A framework for formal higher category theory

- Virtual Double Categories
- Modules
- Globular Multicategories
- Higher Modules
- Weakening
Formal Category Theory

- Abstract setting for studying “category-like” structures
- Key notions of category theory can be defined once and for all
Virtual Double Categories

A virtual double category consists of a collection of:

- **objects** or 0-types

 \[A : 0 \text{-Type} \]

- **0-terms**

 \[x : A \vdash fx : B \]
Virtual Double Categories

- 1-types

\[\frac{M}{A \xrightarrow{M} B} \]

\[x : A, y : B \vdash M(x, y) : 1 \text{-Type}(A, B) \]
Virtual Double Categories

1-terms

\[\begin{array}{c}
A \xrightarrow{M} B \xrightarrow{N} C \\
f \downarrow \phi \downarrow g \\
D \xrightarrow{O} E
\end{array} \]

\[m : M(x, y), \; n : N(y, z) \vdash \phi(m, n) : O(fx, gz) \]

\[\begin{array}{c}
A \xrightarrow{=} A \\
f \downarrow \psi \downarrow g \\
D \xrightarrow{O} D
\end{array} \]

\[a : A \vdash \psi(a) : O(fa, ga) \]
Terms have an associative and unital notion of composition
Example: Virtual Double Category of Categories

- 0-types are categories
 - \bullet

- 0-terms are functors
 - \bullet
 - \Downarrow
 - \bullet

- 1-types are profunctors

- 1-terms are transformations between profunctors

Example: Virtual Double Category of Spans

For any category C with pullbacks, there is a virtual double category $\text{Span}(C)$ whose:

- 0-types are objects of C
- 0-terms are arrows of C
- 1-types are spans
- 1-terms are transformations between spans.
Example: Virtual Double Category of Spans

1-terms are transformations between spans. A term

\[
\begin{array}{c}
A \xrightarrow{M} B \xrightarrow{N} C \\
\downarrow \quad \quad \quad \downarrow \\
D \quad \quad \quad O \\
\downarrow \quad \quad \quad \downarrow \\
E
\end{array}
\]

corresponds to a diagram

\[
\begin{array}{c}
A \xrightarrow{M \times B \ N} C \\
\downarrow \quad \quad \quad \downarrow \\
D \quad \quad \quad E
\end{array}
\]
Identity Types

Typically for any 0-type A, there is a 1-type

$$A \xrightarrow{\mathcal{H}_A} A$$

which can be thought of as the **Hom-type** of A. This comes with a canonical **reflexivity term**

$$a : A \vdash r_A : \mathcal{H}_A(a, a)$$
Identity Types

Composition with

\[
\begin{array}{c}
A \\ r_A \\ \mathcal{H}_A \\
A \rightarrow A
\end{array}
\]

gives a bijection between terms of the following forms:

\[
\begin{array}{c}
A \\ r_A \\ M \\
A \rightarrow A
\end{array}
\]

\[
\begin{array}{c}
A \\ r_A \\ M \\
A \rightarrow A
\end{array}
\]

This is an abstract form of the Yoneda Lemma.
Identity Types

Composition with

\[
\begin{array}{c}
A \\ \downarrow \quad r_A \\ A \\
\end{array}
\]

\[
A \xrightarrow{\mathcal{H}_A} A
\]

gives a bijection between terms of the following forms:

\[
\begin{array}{c}
A \\ \downarrow \\ B \\
\end{array}
\xrightarrow{\mathcal{H}_A}
\begin{array}{c}
A \\ \downarrow \\ C \\
\end{array}
\]

\[
\begin{array}{c}
A \\ \downarrow \\ C \\
\end{array}
\]

\[
p : \mathcal{H}_A(x, y) \vdash \phi(p) : M(x, y)
\]

\[
a : A \vdash \phi(r_a) : M(a, a)
\]

