Davide Trotta

University of Trento

9-7-2019

(ロ)、(型)、(E)、(E)、 E) の(()

► Let C be a category with finite products. A primary doctrine is a functor P: C^{op} → InfSL from the opposite of the category C to the category of inf-semilattices;

- ► Let C be a category with finite products. A primary doctrine is a functor P: C^{op} → InfSL from the opposite of the category C to the category of inf-semilattices;
- ► a primary doctrine P: C^{op} → InfSL is elementary if for every A and C in C, the functor

$$P_{id_C \times \Delta_A} \colon P(C \times A \times A) \longrightarrow P(C \times A)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

has a left adjoint $\exists_{id_C \times \Delta_A}$ and these satisfy Frobenius reciprocity;

- ► Let C be a category with finite products. A primary doctrine is a functor P: C^{op} → InfSL from the opposite of the category C to the category of inf-semilattices;
- ► a primary doctrine P: C^{op} → InfSL is elementary if for every A and C in C, the functor

$$P_{id_C \times \Delta_A} \colon P(C \times A \times A) \longrightarrow P(C \times A)$$

has a left adjoint $\exists_{id_C \times \Delta_A}$ and these satisfy Frobenius reciprocity;

► a primary doctrine P: C^{op} → InfSL is existential if, for every A₁, A₂ in C, for any projection pr_i: A₁ × A₂ → A_i, i = 1, 2, the functor

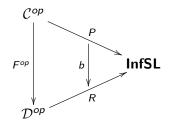
$$P_{pr_i}: P(A_i) \longrightarrow P(A_1 \times A_2)$$

has a left adjoint \exists_{pr_i} , and these satisfy Beck-Chevalley condition and Frobenius reciprocity.

The category of primary doctrines **PD** is a 2-category, where:

The category of primary doctrines PD is a 2-category, where:

▶ a 1-cell is a pair (F, b)

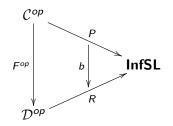


such that $F: \mathcal{C} \longrightarrow \mathcal{D}$ is a functor preserving products, and $b: P \longrightarrow R \circ F^{op}$ is a natural transformation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The category of primary doctrines PD is a 2-category, where:

• a 1-cell is a pair (F, b)



such that $F: \mathcal{C} \longrightarrow \mathcal{D}$ is a functor preserving products, and $b: P \longrightarrow R \circ F^{op}$ is a natural transformation.

▶ a 2-cell is a natural transformation $\theta: F \longrightarrow G$ such that for every A in C and every α in PA, we have

$$b_A(\alpha) \leq R_{\theta_A}(c_A(\alpha)).$$

Examples

Subobjects. C has finite limits.

 $Sub_{\mathcal{C}} \colon \mathcal{C}^{op} \longrightarrow \mathsf{InfSL}$.

The functor assigns to an object A in C the poset $Sub_{\mathcal{C}}(A)$ of subobjects of A in C and, for an arrow $B \xrightarrow{f} A$ the morphism $Sub_{\mathcal{C}}(f): Sub_{\mathcal{C}}(A) \longrightarrow Sub_{\mathcal{C}}(B)$ is given by pulling a subobject back along f.

Examples

Subobjects. C has finite limits.

 $Sub_{\mathcal{C}} : \mathcal{C}^{op} \longrightarrow \mathsf{InfSL}$.

The functor assigns to an object A in C the poset $Sub_{\mathcal{C}}(A)$ of subobjects of A in C and, for an arrow $B \xrightarrow{f} A$ the morphism $Sub_{\mathcal{C}}(f): Sub_{\mathcal{C}}(A) \longrightarrow Sub_{\mathcal{C}}(B)$ is given by pulling a subobject back along f.

Weak Subobjects. D has finite products and weak pullbacks.

$$\Psi_{\mathcal{D}} \colon \mathcal{D}^{op} \longrightarrow \mathsf{InfSL}$$
 .

 $\Psi_{\mathcal{D}}(A)$ is the poset reflection of the slice category \mathcal{D}/A , and for an arrow $B \xrightarrow{f} A$, the morphism $\Psi_{\mathcal{D}}(f) \colon \Psi_{\mathcal{D}}(A) \longrightarrow \Psi_{\mathcal{D}}(B)$ is given by a weak pullback of an arrow $X \xrightarrow{g} A$ with f.

