Codensity monads and D-ultrafilters

Lurdes Sousa

IPV, Viseu CMUC, Coimbra

joint work with Jiří Adámek

Category Theory 2019, Edinburgh

$$X \xrightarrow{a} EA$$
, $a \in X/E$,

is a limit cone of $X/E \to \mathcal{K}$.

$$X \xrightarrow{a} EA$$
, $a \in X/E$,

is a limit cone of $X/E \to \mathcal{K}$.

Terminology for *E* the inclusion of a full subcategory \mathcal{A} into \mathcal{K} : \mathcal{A} is codense in \mathcal{K} .

$$X \xrightarrow{a} EA$$
, $a \in X/E$,

is a limit cone of $X/E \to \mathcal{K}$.

Terminology for *E* the inclusion of a full subcategory \mathcal{A} into \mathcal{K} : \mathcal{A} is codense in \mathcal{K} .

Examples:

FinSet dense in Set

$$X \xrightarrow{a} EA$$
, $a \in X/E$,

is a limit cone of $X/E \to \mathcal{K}$.

Terminology for *E* the inclusion of a full subcategory \mathcal{A} into \mathcal{K} : \mathcal{A} is codense in \mathcal{K} .

Examples:

- FinSet dense in Set
- $\mathcal{K}_{\mathsf{fp}}$ dense in \mathcal{K} , for \mathcal{K} locally finitely presentable

 $\mathcal{A} \longrightarrow \mathcal{K}$

 $\mathcal{A} \longrightarrow \mathcal{K}$

The codensity monad shows how far the subcategory \mathcal{A} is from being condense in \mathcal{K} .

 $A \longrightarrow \mathcal{K}$

The codensity monad shows how far the subcategory ${\cal A}$ is from being condense in ${\cal K}.$

An inspiring paper:

[Tom Leinster, Codensity and the ultrafilter monad, TAC, 2013]

Codensity monad of $E : \mathcal{A} \to \mathcal{K}$:

$T = \operatorname{Ran}_E E$

Codensity monad of $E : \mathcal{A} \to \mathcal{K}$:

$T = \operatorname{Ran}_E E$

For \mathcal{A} small full subcategory of complete \mathcal{K} ,

$$TX = \lim_{X \to A} \left(\begin{array}{c} X/\mathcal{A} \xrightarrow{C_X} \mathcal{K} \end{array} \right)$$
$$(X \xrightarrow{a} \mathcal{A}) \quad \mapsto \quad \mathcal{A}$$

For $\mathsf{Fin}\mathsf{Set} \hookrightarrow \mathsf{Set}$,

T =ultrafilter monad

[Kennison, Gildenhuys, JPPA, 1971]

For $FD(K-Vec) \hookrightarrow K-Vec$,

T =double-dualization monad

[Tom Leinster, 2013]

 $\mathcal{A} \longrightarrow \mathcal{K}$

(essentially) small

complete with a cogenerator D belonging to \mathcal{A}

(essentially) small

complete with a cogenerator D belonging to \mathcal{A}

1. \mathcal{K} symmetric monoidal closed and complete, $\mathcal{A} = \mathcal{K}_{\mathsf{fp}}$

- commutative varieties
- cartesian closed, complete categories

(essentially) small

complete with a cogenerator D belonging to \mathcal{A}

1. \mathcal{K} symmetric monoidal closed and complete, $\mathcal{A} = \mathcal{K}_{\mathsf{fp}}$

- commutative varieties
- cartesian closed, complete categories

2. More general

Commutative varieties:

varieties where every operation is a homomorphism

They are precisely the varieties ${\cal K}$ which are symmetric monoidal closed for the usual tensor product,

 $A \otimes B$ = free algebra in \mathcal{K} on $|A| \times |B|$

with

I = free algebra in \mathcal{K} on one generator

[Banaschewski, Nelson, CMB, 1976]

D finitely presentable cogenerator of $\mathcal K$

$$- \otimes D \dashv [D, -] : \mathcal{K} \to \mathcal{K}$$
$$(-)^* = [-, D] \dashv [-, D] : \mathcal{K}^{\mathrm{op}} \to \mathcal{K}$$

$$(-)^{**}:\mathcal{K}
ightarrow\mathcal{K}$$

double-dualization monad

Examples.