This is an abstract form of the **Yoneda Lemma**.
Identity Types

Composition with

\[
\begin{array}{ccc}
A & \xrightarrow{\mathcal{H}_A} & A \\
\downarrow r_A & & \downarrow \text{id}_M \\
A & \xrightarrow{M} & B
\end{array}
\]

gives a bijection between terms of the following forms:

\[
\begin{array}{ccc}
A & \xrightarrow{\mathcal{H}_A} & A & \xrightarrow{M} & B \\
& \downarrow f & & \downarrow g & \\
C & \xrightarrow{N} & D
\end{array}
\quad
\begin{array}{ccc}
A & \xrightarrow{M} & B \\
& \downarrow f & & \downarrow g \\
C & \xrightarrow{N} & D
\end{array}
\]

\[
p : \mathcal{H}_A(x, y), m : M(y, z) \vdash \phi(x, y, z, p, m) : N(fx, gz)
\]

\[
y : A, m : M(y, z) \vdash \phi(y, y, z, r_y, m) : N(fy, gz)
\]
Identity Types

In fact \mathcal{H}_A and r_A are characterised by such properties. We say that a virtual double category with this data has **identity types**.
Identity Types

- Let VDbl be the category of virtual double categories.
- Let $\overline{\text{VDbl}}$ be the category of virtual double categories with identity types.
- The forgetful functor $U : \overline{\text{VDbl}} \to \text{VDbl}$ has both a left and a right adjoint.
- The right adjoint Mod is the monoids and modules construction.
Monoids and Modules

Given any virtual double category X, there is a virtual double
Mod(X) such that:

- 0-types are monoids in X
 A monoid consists of a 0-type A, a 1-type \mathcal{H}_A together with a unit
 \[
 \begin{array}{c}
 A \xrightarrow{=} A \\
 \| \quad \downarrow r_A \quad \| \\
 A \xrightarrow{\mathcal{H}_A} A
 \end{array}
 \]
 and a multiplication
 \[
 \begin{array}{c}
 A \xrightarrow{\mathcal{H}_A} A \xrightarrow{\mathcal{H}_A} A \\
 \| \quad \downarrow m_A \quad \|
 \end{array}
 \]
satisfying unit and associativity axioms.
0-terms are monoid homomorphisms in X. A monoid homomorphism $f : A \rightarrow B$ is a term:

\[
\begin{array}{ccc}
A & \xrightarrow{\mathcal{H}_A} & A \\
\downarrow & & \downarrow \\
B & \xrightarrow{\mathcal{H}_B} & B
\end{array}
\]

compatible with the multiplication and unit terms of A and B.
1-types are modules in \(X \). A module \(M : A \to B \) consists of a 1-type \(M \) together with left and right multiplication terms

\[
\begin{align*}
A & \overset{\mathcal{H}_A}{\longrightarrow} A & A & \overset{M}{\longrightarrow} B \\
A & \overset{\lambda_M}{\downarrow} & A & \overset{\rho_M}{\downarrow} \\
A & \overset{\mathcal{H}_A}{\longrightarrow} A & A & \overset{\mathcal{H}_A}{\longrightarrow} A
\end{align*}
\]

compatible with the multiplication of \(A \) and \(B \) and each other.
1-terms are module homomorphisms in X. A typical module homomorphism f is a term

$$
\begin{array}{c}
A \xrightarrow{M} B \xrightarrow{N} C \\
\downarrow f \\
D \xrightarrow{O} E
\end{array}
$$

satisfying equivariance laws.
Equivariance Laws

For example

\[A \xrightarrow{M} B \xrightarrow{\mathcal{H}_B} B \xrightarrow{N} C \]
\[A \xrightarrow{M} B \xrightarrow{\mathcal{H}_B} B \xrightarrow{N} C \]

\[\Downarrow \rho_M \quad \Downarrow f \quad \Downarrow f \]

\[\Downarrow \lambda_N \]

\[D \xrightarrow{O} E \]

\[D \xrightarrow{O} E \]
Monoids and Modules

Many familiar types of “category-like” object are the result of applying the monoids and modules construction. For example:

- The virtual double category of categories internal to \mathcal{C} is $\text{Mod}(\text{Span}(\mathcal{C}))$.
See

- T. Leinster. Higher Operads, Higher Categories
- G.S.H. Cruttwell and Michael A. Shulman. A unified framework for generalized multicategories
Virtual double categories are T-multicategories where T is the free category monad on 1-globular sets.

- Shapes of pasting diagrams of arrows in a category are parametrised by $T1$.
- The terms of a virtual double category are arrows sending such pasting diagrams of types to types.

\[
\begin{array}{c}
X_1 \\
\downarrow \\
TX_0 \\
\downarrow \\
X_0
\end{array}
\]
Virtual double categories are \(T \)-multicategories where \(T \) is the free category monad on 1-globular sets.

