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Introduction



A quick reminder

Definition
For a functor F : C→ C, one defines coalgebra

homomorphism:

X

FX

Y

FY
c d

f

Ff

The corresponding category we denote as CoAlg(F).

Theorem
The forgetful functor CoAlg(F)→ C creates all colimits and those limits which are
preserved by F.
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Motivation

Recall
• The final coalgebra for F : C→ C is a fix-point of F. a

• The power-set functor P : Set→ Set does not have a fix-point; hence P does
not admit a final coalgebra.

• The finite power-set functor Pfin : Set→ Set admits a final coalgebra (for
instance, because Pfin is finitary).

• Somehow more general: the Vietoris functor V : CompHaus→ CompHaus
admits a final coalgebra

(and the same is true for V : PosComp→ PosComp).

• A bit more general: the compact Vietoris functor Vc : Top→ Top admits a final
coalgebra.

aJoachim Lambek. “A fixpoint theorem for complete categories”. In: Mathematische Zeitschrift
103.(2) (1968), pp. 151–161.
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Where to go from there?

Questions
What about “power functors” on other (topological) base categories?

For instance,
• the upset functor Up : Ord→ Ord?
• li�ings of Set-functors to Met (or, more general, to V-Cat)?
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Some "powerful functors"



About the upset funtor

Theorem
Let X be a partially ordered set. Then there is no embedding ϕ : Up(X)→ X. ab

aRobert P. Dilworth and Andrew M. Gleason. “A generalized Cantor theorem”. In: Proceedings of the
American Mathematical Society 13.(5) (1962), pp. 704–705.

bRobert Rosebrugh and Richard J. Wood. “The Cantor-Gleason-Dilworth Theorem”. 1994.

Corollary
The upset functor Up : Ord→ Ord does not admit a final coalgebra.

Remark
The category CoAlg(Up) has equalisers.
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About strict functorial liftings

Theorem
Consider the following commutative diagram of functors.

X X

A A

F

U U

F

1. If F has a fix-point, then so has F. Hence, if F does not have a fix-point, then
neither does F.

2. If U : X→ A is topological, then so is U : CoAlg(F)→ CoAlg(F).

In particular, the category CoAlg(F) has limits of shape I if and only if CoAlg(F)

has limits of shape I.
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The Hausdorff monad on V-Cat

Definition
Let f : (X,a)→ (Y,b) be a V-functor.

1. For every A ⊆ X, put ↑a A = {y ∈ X | k ≤
∨

x∈A a(x, y)}.

2. We call a subset A ⊆ X of (X,a) increasing whenever A = ↑a A.
3. We consider the V-category HX = {A ⊆ X | A is increasing}, equipped with

Ha(A,B) =
∧
y∈B

∨
x∈A

a(x, y), for all A,B ∈ HX.

4. The map Hf : H(X,a) −→ H(Y,b) sends an increasing subset A ⊆ X to ↑b f (A).
5. The functor H is part of a Kock–Zöberlein monad H = (H,w , h) on V-Cat.
6. H = (H,w , h) is a submonad of the covariant presheaf monad on V-Cat; in

fact, H is the monad of “conical limit weights”.
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Some classical results

For metric spaces
1. For every compact metric space X, the Hausdor� metric induces the Vietoris

topology (of the compact Hausdor� space X).

2. Hence, the Hausdor� functor sends compact metric spaces to compact metric
spaces.

3. Furthermore, the Hausdor� functor preserves Cauchy completeness.
4. . . .
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Ernest Michael. “Topologies on spaces of subsets”. In: Transactions of the American Mathematical
Society 71.(1) (1951), pp. 152–182.
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Coalgebras for the Hausdorff functor

Theorem
Let V be a non-trivial quantale and (X,a) be a V-category. There is no embedding
of type H(X,a)→ (X,a).

Corollary
Let V be a non-trivial quantale. The Hausdor� functor H : V-Cat→ V-Cat does not
admit a terminal coalgebra, neither does any possible restriction to a full
subcategory of V-Cat.

Remark
In particular, the (non-symmetric) Hausdor� functor on Met does not admit a
terminal coalgebra, and the same applies to its restriction to the full subcategory
of compact metric spaces.