Category	D
Sets	$\{0,1\}$
Sets and partial functs.	{0}
K-Vector spaces	K
Join-semilattices	$1 \bullet 0 \bullet$
<i>M</i> -Sets	РM
Posets	$1 \bullet 0 \bullet$
Σ-structures	{0,1} complete
Undirected graphs	

Examples.

Category	D]
Sets	{0,1}	
Sets and partial functs.	{0}	
K-Vector spaces	K	
Join-semilattices	$1 \bullet 0 \bullet$	
M-Sets	РM	$(mR = \{x \in M \mid mx \in R\}$
Posets		
Σ-structures	{0,1} complete	-
Undirected graphs	0-1	

An object D is a *-object if, for $(-)^* = [-, D]$,

$$A^* \xrightarrow{a^*} X^*, \qquad a \in X/\mathcal{K}_{\mathsf{fp}},$$

is a cocone colimit.

An object D is a *-object if, for $(-)^* = [-, D]$,

$$A^* \xrightarrow{a^*} X^*, \qquad a \in X/\mathcal{K}_{\mathsf{fp}},$$

is a cocone colimit.

For commutative varieties \mathcal{K} , and for posets, Σ -structures (Σ finite), undirected graphs, ... every $D \in \mathcal{K}_{fp}$ is a *-object. And conversely, D *-object $\Rightarrow D \in \mathcal{K}_{fp}$, when $I \in \mathcal{K}_{fp}$. An object D is a *-object if, for $(-)^* = [-, D]$,

$$A^* \xrightarrow{a^*} X^*, \qquad a \in X/\mathcal{K}_{\mathsf{fp}},$$

is a cocone colimit.

```
For commutative varieties \mathcal{K},
and for posets, \Sigma-structures (\Sigma finite), undirected graphs, ...
every D \in \mathcal{K}_{fp} is a *-object.
And conversely, D *-object \Rightarrow D \in \mathcal{K}_{fp},
when I \in \mathcal{K}_{fp}.
```

 \star -cogenerator := cogenerator + \star -object

Category Theory 2019, Edinburgh, 12 July

Let D be a *-cogenerator.

Let D be a *-cogenerator.

Then,
$$(-)^{**}$$
 has the limit property:
 $X^{**} \xrightarrow{a^{**}} A^{**}, a \in X/\mathcal{K}_{\mathrm{fp}},$ is a limit cone.

Let D be a *-cogenerator.

Then, $(-)^{**}$ has the limit property: $X^{**} \xrightarrow{a^{**}} A^{**}, \quad a \in X/\mathcal{K}_{\mathrm{fp}},$ is a limit cone.

Construction of the *D*-ultrafilter monad \mathbb{T} :

 $a \in X/\mathcal{K}_{\mathsf{fp}}$

Construction of the *D*-ultrafilter monad \mathbb{T} :

$$a \in X/\mathcal{K}_{\mathsf{fp}}$$

Category Theory 2019, Edinburgh, 12 July

D-ultrafilters: external elements f of X^{**} which factorize through every a', $a \in X/\mathcal{K}_{fp}$:

D-ultrafilters: external elements f of X^{**} which factorize through every a', $a \in X/\mathcal{K}_{fp}$:

In all the above examples, they are just the elements of the underlying set of TX.

D-ultrafilters: external elements f of X^{**} which factorize through every a', $a \in X/\mathcal{K}_{fp}$:

In all the above examples, they are just the elements of the underlying set of TX.

A different approach to the generalization of the notion of ultrafilter on one object in the study of codensity monads: [Barry-Patrick Devlin, PhD Thesis, Univ. Edinburgh, 2015] Let \mathcal{K} be a complete, symmetric monoidal closed category with a *-cogenerator D.

Then,

the *D*-ultrafilter monad is a submonad of $(-)^{**}$ and it is the codensity monad of the embedding $\mathcal{K}_{fp} \hookrightarrow \mathcal{K}$.

```
Let \mathcal{K} be a complete, symmetric monoidal closed cat-
egory with a *-cogenerator D.
Then,
the D-ultrafilter monad is a submonad of (-)^{**} and it
is the codensity monad of the embedding \mathcal{K}_{fp} \hookrightarrow \mathcal{K}.
```

Corollary. The codensity monad of the embedding $\mathcal{K}_{fp} \hookrightarrow \mathcal{K}$ is the largest submonad of $(-)^{**}$ whose unit has invertible components at all finitely presentable objects.

