The Existential Completion

Davide Trotta

University of Trento

9-7-2019
Introduction

- Let \mathcal{C} be a category with finite products. A primary doctrine is a functor $P : \mathcal{C}^{\text{op}} \to \text{InfSL}$ from the opposite of the category \mathcal{C} to the category of inf-semilattices;
Let C be a category with finite products. A primary doctrine is a functor $P : C^{op} \to \text{InfSL}$ from the opposite of the category C to the category of inf-semilattices;

a primary doctrine $P : C^{op} \to \text{InfSL}$ is elementary if for every A and C in C, the functor

$$P_{id_C \times \Delta_A} : P(C \times A \times A) \to P(C \times A)$$

has a left adjoint $\exists_{id_C \times \Delta_A}$ and these satisfy Frobenius reciprocity;
Let C be a category with finite products. A primary doctrine is a functor $P : C^{\text{op}} \to \text{InfSL}$ from the opposite of the category C to the category of inf-semilattices;

a primary doctrine $P : C^{\text{op}} \to \text{InfSL}$ is elementary if for every A and C in C, the functor

$$P_{id_C \times \Delta A} : P(C \times A \times A) \to P(C \times A)$$

has a left adjoint $\exists_{id_C \times \Delta A}$ and these satisfy Frobenius reciprocity;

a primary doctrine $P : C^{\text{op}} \to \text{InfSL}$ is existential if, for every A_1, A_2 in C, for any projection $pr_i : A_1 \times A_2 \to A_i$, $i = 1, 2$, the functor

$$P_{pr_i} : P(A_i) \to P(A_1 \times A_2)$$

has a left adjoint \exists_{pr_i}, and these satisfy Beck-Chevalley condition and Frobenius reciprocity.
Introduction

The category of primary doctrines PD is a 2-category, where:

- A 1-cell is a pair \((F, b)\), where \(F : C \rightarrow D\) is a functor preserving products, and \(b : P \rightarrow R \circ F\) is a natural transformation.

- A 2-cell is a natural transformation \(\theta : F \rightarrow G\) such that for every \(A \in C\) and every \(\alpha \in PA\), we have

 \[
 b_A(\alpha) \leq R \theta_A(c_A(\alpha)).
 \]
Introduction

The category of primary doctrines \(\text{PD} \) is a 2-category, where:

- a 1-cell is a pair \((F, b) \)

\[
\begin{array}{c}
\text{C}^{\text{op}} \\
\downarrow \quad P \\
F^{\text{op}} \\
\downarrow b \\
\text{D}^{\text{op}} \\
\downarrow R \\
\text{InfSL}
\end{array}
\]

such that \(F: C \to D \) is a functor preserving products, and \(b: P \to R \circ F^{\text{op}} \) is a natural transformation.
Introduction

The category of primary doctrines \textbf{PD} is a 2-category, where:

- a 1-cell is a pair (F, b)

\[
\begin{array}{ccc}
C^{\text{op}} & \xrightarrow{P} & \text{InfSL} \\
\downarrow & & \downarrow \\
F^{\text{op}} & \xrightarrow{b} & D^{\text{op}} \\
\downarrow & & \downarrow R \\
D^{\text{op}} & \xrightarrow{R} & \\
\end{array}
\]

such that $F : C \rightarrow D$ is a functor preserving products, and $b : P \rightarrow R \circ F^{\text{op}}$ is a natural transformation.

- a 2-cell is a natural transformation $\theta : F \rightarrow G$ such that for every A in C and every α in PA, we have

\[
b_A(\alpha) \leq R_{\theta_A}(c_A(\alpha)).
\]
Examples

Subobjects. \mathcal{C} has finite limits.

\[
\text{Sub}_{\mathcal{C}} : \mathcal{C}^{\text{op}} \longrightarrow \text{InfSL}.
\]

The functor assigns to an object A in \mathcal{C} the poset $\text{Sub}_{\mathcal{C}}(A)$ of subobjects of A in \mathcal{C} and, for an arrow $B \xrightarrow{f} A$ the morphism $\text{Sub}_{\mathcal{C}}(f) : \text{Sub}_{\mathcal{C}}(A) \longrightarrow \text{Sub}_{\mathcal{C}}(B)$ is given by pulling a subobject back along f.

Weak Subobjects. \mathcal{D} has finite products and weak pullbacks.

$\Psi_{\mathcal{D}} : \mathcal{D}^{\text{op}} \longrightarrow \text{InfSL}.$

$\Psi_{\mathcal{D}}(A)$ is the poset reflection of the slice category \mathcal{D}/A, and for an arrow $B \xrightarrow{f} A$, the morphism $\Psi_{\mathcal{D}}(f) : \Psi_{\mathcal{D}}(A) \longrightarrow \Psi_{\mathcal{D}}(B)$ is given by a weak pullback of an arrow $X \xrightarrow{g} A$ with f.

Examples

Subobjects. \(\mathcal{C} \) has finite limits.

\[
Sub_\mathcal{C} : \mathcal{C}^{\text{op}} \longrightarrow \text{InfSL}.
\]

The functor assigns to an object \(A \) in \(\mathcal{C} \) the poset \(Sub_\mathcal{C}(A) \) of subobjects of \(A \) in \(\mathcal{C} \) and, for an arrow \(B \xrightarrow{f} A \) the morphism \(Sub_\mathcal{C}(f) : Sub_\mathcal{C}(A) \longrightarrow Sub_\mathcal{C}(B) \) is given by pulling a subobject back along \(f \).