- Shapes of pasting diagrams of arrows in a category are parametrised by \(T1 \).
- The terms of a virtual double category are arrows sending such pasting diagrams of types to types.

What about other \(T \)? In particular the free strict \(\omega \)-category monad on globular sets
A **globular multicategory** consists of a collection of:

- 0-types
- For each $n \geq 1$, n-types

Suppose that we have parallel $(n-1)$-types A and B. Given $M(u, v) : n$-Type(A, B) and $N(u, v) : n$-Type(A, B), we have

$$x : M(u, v), y : N(u, v) \vdash O(x, y) : (n + 1)$-Type$(M, N)$
Globular Multicategories

- n-terms sending a pasting diagram of types to an n-type.
Globular Multicategories

\[\Gamma = A \xrightarrow{M} B \xrightarrow{L} A \]

\[\Gamma(0) = [a : A, b : B, a' : A, b' : B] \]
\[\Gamma(1) = [m : M(a, b), m' : M(a, b), n : N(a, b), l : L(b, a'), m' : M(a', b'), n' : N(a', b')] \]
\[\Gamma(2) = [o : O(m, n), p : P(m, n'), q : Q(m', n')] \]

We have

\[\Gamma \vdash \phi(l, o, p, q) : O(a, b') \]
Example: Globular Multicategory of Spans

For any category C with pullbacks, there is a globular multicategory $\text{Span}(C)$ whose:

- 0-types are objects of C
- 1-types are spans
- 2-types are spans between spans (That is 2-spans.)
- 3-types are spans between 2-spans (That is 3-spans.)
Example: Globular Multicategory of Spans

For any category C with pullbacks, there is a globular multicategory $\text{Span}(C)$ whose:

- 0-types are objects of C
- 1-types are spans
- 2-types are spans between spans (or 2-spans)
- 3-types are spans between 2-spans (That is 3-spans). That is a diagram
Example: Globular Multicategories of Spans

For any category C with pullbacks, there is a globular multicategory $\text{Span}(C)$ whose:

- 0-types are sets
- 0-terms are functions
- 1-types are spans
- 2-types are spans between spans (or 2-spans)
- 3-types are spans between 2-spans (That is 3-spans).
- etc.
- Terms are transformations from a pullback of spans to a span.
Globular Multicategories associated to Type Theories

- There is a globular multicategory associated to any model of dependent type theory
- Types, contexts and terms correspond to the obvious things in the type theory.
- See Benno van den Berg and Richard Garner. Types are weak ω-groupoids
There is a globular multicategory associated to any model of dependent type theory.

Types, contexts and terms correspond to the obvious things in the type theory.

See Benno van den Berg and Richard Garner. Types are weak ω-groupoids.

When we have identity types, what structure does this globular multicategory have?
Globular Multicategories with Strict Identity Types

- For each n-type M, we require an identity $(n + 1)$ type \mathcal{H}_M with a reflexivity term $r : M \rightarrow \mathcal{H}_M$.

\[A \xrightarrow{M} B \xleftarrow{r_M} A \]

- Composition with reflexivity terms gives bijective correspondences which “add and remove identity” types.
Globular Multicategories with Strict Identity Types

- The forgetful functor

\[U : \text{GlobMult} \rightarrow \text{GlobMult} \]

has both a left and a right adjoint.

- The right adjoint Mod is the strict higher modules construction.
Higher Modules

In general, n-modules can be acted on by their k-dimensional source and target modules for any $k < n$.
Higher Modules

Given a 2-module O, depicted

there are actions whose sources are
Higher Module Homomorphisms

Given a homomorphism f with source Γ, there is an equivariance law for each place in Γ that an identity type can be added.
Higher Module Homomorphisms

Given a homomorphism f with source

there are two ways of building terms with source

using either left or right actions.
Globular multicategory of strict ω-categories

Applying this construction to $\text{Span}(\text{Set})$ we obtain a globular multicategory whose