Passing to the symmetric version of the Hausdor�
functor does not remedy the situation.
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Adding topology



Generalised Nachbin spaces

Extending the Ultrafilter monad
We assume that V is a completely distributive quantale, then

ξ : UV −→ V, v 7−→
∧
A∈v

∨
A

is the structure of an U-algebra on V (the Lawson topology).

Therefore we obtain
a lax extension of the ultrafilter monad to V-Rel that induces a monad on V-Cat.
Its algebras are V-categories equipped with a compatible compact Hausdor�
topology; we call them V-categorical compact Hausdor� spaces, and denote the
corresponding Eilenberg–Moore category by V-CatCH.

Theorem
For an ordered set (X,≤) and a U-algebra (X, α), the following are equivalent.

(i) α : (UX,U≤)→ (X,≤) is monotone.

(ii) G≤ ⊆ X × X is closed.
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Its algebras are V-categories equipped with a compatible compact Hausdor�
topology; we call them V-categorical compact Hausdor� spaces, and denote the
corresponding Eilenberg–Moore category by V-CatCH.

Theorem
For an ordered set (X,≤) and a U-algebra (X, α), the following are equivalent.

(i) α : (UX,U≤)→ (X,≤) is monotone.
(ii) G≤ ⊆ X × X is closed.
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a lax extension of the ultrafilter monad to V-Rel that induces a monad on V-Cat.
Its algebras are V-categories equipped with a compatible compact Hausdor�
topology; we call them V-categorical compact Hausdor� spaces, and denote the
corresponding Eilenberg–Moore category by V-CatCH.

Theorem
For a V-category (X,a) and a U-algebra (X, α), the following are equivalent.

(i) α : U(X,a)→ (X,a) is a V-functor.
(ii) a : (X, α)× (X, α)→ (V, ξ≤) is continuous.



Open “(”

Theorem
For an ordered compact Hausdor� space X, the ordered set X is directed complete.

Proof.

OrdCH Top K(X) is sober, . . .

Ord |X| is directed complete

K

|−|
S

Corollary
Every compact metric space is Cauchy complete.

Example
(UX,Ud) is Cauchy complete.

Consider (UX,Ud,mX) . . . and close “)”
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Proof.
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Approach space = “metric” topological space.
Robert Lowen. “Approach spaces: a common supercategory of TOP and MET”. In: Mathematische

Nachrichten 141.(1) (1989), pp. 183–226.
Bernhard Banaschewski, Robert Lowen, and Cristophe Van Olmen. “Sober approach spaces”. In:

Topology and its Applications 153.(16) (2006), pp. 3059–3070.
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Example
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Theorem (Lawvere (1973))
A metric space X is Cauchy-complete if and only if every left adjoint distributors
ϕ : 1 X is representable (i.e. ϕ = x∗).
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Open “(”

Theorem
For a metric compact Hausdor� space X, the metric space X is Cauchy complete.

Proof.

MetCH App K(X) is Cauchy complete, . . .

Met |X| is Cauchy complete

K

|−| S

Theorem (Lawvere (1973))
A metric space X is Cauchy-complete if and only if every left adjoint distributors
ϕ : 1 X is representable (i.e. ϕ = x∗).

Corollary
Every compact metric space is Cauchy complete.

Example
(UX,Ud) is Cauchy complete.

Consider (UX,Ud,mX) . . . and close “)”



Open “(”

Theorem
For a metric compact Hausdor� space X, the metric space X is Cauchy complete.

Proof.

MetCH App K(X) is Cauchy complete, . . .

Met |X| is Cauchy complete

K

|−| S

Corollary
Every compact metric space is Cauchy complete.

Example
(UX,Ud) is Cauchy complete.

Consider (UX,Ud,mX) . . . and close “)”



Open “(”

Theorem
For a metric compact Hausdor� space X, the metric space X is Cauchy complete.

Proof.

MetCH App K(X) is Cauchy complete, . . .

Met |X| is Cauchy complete

K

|−| S

Corollary
Every compact metric space is Cauchy complete.

Example
Every discrete metric space is Cauchy complete (any compact Hausdor� topology).

