carboni, G. M. Kelly, and M. C. Pedicchio. Some remarks on Maltsev and Goursat categories. *Applied Categorical Structures*, 1:385–421, 1993.
- A. Carboni, J. Lambek, and M. C. Pedicchio.
 Diagram chasing in Mal'cev categories.
 J. Pure Appl. Algebra, 69(3):271–284, 1991.

D. Chikhladze.

Monotone-light factorization for Kan fibrations of simplicial sets with respect to groupoids.

Homology Homotopy Appl., 6(1):501-505, 2004.

• • = • • = •

🔋 A. S. Cigoli, T. Everaert, and M. Gran.

A relative monotone-light factorization system for internal groupoids. *Appl. Categ. Structures*, 26(5):931–942, 2018.

T. Everaert, J. Goedecke, and T. Van der Linden.
 Resolutions, higher extensions and the relative Mal'tsev axiom.
 J. Algebra, 371:132–155, 2012.

 T. Everaert and T. Van der Linden.
 Baer invariants in semi-abelian categories. II. Homology. *Theory Appl. Categ.*, 12:No. 4, 195–224, 2004.

P. Gabriel and M. Zisman.
 Calculus of fractions and homotopy theory.
 Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35.
 Springer-Verlag New York, Inc., New York, 1967.

< □ > < □ > < □ > < □ > < □ > < □ >

M. Gran.

Central extensions and internal groupoids in Maltsev categories. *J. Pure Appl. Algebra*, 155(2-3):139–166, 2001.

G. Janelidze and G. M. Kelly.

Galois theory and a general notion of central extension.

J. Pure Appl. Algebra, 97(2):135 – 161, 1994.

.