Weak Subobjects. \(\mathcal{D} \) has finite products and weak pullbacks.

\[
\Psi_\mathcal{D} : \mathcal{D}^{\text{op}} \longrightarrow \text{InfSL}.
\]

\(\Psi_\mathcal{D}(A) \) is the poset reflection of the slice category \(\mathcal{D}/A \), and for an arrow \(B \xrightarrow{f} A \), the morphism \(\Psi_\mathcal{D}(f) : \Psi_\mathcal{D}(A) \longrightarrow \Psi_\mathcal{D}(B) \) is given by a weak pullback of an arrow \(X \xrightarrow{g} A \) with \(f \).
The Existential Completion

Let \(P: \mathcal{C}^{\text{op}} \longrightarrow \text{InfSL} \) be a primary doctrine and let \(\mathcal{A} \subseteq \mathcal{C}_1 \) be the class of projections. For every object \(A \) of \(\mathcal{C} \) consider we define \(P^e(A) \) the following poset:
Let $P : C^{\text{op}} \to \text{InfSL}$ be a primary doctrine and let $A \subset C_1$ be the class of projections. For every object A of C consider we define $P^e(A)$ the following poset:

- the objects are pairs $(B \xrightarrow{g \in A} A, \alpha \in PB)$;
The Existential Completion

Let $P : C^{op} \rightarrow \text{InfSL}$ be a primary doctrine and let $A \subset C_1$ be the class of projections. For every object A of C consider we define $P^e(A)$ the following poset:

- the objects are pairs $(B \xrightarrow{g\in A} A, \alpha \in PB)$;
- $(B \xrightarrow{h\in A} A, \alpha \in PB) \leq (D \xrightarrow{f\in A} A, \gamma \in PD)$ if there exists $w : B \rightarrow D$ such that

\[
\begin{array}{ccc}
B & \xrightarrow{w} & D \\
\downarrow{h} & & \downarrow{f} \\
A & \xrightarrow{} & A \\
\end{array}
\]

commutes and $\alpha \leq P_w(\gamma)$.
The Existential Completion

Given a morphism $f : A \to B$ in C, we define

$$P_f^e(\begin{array}{c} C \xrightarrow{g \in A} B, \beta \in PC \end{array}) := \begin{array}{c} D \xrightarrow{g^*f \in A} A, \quad P_f^*g(\beta) \in PD \end{array}$$

where

\[
\begin{array}{ccc}
D & \xrightarrow{g^*f} & A \\
\downarrow & & \downarrow \\
C & \xrightarrow{f^*g} & B
\end{array}
\]

is a pullback.
The Existential Completion

Theorem

Given a morphism $f : A \to B$ of \mathcal{A}, let

$$\exists^e_f (C \xrightarrow{h \in A} A, \alpha \in PC) := (C \xrightarrow{fh \in A} B, \alpha \in PC)$$

*when $(C \xrightarrow{h \in A} A, \alpha \in PC)$ is in $P^e(A)$. Then \exists^e_f is left adjoint to P^e_f.***
The Existential Completion

Theorem

Given a morphism $f : A \to B$ of \mathcal{A}, let

$$\exists^e_f (C \xrightarrow{h \in \mathcal{A}} A, \alpha \in PC) := (C \xrightarrow{fh \in \mathcal{A}} B, \alpha \in PC)$$

when $(C \xrightarrow{h \in \mathcal{A}} A, \alpha \in PC)$ is in $P^e(A)$. Then \exists^e_f is left adjoint to P^e_f.

Theorem

Let $P : \mathcal{C}^{op} \to \text{InfSL}$ be a primary doctrine, then the doctrine $P^e : \mathcal{C}^{op} \to \text{InfSL}$ is existential.
The Existential Completion

Theorem
Consider the category $\mathbf{PD}(P, R)$. We define

$$E_{P, R} : \mathbf{PD}(P, R) \to \mathbf{ED}(P^e, R^e)$$

as follow:

\blacktriangleright for every 1-cell (F, b), $E_{P, R}(F, b) := (F, b^e)$, where $b^e_A : P^eA \to R^eFA$ sends an object $(C \xrightarrow{g} A, \alpha)$ in the object $(FC \xrightarrow{Fg} FA, b_C(\alpha))$;

\blacktriangleright for every 2-cell $\theta : (F, b) \to (G, c)$, $E_{P, R}\theta$ is essentially the same.

With the previous assignment E is a 2-functor and it is 2-adjoint to the forgetful functor.
The Existential Completion

Theorem

- The 2-monad $T_e: \text{PD} \to \text{PD}$ is lax-idempotent;
The Existential Completion

Theorem

- The 2-monad \(T_e : \mathsf{PD} \rightarrow \mathsf{PD} \) is lax-idempotent;
- \(T_e \text{-Alg} \equiv \mathsf{ED} \).
Theorem

For every elementary doctrine \(P : C^{\text{op}} \to \text{InfSL} \), the doctrine \(P^e : C^{\text{op}} \to \text{InfSL} \) is elementary and existential.
Exact Completion

Theorem
For every elementary doctrine \(P : C^{op} \to \text{InfSL} \), the doctrine \(P^e : C^{op} \to \text{InfSL} \) is elementary and existential.

Theorem
The 2-functor \(\text{Xct} \to \text{PED} \) that takes an exact category to the elementary doctrine of its subobjects has a left biadjoint which associates the exact category \(T_{P^e} \) to an elementary doctrine \(P : C^{op} \to \text{InfSL} \).
Thank you!