Example
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Example
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Towards “Urysohn”

Lemma
Let (X,a, α) be a V-categorical compact Hausdor� space and A,B ⊆ X so that
A ∩ B = ∅, A is increasing and compact in (X, α≤)op and B is compact in (X, α≤).
Then there exists some u� k so that, for all x ∈ A and y ∈ B, u 6≤ a(x, y).

Corollary

For every compact subset A ⊆ X of (X, α≤)op, ↑a A = ↑≤ A. In particular, for every
closed subset A ⊆ X of (X, α), ↑a A = ↑≤ A.

Theorem (Nachbin)
Let A ⊆ X be closed and decreasing and B ⊆ X be closed and increasing with
A ∩ B = ∅. Then there exist V ⊆ X open and co-increasing and W ⊆ X open and
co-decreasing with

A ⊆ V, B ⊆ W, V ∩W = ∅.
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The Hausdorff monad (again)

Definition
For a V-categorical compact Hausdor� space X = (X,a, α), we put

HX = {A ⊆ X | A is closed and increasing}
with the restriction of the Hausdor� structure to HX and the hit-and-miss topology
(Vietoris topology). That is, the topology generated by the sets

V♦ = {A ∈ HX | A ∩ V 6= ∅} (V open, co-increasing)

and
W� = {A ∈ HX | A ⊆ W} (W open, co-decreasing).

Proposition
For every V-categorical compact Hausdor� space X, HX is a V-categorical compact
Hausdor� space.

Theorem
The construction above defines a functor H : V-CatCH −→ V-CatCH.

In fact, we obtain a Kock–Zöberlein monad.
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Compare with:
For a compact metric space, the Hausdor� metric induces the Vietoris topology.
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In fact, we obtain a Kock–Zöberlein monad.
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Compact V-categories

Theorem (Lawvere (1973))
A metric space X is Cauchy-complete if and only if every left adjoint distributor
ϕ : 1 X is representable (i.e. ϕ = x∗).

Definition
For a V-category X, A ⊆ X and x ∈ X, we define x ∈ A whenever “x represents a le�
adjoint distributor 1 A”.

Remark

• Under suitable conditions, this closure operator is topological.
• Moreover, if X is separated, then this topology is Hausdor�.
• With V-Catch denoting the full subcategory of V-Catsep defined by those
V-categories with compact topology, we obtain a functor V-Catch → V-CatCH.
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Compact V-categories

Proposition
For the V-categorical compact Hausdor� space induced by a compact separated
V-category X, the hit-and-miss topology on HX coincides with the topology
induced by the Hausdor� structure on HX.

Theorem
The functor H : V-Cat→ V-Cat restricts to the category V-Catch, moreover, the
diagram

V-Catch V-Catch

V-CatCH V-CatCH

H

H

commutes.



Compact V-categories

Proposition
For the V-categorical compact Hausdor� space induced by a compact separated
V-category X, the hit-and-miss topology on HX coincides with the topology
induced by the Hausdor� structure on HX.

Theorem
The functor H : V-Cat→ V-Cat restricts to the category V-Catch, moreover, the
diagram

V-Catch V-Catch

V-CatCH V-CatCH

H

H

commutes.



Coalgebras for Hausdorff functors

Proposition
The diagrams of functors commutes.

OrdCH OrdCH

V-CatCH V-CatCH

H

H

Proposition
The Hausdor� functor on V-CatCH preserves codirected initial cones with respect
to the forgetful functor V-CatCH→ CompHaus.

Theorem
The Hausdor� functor H : V-CatCH→ V-CatCH preserves codirected limits.
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Coalgebras for the Hausdorff functor

Theorem
For H : V-CatCH→ V-CatCH, the forgetful functor CoAlg(H)→ V-CatCH is
comonadic. Moreover, V-CatCH has equalisers and is therefore complete.

Theorem
The category of coalgebras of a Hausdor� polynomial functor on V-CatCH is
(co)complete.