Let $P: \mathcal{C}^{op} \longrightarrow$ **InfSL** be a primary doctrine and let $\mathcal{A} \subset \mathcal{C}_1$ be the class of projections. For every object A of \mathcal{C} consider we define $P^e(A)$ the following poset:

Let $P: \mathcal{C}^{op} \longrightarrow \text{InfSL}$ be a primary doctrine and let $\mathcal{A} \subset \mathcal{C}_1$ be the class of projections. For every object A of \mathcal{C} consider we define $P^e(A)$ the following poset:

• the objects are pairs ($B \xrightarrow{g \in A} A$, $\alpha \in PB$);

Let $P: \mathcal{C}^{op} \longrightarrow$ **InfSL** be a primary doctrine and let $\mathcal{A} \subset \mathcal{C}_1$ be the class of projections. For every object A of \mathcal{C} consider we define $P^e(A)$ the following poset:

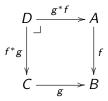
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

commutes and $\alpha \leq P_w(\gamma)$.

Given a morphism $f: A \longrightarrow B$ in C, we define

$$P_{f}^{e}(C \xrightarrow{g \in \mathcal{A}} B, \beta \in PC) := (D \xrightarrow{g^{*} f \in \mathcal{A}} A, P_{f^{*}g}(\beta) \in PD)$$

where



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

is a pullback.

Theorem Given a morphism $f: A \longrightarrow B$ of A, let

$$\exists_{f}^{e}(C \xrightarrow{h \in \mathcal{A}} A, \alpha \in PC) := (C \xrightarrow{fh \in \mathcal{A}} B, \alpha \in PC)$$

when $(C \xrightarrow{h \in A} A, \alpha \in PC)$ is in $P^e(A)$. Then \exists_f^e is left adjoint to P_f^e .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem Given a morphism $f: A \longrightarrow B$ of A, let

$$\exists_{f}^{e}(C \xrightarrow{h \in \mathcal{A}} A, \alpha \in PC) := (C \xrightarrow{fh \in \mathcal{A}} B, \alpha \in PC)$$

when $(C \xrightarrow{h \in A} A, \alpha \in PC)$ is in $P^e(A)$. Then \exists_f^e is left adjoint to P_f^e .

Theorem

Let $P: \mathcal{C}^{op} \longrightarrow \mathbf{InfSL}$ be a primary doctrine, then the doctrine $P^e: \mathcal{C}^{op} \longrightarrow \mathbf{InfSL}$ is existential.

Theorem Consider the category PD(P, R). We define

$$E_{P,R}: \mathbf{PD}(P,R) \longrightarrow \mathbf{ED}(P^e,R^e)$$

as follow:

► for every 1-cell (F, b),
$$E_{P,R}(F, b) := (F, b^e)$$
, where
 $b_A^e : P^e A \longrightarrow R^e FA$ sends an object ($C \xrightarrow{g} A, \alpha$) in the
object ($FC \xrightarrow{Fg} FA, b_C(\alpha)$);

For every 2-cell θ: (F, b) ⇒ (G, c), E_{P,R}θ is essentially the same.

With the previous assignment E is a 2-functor and it is 2-adjoint to the forgetful functor.

Theorem

• The 2-monad $T_e: PD \longrightarrow PD$ is lax-idempotent;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem

▶ The 2-monad $T_e: PD \longrightarrow PD$ is lax-idempotent;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▶ T_e -Alg \equiv ED .

Exact Completion

Theorem

For every elementary doctrine $P: \mathcal{C}^{op} \longrightarrow \mathsf{InfSL}$, the doctrine $P^e: \mathcal{C}^{op} \longrightarrow \mathsf{InfSL}$ is elementary and existential.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Exact Completion

Theorem

For every elementary doctrine $P: \mathcal{C}^{op} \longrightarrow \mathbf{InfSL}$, the doctrine $P^e: \mathcal{C}^{op} \longrightarrow \mathbf{InfSL}$ is elementary and existential.

Theorem

The 2-functor $\mathbf{Xct} \to \mathbf{PED}$ that takes an exact category to the elementary doctrine of its subobjects has a left biadjoint which associates the exact category \mathcal{T}_{P^e} to an elementary doctrine $P: \mathcal{C}^{op} \longrightarrow \mathbf{InfSL}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Thank you!