Examples.

Category	D	ТХ
Sets	$\{0, 1\}$	ultrafilters on X
Sets and partial functs.	{0}	ultrafilters on X
K-Vector spaces	K	$X^{**} = double dual space$
Join-semilattices	$\begin{array}{c}1\bullet\\0\bullet\end{array}$	$X^{**} =$ prime, upwards closed collections of prime \uparrow -sets of X
<i>M</i> -Sets	$\mathcal{P}M$	ultrafilters on the underlying set
Posets	$ \begin{array}{c} 1 \\ 0 \end{array} $	nonnempty, prime collections of \uparrow -sets of X closed under upper sets and finite intersections
Σ-structures	{0,1} complete	ultrafilters on the underlying set
Undirected graphs		ultrafilters on the set of vertices

 $\mathcal{A} \longrightarrow \mathcal{K}$

(essentially) small

complete with a cogenerator D lying in \mathcal{A}

(essentially) small

complete with a cogenerator $\{D_i\}_{i \in I}$ lying in \mathcal{A}

 $L \dashv R : (\mathsf{Set}')^{\mathrm{op}} \to \mathcal{K}$

with $LX = (\mathcal{K}(X, D_i))_{i \in I}$ and $R(M_i)_{i \in I} = \prod_{i \in I} D_i^{M_i}$.

(essentially) small

complete with a cogenerator $\{D_i\}_{i \in I}$ lying in \mathcal{A}

$$L \dashv R : (\mathsf{Set}')^{\mathrm{op}} \to \mathcal{K}$$

with
$$LX = (\mathcal{K}(X, D_i))_{i \in I}$$
 and $R(M_i)_{i \in I} = \prod_{i \in I} D_i^{M_i}$.

 \mathbb{S} := the monad induced on \mathcal{K} by $L \dashv R$

|| The unit $\eta^{\mathbb{S}}$ of \mathbb{S} is pointwise monic.

The unit $\eta^{\mathbb{S}}$ of \mathbb{S} is pointwise monic.

S has the limit property: $SX \xrightarrow{Sa} SA, a \in X/A,$ is a limit cone.

The "pullback-intersection" construction with S in lieu of $(-)^{**}$:

 $a \in X/\mathcal{A}$

Category Theory 2019, Edinburgh, 12 July

The "pullback-intersection" construction with S in lieu of $(-)^{**}$:

Also gives rise to the codensity monad.

The codensity monad of $\mathcal{A} \hookrightarrow \mathcal{K}$ is the smallest submonad of \mathbb{S} with the limit property.

The codensity monad of $\mathcal{A} \hookrightarrow \mathcal{K}$ is the smallest submonad of \mathbb{S} with the limit property.

Question. When is $(-)^{**}$ a submonad of \mathbb{S} ?

lt is,

- in the previous examples;
- whenever *D* has the property that $\eta_D : D \to D^{**}$ is invertible.

Example.

• Codensity monad of $\{K\} \longrightarrow K-Vec$:

TX = all homogeneous functions in $SX = K^{X^*}$

(homogeneous = preserving the scalar multiplication)

Example.

• Codensity monad of $\{K\} \longrightarrow K-Vec$:

TX = all homogeneous functions in $SX = K^{X^*}$

(homogeneous = preserving the scalar multiplication)

• Codensity monad of $\{K, K^2\} \longrightarrow K-Vec$:

double-dualization monad

Example.

• Codensity monad of $\{ \{0,1\} \} \subseteq$ Set :

TX = collections of nonempty sets of X including either Y or \overline{Y} for every $Y \subseteq X$

Codensity monad of {{0,1,2}} ⊆ Set :
 ultrafilter monad

[Leinster,2013]

 $TX = \lambda$ -complete ultrafilters on X

[Adámek, Brooke-Taylor, Campion, Positselski, Rosický, 2019]

Examples.

TX = all ultrafilters on the set X

with topology basis $\triangle G = \{\mathcal{U} \in TX \mid G \in \mathcal{U}\}, G \text{ open in } X.$

TX = prime filters of $(\Omega X, \subseteq)$

with topology basis $\Box G = \{U \in TX \mid G \in U\}, G$ open in X.