- 0-types are strict ω-categories,
- 1-types are profunctors
- 2-types are profunctors between profunctors
- etc.
- 0-terms are strict ω-functors,
- Higher terms are transformations between profunctors
Let

\[U : \overline{T}\text{-Mult} \to \overline{T}\text{-Mult} \]

be the functor which forgets strict identity types. Let

\[F : T\text{-Mult} \to \overline{T}\text{-Mult} \]

be its left adjoint. Let \(u \) be a generic type (or term). We have

\[u \to U \text{Mod}(X) \]
\[Fu \to \text{Mod}(X) \]
\[UFu \to X \]
Weakening

- The boundary inclusions of the shapes of globular multicategory cells, induce a weak factorization system.
- A weak map of globular multicategories is a strict map from a cofibrant replacement

\[QX \rightarrow Y \]

- Thus, we define a weak n-module (or homomorphism) to be a map

\[QUFu \rightarrow X \]

- Weak 0-modules are precisely Batanin-Leinster ω-categories. See Richard Garner. A homotopy-theoretic universal property of Leinster’s operad for weak ω-categories
Composition of weak higher module homomorphisms

A pair of composable terms in a globular multicategory is the same as a diagram
Composition of weak higher module homomorphisms

Let Γ be a context in X with shape π and let $u : \Delta \to \Gamma, v : \Gamma \to A$ be a composable pair in X. Then we have a commutative diagram

\[
\begin{array}{ccc}
\pi & \xrightarrow{\Gamma} & X \\
\downarrow \pi & & \downarrow g \\
\Delta & \xrightarrow{\Gamma} & \Gamma \\
\end{array}
\]

\[
\begin{array}{ccc}
\pi & \xrightarrow{\Gamma} & X \\
\downarrow \pi & & \downarrow g \\
\Delta & \xrightarrow{\Gamma} & \Gamma \\
\end{array}
\]

Hence, we have a diagram

\[
\begin{array}{ccc}
\pi & \xrightarrow{\Gamma} & X \\
\downarrow \pi & & \downarrow g \\
\Delta & \xrightarrow{\Gamma} & \Gamma \\
\end{array}
\]

\[
\begin{array}{ccc}
\pi & \xrightarrow{\Gamma} & X \\
\downarrow \pi & & \downarrow g \\
\Delta & \xrightarrow{\Gamma} & \Gamma \\
\end{array}
\]

\[
\begin{array}{ccc}
\pi & \xrightarrow{\Gamma} & X \\
\downarrow \pi & & \downarrow g \\
\Delta & \xrightarrow{\Gamma} & \Gamma \\
\end{array}
\]
Composition of weak higher module homomorphisms

- Let w be the shape of u, v. Then $f; g$ is defined by the following commutative diagram:

\[
\begin{array}{c}
w \xrightarrow{\text{composite}} u +_\pi v \xrightarrow{f+\gamma g} X \\
\end{array}
\]

- Since UF is cocontinuous, composition of strict homomorphisms defined by the following commutative diagram:

\[
\begin{array}{c}
UFw \xrightarrow{UF(\text{composite})} UFu +_{UF\pi} UFv \xrightarrow{f+\gamma g} X \\
\end{array}
\]
Composition of weak higher module homomorphisms

- We would like a diagram

\[
\begin{array}{c}
QUF_w \
\downarrow \quad QUF_{(\text{composite})} \\
QUF_u +_{QUF_\pi} QUF_v \\f +_g \quad \downarrow \\
X \\
\end{array}
\]

but \(Q \) is not cocontinuous.

- However \(QUF_u +_{QUF_\pi} QUF_v \) is still cofibrant. This allows us to construct a well-behaved composition map

\[
\begin{array}{c}
QUF_w \\
\rightarrow \\
QUF_u +_{QUF_\pi} QUF_v \\
\end{array}
\]
Weak Modules

Applying this construction to Span(Set) we obtain notions of

- Weak ω-categories, profunctors, profunctors between profunctors, etc.
- Weak transformations between profunctors
- Composition of these terms
Weak Modules

Applying this construction to $\text{Span}(\text{Set})$ we obtain notions of

- Weak ω-categories, profunctors, profunctors between profunctors, etc.
- Weak transformations between profunctors
- Composition of these terms

We can use data to construct an ω-category of ω-categories
Future Work

- Semi-strictness results and comparison to dependent type theory.
- Develop higher category theory and higher categorical logic.
Thanks

christopher.dean@cs.ox.ac.uk