Definition
We call a functor Hausdor� polynomial whenever it belongs to the smallest class
of endofunctors on V-Cat that contains the identity functor, all constant functors
and is closed under composition with H, products and sums of functors.
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Priestley spaces

Recall
An ordered compact Hausdor� space is a Priestley space whenever the cone
PosComp(X, 2) is an initial monocone. ab

aHilary A. Priestley. “Representation of distributive lattices by means of ordered stone spaces”. In:
Bulletin of the London Mathematical Society 2.(2) (1970), pp. 186–190.

bHilary A. Priestley. “Ordered topological spaces and the representation of distributive lattices”. In:
Proceedings of the London Mathematical Society. Third Series 24.(3) (1972), pp. 507–530.

Definition
We call a V-categorical compact Hausdor� space X Priestley if the cone
V-CatCH(X,Vop) is initial (and mono).

V-Priest denotes the full subcategory defined by all Priestley spaces.

Proposition
Let X be a V-categorical compact Hausdor� space. Consider a V-subcategory
R ⊆ VX that is closed under finite weighted limits and such that (ψ : X → Vop)ψ∈R

is initial with respect to V-CatCH→ CompHaus.

Then the cone (ψ♦ : HX → Vop)ψ∈R is initial with respect to V-CatCH→ CompHaus.

Corollary
The Hausdor� functor restricts to a functor H : V-Priest→ V-Priest, hence the
Hausdor� monad H restricts to V-Priest.
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Duality theory



Some classical results

Theorem
PriestH ' DLop

∨,⊥.

Theorem
Priest ' DLop (induced by 2).a

aHilary A. Priestley. “Representation of distributive lattices by means of ordered stone spaces”. In:
Bulletin of the London Mathematical Society 2.(2) (1970), pp. 186–190.

Theorem
CoAlg(H) ' DLOop (distributive lattices with operator).ab

aAlejandro Petrovich. “Distributive lattices with an operator”. In: Studia Logica 56.(1-2) (1996),
pp. 205–224.

bRoberto Cignoli, S. Lafalce, and Alejandro Petrovich. “Remarks on Priestley duality for distributive
lattices”. In: Order 8.(3) (1991), pp. 299–315.
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From 2 to [0, 1]

Theorem
C : StablyComp

V
−→ LaxMon([0, 1]-FinSup)op is fully faithful.a

aDirk Hofmann and Pedro Nora. “Enriched Stone-type dualities”. In: Advances in Mathematics 330
(2018), pp. 307–360.

Remark

• A ⊆ X closed (1 −7−→ X) ! Φ : CX −→ [0, 1].

• A is irreducible ⇐⇒ Φ is in Mon([0, 1]-FinSup).
• Every X in StablyComp is sober.

Theorem
C :
(
[0, 1]-Priest

)
V
−→

(
[0, 1]-FinSup

)op is fully faithful.

Remark

• ϕ : X −→ [0, 1] (1 ϕ
−◦−→ X ) ! Φ : CX −→ [0, 1].

• ϕ : X −→ [0, 1] is irreducible(?) ⇐⇒ Φ is ????



From 2 to [0, 1]

Theorem
C : StablyComp

V
−→ LaxMon([0, 1]-FinSup)op is fully faithful.

Remark
• A ⊆ X closed (1 −7−→ X) ! Φ : CX −→ [0, 1].

• A is irreducible ⇐⇒ Φ is in Mon([0, 1]-FinSup).
• Every X in StablyComp is sober.

Theorem
C :
(
[0, 1]-Priest

)
V
−→

(
[0, 1]-FinSup

)op is fully faithful.

Remark

• ϕ : X −→ [0, 1] (1 ϕ
−◦−→ X ) ! Φ : CX −→ [0, 1].

• ϕ : X −→ [0, 1] is irreducible(?) ⇐⇒ Φ is ????



From 2 to [0, 1]

Theorem
C : StablyComp

V
−→ LaxMon([0, 1]-FinSup)op is fully faithful.

Remark
• A ⊆ X closed (1 −7−→ X) ! Φ : CX −→ [0, 1].

• A is irreducible ⇐⇒ Φ is in Mon([0, 1]-FinSup).

• Every X in StablyComp is sober.

Theorem
C :
(
[0, 1]-Priest

)
V
−→

(
[0, 1]-FinSup

)op is fully faithful.

