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Levels

Let E be a topos.

Definition

A level l (of E) is a string of adjoints

E
a l∗

��
a

El

l!

OO

l∗

OO

with fully faithful l!, l∗ : El → E .

Equivalently, a level is an essential subtopos of E .
(l∗ : El → E is the full subcategory of l-sheaves.)
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Levels and ‘dimensions’

“The basic idea is simply to identify dimensions with levels and
then try to determine what the general dimensions are in particular
examples. More precisely, a space may be said to have (less than
or equal to) the dimension grasped by a given level if it belongs to
the negative (left adjoint inclusion) incarnation of that level.”

Lawvere’s Some thoughts on the future of category theory
LNM 1488, 1991.

Let l! a l∗ a l∗ be a level of E .

For X in E , the counit l!(l
∗X )→ X is the l-skeleton of X .

So, the object X is said to be l-skeletal if its l-skeleton is an iso and
l! : El → E is the full subcat of l-skeletal objects

Intuition: X is l-skeletal iff dimX ≤ l .

Also: l has monic skeleta if the l-skeleton of every object is monic.
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Some simple examples

Proposition

If C is a small category then restriction along a full inclusion
B → C is the inverse image of a level B̂ → Ĉ.

1. (Simplicial sets) Every truncation ∆n → ∆ induces a level

∆̂n → ∆̂. (Every level of ∆̂ is of this form.)

2. (The classifier of (non-trivial) Boolean algebras.) Let F be the
category of nonempty finite sets and let Fn → F be the
obvious truncation.

3. (Cubical? sets/The classifier of strictly bipointed objects)
[A,Set] where A is the category of finite strictly bipointed
sets. Truncations.

4. Other.

Remark: All the levels indicated above have monic skeleta.



4/19

Some simple examples

Proposition

If C is a small category then restriction along a full inclusion
B → C is the inverse image of a level B̂ → Ĉ.

1. (Simplicial sets) Every truncation ∆n → ∆ induces a level

∆̂n → ∆̂. (Every level of ∆̂ is of this form.)

2. (The classifier of (non-trivial) Boolean algebras.) Let F be the
category of nonempty finite sets and let Fn → F be the
obvious truncation.

3. (Cubical? sets/The classifier of strictly bipointed objects)
[A,Set] where A is the category of finite strictly bipointed
sets. Truncations.

4. Other.

Remark: All the levels indicated above have monic skeleta.



4/19

Some simple examples

Proposition

If C is a small category then restriction along a full inclusion
B → C is the inverse image of a level B̂ → Ĉ.
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Aufhebung

The levels of E may be partially ordered as subtoposes.
That is, m is above l if and only if l∗ factors through m∗
(I.e. l-sheaves are m-sheaves)

A level m is way above level l if both subcategories l!, l∗ : El → E
factor through m∗ : Em → E .

Em
m∗ // E

El

OO
l!

??

l∗

??

(I.e. both l-sheaves and l-skeletal objects are m-sheaves.)

Definition

The Aufhebung of level l is the least level of E that is way above l .
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Pre-cohesive geometric morphisms and level 0

Let p : E → S be a pre-cohesive geometric morphism, so that

E
p!
��
aa a p∗

��
a

S

p∗

OO

p!

OO

p∗, p! : S → E are fully faithful, p! preserves finite products and
the counit βX : p∗(p∗X )→ X is monic. Intuition:

pieces a discrete a points a codiscrete

Examples: ∆̂→ Set, its truncations ∆̂n → Set, the classifier of
BAs and its truncations, Cubical Sets, SDG, AG, etc.

The level p∗ a p∗ a p! : S → E will be called Level 0.
Notice that level 0 has monic skeleta (monic β).
0-skeletal objects will be called discrete.
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Level 1

Let p : E → S be pre-cohesive with its associated level 0.

Definition

Level 1 (of p) is the Aufhebung of level 0.

That is, the least level of E that is way above level 0.

That is, the least level l of E such that discrete and codiscrete
spaces are l-sheaves.
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Lawvere’s characterization of Level 1

“

Because of the special feature of dimension zero of having a
components functor to it [...], the definition of dimension one is
equivalent to the quite plausible condition: the smallest dimension
such that the set of components of an arbitrary space is the same
as the set of components of the skeleton at that dimension of the
space” [L’91]

Let p : E → S be pre-cohesive with its associated level 0.

Theorem (Lawvere)

For any level l of E above level 0, l is way above 0 if and only if,
for every X in E , p!(l!(l∗X ))→ p!X is an iso
(where l!(l

∗X )→ X is the l-skeleton of X).

“more pictorially: if two points of any space can be connected by
anything, then they can be connected by a curve.”
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Application: 1-dense subobjects with discrete domain

Let A in S and v : p∗A→ Y monic in E .

Lemma

If v is 1-dense then v is split.

Proof.

