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CwF-semantics of Type Theory

Semantics of type theories based on categories with families (CwF)
(Dybjer 1996).

Martin-Löf type theory

Homotopy type theory

Homotopy type system (Voevodsky 2013) and two-level type
theory (Annenkov, Capriotti, and Kraus 2017)

Cubical type theory (Cohen et al. 2018)

Goal

To define a general notion of a “type theory” to unify the
CwF-semantics of various type theories.
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Natural Models

An alternative definition of CwF.

Definition (Awodey 2018)

A natural model consists of...

a category S (with a terminal object);

a map p : E→ U of presheaves over S

such that p is representable: for any object Γ ∈ S and element
A ∈ U(Γ), the presheaf A∗E defined by the pullback

A∗E E

よΓ U

y
p

A

is representable, where よ is the Yoneda embedding.



CwF vs Natural Model

The representable map p : E→ U models context comprehension:

よ{A} E

よΓ U
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よ{A} ∼= A∗E

Proposition (Awodey 2018)

CwFs ' natural models.
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Modeling Type Formers

Dependent function types (Π-types) are modeled by a pullback

PpE E

PpU U

λ

Ppp
y

p

Π

where Pp : [Sop, Set]→ [Sop, Set] is the functor

[Sop, Set] [Sop,Set]/E [Sop, Set]/U [Sop, Set]
(−×E) p∗ dom

and p∗ is the pushforward along p, i.e. the right adjoint of the
pullback p∗.



Summary on Natural Models

An (extended) natural model consists of...

a category S (with a terminal object);

some presheaves U,E, . . . over S;

some representable maps p : E→ U, . . .;

some maps X→ Y of presheaves over S where X and Y are
built up from U,E, . . . ,p, . . . using finite limits and
pushforwards along the representable maps p, . . ..
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Representable Map Categories

Definition

A representable map category is a category A equipped with a
class of arrows called representable arrows satisfying the following:

A has finite limits;

identity arrows are representable and representable arrows are
closed under composition;

representable arrows are stable under pullbacks;

the pushforward f∗ : A/X→ A/Y along a representable arrow
f : X→ Y exists.

Definition

A representable map functor F : A→ B between representable map
categories is a functor F : A→ B preserving all structures:
representable arrows; finite limits; pushforwards along representable
arrows.
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Type Theories

Definition

A type theory is a (small) representable map category T.

Definition

A model of a type theory T consists of...

a category S with a terminal object;

a representable map functor (−)S : T→ [Sop, Set].
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Examples of Type Theories

Proposition

Representable map categories have some “free” constructions (cf.
LCCCs and Martin-Löf type theories (Seely 1984)).

Example

If T is freely generated by a single representable arrow p : E→ U,
a model of T consists of...

a category S with a terminal object;

a representable map pS : ES → US of presheaves over S

i.e. a natural model.
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Main Results

Let T be a type theory.

Theorem

The 2-category ModT of models of T has a bi-initial object.

Theorem

There is a “theory-model correspondence”: we define a (locally
discrete) 2-category ThT of T-theories and establish a bi-adjunction

ModT

a

ThT.

LT

MT
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The Bi-initial Model

For a type theory T, we define a model I(T) of T:

the base category is the full subcategory of T consisting of
those Γ ∈ T such that the arrow Γ → 1 is representable;

we define (−)I(T) to be the composite

T よ−→ [Top,Set]→ [I(T)op,Set].

Given a model S of T, we have a functor

I(T) S

T [Sop,Set]

F

よ∼=

(−)S

and F can be extended to a morphism of models of T.
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Internal Languages

Definition

We define a 2-functor LT : ModT → Cart(T,Set) by
LTS(A) = A

S(1), where Cart(T,Set) is the category of functors
T→ Set preserving finite limits.

Theorem

LT : ModT → Cart(T, Set) has a left bi-adjoint with invertible unit.

ThT := Cart(T,Set)

(Cf. algebraic approaches to dependent type theory (Isaev 2018;
Garner 2015; Voevodsky 2014))
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Conclusion

A type theory is a representable map category.

Every type theory has a bi-initial model.

There is a theory-model correspondence.

Future Directions:

Application: canonicity by gluing representable map
categories?

What can we say about the 2-categoty ModT?

Better presentations of the category ThT?

Variations: internal type theories? (∞, 1)-type theories?
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Why is it a Theory?

In algebraic approaches to dependent type theory (Isaev 2018;
Garner 2015; Voevodsky 2014), a theory is a diagram in Set which
looks like

E0 E1 E2 . . .

U0 U1 U2 . . .

where

Un set of types with n variables;

En set of terms with n variables.



Why is it a Theory?

If T has a representable arrow p : E→ U, then T contains a
diagram

P0
pE P1

pE P2
pE . . .

P0
pU P1

pU P2
pU . . .

P0
pp P1

pp P2
pp

where PpX = p∗(X× E).
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