Remark

• ϕ : X −→ [0, 1] (1 ϕ
−◦−→ X ) ! Φ : CX −→ [0, 1].

• ϕ : X −→ [0, 1] is irreducible(?) ⇐⇒ Φ is ????



From 2 to [0, 1]

Theorem
C : StablyComp

V
−→ LaxMon([0, 1]-FinSup)op is fully faithful.

Remark
• A ⊆ X closed (1 −7−→ X) ! Φ : CX −→ [0, 1].

• A is irreducible ⇐⇒ Φ is in Mon([0, 1]-FinSup).
• Every X in StablyComp is sober.

Theorem
C :
(
[0, 1]-Priest

)
V
−→

(
[0, 1]-FinSup

)op is fully faithful.

Remark

• ϕ : X −→ [0, 1] (1 ϕ
−◦−→ X ) ! Φ : CX −→ [0, 1].

• ϕ : X −→ [0, 1] is irreducible(?) ⇐⇒ Φ is ????



From 2 to [0, 1]

Theorem
C : StablyComp

V
−→ LaxMon([0, 1]-FinSup)op is fully faithful.

Remark
• A ⊆ X closed (1 −7−→ X) ! Φ : CX −→ [0, 1].

• A is irreducible ⇐⇒ Φ is in Mon([0, 1]-FinSup).
• Every X in StablyComp is sober.

Theorem
C :
(
[0, 1]-Priest

)
V
−→

(
[0, 1]-FinSup

)op is fully faithful.

Remark

• ϕ : X −→ [0, 1] (1 ϕ
−◦−→ X ) ! Φ : CX −→ [0, 1].

• ϕ : X −→ [0, 1] is irreducible(?) ⇐⇒ Φ is ????



From 2 to [0, 1]

Theorem
C : StablyComp

V
−→ LaxMon([0, 1]-FinSup)op is fully faithful.

Remark
• A ⊆ X closed (1 −7−→ X) ! Φ : CX −→ [0, 1].

• A is irreducible ⇐⇒ Φ is in Mon([0, 1]-FinSup).
• Every X in StablyComp is sober.

Theorem
C :
(
[0, 1]-Priest

)
V
−→

(
[0, 1]-FinSup

)op is fully faithful.

Remark

• ϕ : X −→ [0, 1] (1 ϕ
−◦−→ X ) ! Φ : CX −→ [0, 1].

• ϕ : X −→ [0, 1] is irreducible(?) ⇐⇒ Φ is ????



From 2 to [0, 1]

Theorem
C : StablyComp

V
−→ LaxMon([0, 1]-FinSup)op is fully faithful.

Remark
• A ⊆ X closed (1 −7−→ X) ! Φ : CX −→ [0, 1].

• A is irreducible ⇐⇒ Φ is in Mon([0, 1]-FinSup).
• Every X in StablyComp is sober.

Theorem
C :
(
[0, 1]-Priest

)
V
−→

(
[0, 1]-FinSup

)op is fully faithful.

Remark

• ϕ : X −→ [0, 1] (1 ϕ
−◦−→ X ) ! Φ : CX −→ [0, 1].

• ϕ : X −→ [0, 1] is irreducible(?) ⇐⇒ Φ is ????



“Irreducible” distributors

Proposition
An distributor ϕ : X → [0, 1] is left adjoint

⇐⇒ the [0, 1]-functor
[ϕ,−] : Fun(X, [0, 1]) −→ [0, 1] preserves tensors and finite suprema.

For Łukasiewicz ⊗ = �

[0, 1] is a Girard quantale: for every u ∈ [0, 1], u = u⊥⊥, hom(u,⊥) = 1− u =: u⊥.
Furthermore, the diagram

CX �
� //

Φ &&

Fun(X, [0, 1]op)
(−)⊥ //

(−·ϕ)
��

Fun(X, [0, 1])op

[ϕ,−]op

��
[0, 1]

(−)⊥
// [0, 1]op

commutes in [0, 1]-Cat

and CX ↪→ Fun(X, [0, 1]op) is
∨

-dense.
Conclusion: ϕ : 1 −⇀◦ X is le� adjoint ⇐⇒ Φ preserves finite weighted limits.
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