By L’s Thm. p!v : p!(p
∗A)→ p!Y is an iso. Take the composite

Y
σ // p∗(p!Y )

p∗(p!v)
−1

// p∗(p!(p
∗A))

p∗τ // p∗A

where σ and τ are the unit and counit of p! a p∗.

An object X in E is called (0-)separated if it is separated for the
subtopos p∗ a p! : S → E . (I.e. a subobject of a codiscrete object.)

Lemma

If v is 1-dense and Y is separated then v is an iso.
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Characterizations of skeletal objects

Let m be the Aufhebung of level l .
Can we characterize m-skeletal objects in terms of l?

Case l = −∞ (so m = 0)
(ct2018) If p : E → S is pre-cohesive, l.c. and S is Boolean then X
is 0-skeletal iff X is decidable.

Case l = 0 (so m = 1)
???
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Bounded depth formulas

Consider the bounded depth formula

(BD1) x1 ∨ (x1 ⇒ (x0 ∨ ¬x0))

(Bezhanishvili, Marra, McNeill, Pedrini, Tarski’s theorem on
intuitionistic logic, for polyhedra, APAL 2018)

Notice that, assuming coHeyting operations one has

> ≤ x1 ∨ (x1 ⇒ (x0 ∨ ¬x0)) iff >/x1 ≤ x1 ⇒ (x0 ∨ ¬x0)

iff (>/x1) ∧ x1 ≤ (x0 ∨ ¬x0)

iff ∂x1 ≤ (x0 ∨ ¬x0)
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Discrete boundaries

Let p : E → S be pre-cohesive with associated level 0.
Recall:

every X has monic 0-skeleton βX : p∗(p∗X )→ X .
So, for any subobject u : U → X we may build the implication
u ⇒ βX : (U ⇒ βX )→ X .

Definition

A subobject u : U → X has discrete boundary if
>X ≤ u ∨ (u ⇒ βX ) as subobjects of X . (Intuition: ∂u ≤ βX .)

p∗A = U ∩ (U ⇒ β)

��

// U

u

��
(U ⇒ β)

u⇒β
// X

An object X in E has discrete boundaries if every subobject of X
has discrete boundary.
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The case of reflexive graphs

Consider p : ∆̂1 → Set.

Proposition (somewhat misleading but suggestive statement)
A graph is 1-skeletal iff it has discrete boundaries.

Level 1 is the whole of ∆̂1.
Every graph has discrete boundaries.

Naive question: is it true in general that

1-skeletal iff discrete boundaries ?

No. See drawing.

Does anything survive the passage to the elementary setting?
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Curves

Let p : E → S be pre-cohesive with associated level 0.

Definition

An object X in E is a curve if there is an epic Y → X such that Y
is separated and has discrete boundaries.

(Hence, curves have discrete boundaries.)

Consider Level 1 of E .
(The least level s.t. codiscrete and discrete objects are sheaves.)
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1-dense subobjects of sep. spaces with discrete boundaries

Lemma

Let u : U → Y be a 1-dense mono.

If Y is separated and has
discrete boundaries then u is an isomorphism.

Proof.

p∗A

u′

��

// U

u

��
U ⇒ β

u⇒β
// Y

p.b. for some A in S so u′ is an 1-dense subobject of (U ⇒ β).
(U ⇒ β) is separated (it is a subobject of Y ).
So u′ is an iso by the previous Lemma.
As Y has discrete boundaries (square is a p.o.) u is an iso.
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So u′ is an iso by the previous Lemma.
As Y has discrete boundaries (square is a p.o.) u is an iso.
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The elementary result: ‘curves are 1-dimensional’

Definition (Recall)

An object X in E is a curve if there is an epic Y → X such that Y
is separated and has discrete boundaries.

Proposition

If level 1 of E has monic skeleta then curves 1-skeletal.

Proof.

The previous Lemma implies that: if Y is separated and has
discrete boundaries then the 1-skeleton of Y is epic.

‘Proposition’

In the examples, an object is 1-skeletal if and only if it is a curve.
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The case of presheaf toposes

Let C be a small category with terminal object and such that every
object has a point so that p : Ĉ → Set is pre-cohesive.

Lemma

For any object C in C, the following are equivalent:

1. The representable C( ,C ) in Ĉ has discrete boundaries.

2. For every f : B → C in C, f is constant or f has a section.

Such objects of C will be called edge types.
Let Ce → C be the full subcategory of edge-types.

Proposition

If points in C separate maps with edge type codomain and every
object is edge-wise connected then Ĉe → Ĉ is level 1. If, moreover,
this level has monic skeleta then 1-skeletal objects coincide with
curves.
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this level has monic skeleta then 1-skeletal objects coincide with
curves.



17/19

The case of presheaf toposes

Let C be a small category with terminal object and such that every
object has a point so that p : Ĉ → Set is pre-cohesive.
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