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Ordered Groupoids

Ordered Groupoids - the Internal Approach

Ordered groupoids are internal groupoids in the category of
posets such that the domain arrow is a fibration: they form double
categories that are horizontally groupoidal and vertically posetal.
Double cells are of the form

A′

•

��

f ′ //

≤

B′

•

��
A f // B

where f ′ ≤ f .
Given f and A′ ≤ A, there is exactly one such cell and we write
f ′ = f |A′ .
Morphisms are double functors.
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Between Ordered Groupoids and Left Cancellative Categories

Lawson: from oGpd to lcCat

The functor L : oGpd→ lcCat maps an ordered groupoid G to the
category L(G) defined by:

Objects: those of G;
Arrows: A→ B in L(G) are formal composites

A h // B′ • // B

of a horizontal and vertical arrow in G.
Composition uses the fibration property of G,

A h // B′

•

��

k |B′ // C′′

•

��
B k // C′

•

��
C
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Between Ordered Groupoids and Left Cancellative Categories

Lawson: from lcCat to oGpd

The functor G : lcCat→ oGpd mapping a left cancellative category C
to the ordered groupoid G(C) is defined by:

Objects: subobjects [m : A→ B] in C; i.e.,
[m : A→ B] = [m′ : A′ → B] if there is an isomorphism k : A

∼
→ A′

such that m′k = m;
Horizontal arrows: isomorphism classes of spans,

[m,n] : [m]→ [n], B Amoo n // C

and [m,n] = [m′,n′] if and only if there is an isomorphism h giving
a commutative diagram,

A
m

ww
n

''
ho

��

B C

A′
m′

gg

n′

77
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Between Ordered Groupoids and Left Cancellative Categories

Vertical Arrows and Double Cells

Vertical Arrows: there is a unique

[m′ : A′ → B] • // [m : A→ B]

if there is an arrow k : A′ → A in C such that mk = m′.
There is a (unique) double cell

[m′]
•≤ ��

[m′,n′] //

≤

[n′]
•≤��

[m]
[m,n]

// [n]

if there is an arrow k giving a commutative diagram,

A′
m′

vv
n′

((
k

��

B C

A
m

hh

n

66
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Between Ordered Groupoids and Left Cancellative Categories

The composite LG : lcCat→ lcCat

The objects of LG(C) are subobjects in C: [m : A→ B].
The arrows are constructed as

[m,n′] : [m]→ [n′] ≤ [n]

and this corresponds to a diagram

A′

m

�� n′
''

h // A
n

��
B C
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Between Ordered Groupoids and Left Cancellative Categories

Arrows in LG(C)

An arrow [h] : [m : A′ → B]→ [n : A→ C] is given by an arrow
h : A′ → A. Furthermore,(

[m]
[h] // [n]

)
≡

(
[m′]

[h′] // [n′]
)

if and only if

m

��

h //

o k

��

` o

��

n

��

m′

__

h′
//

n′

??
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Between Ordered Groupoids and Left Cancellative Categories

Composition in LG(C)

Composition of [m]
[h1] // [n] and [n′]

[h2] // [p] is defined when there
is an arrow k as in the diagram

m

��

h1 //

n
��

k //

n′��

h2 //
p

��

and the composition is

[h2kh1] : [m]→ [p].
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Between Ordered Groupoids and Left Cancellative Categories

The Natural Transformation η : IdlcCat ⇒ LG

The natural transformation η : Id⇒ LG has components

ηC : C → LG(C)

defined by
on objects,

A 7→ [1A]

on arrows,
(h : A→ B) 7→ [h] : [1A]→ [1B])

Each ηC is a (weak) equivalence of categories ([m : A→ B] � [1A] and
ηC is full and faithful) and subject to the axiom of choice there is a
pseudo inverse.
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Between Ordered Groupoids and Left Cancellative Categories

The composite GL : oGpd→ oGpd

For an ordered groupoid G, the double category GL(G) is given by:
Objects: (B′,B) with B′ • //B in G

Horizontal Arrows: (B′,B)
h // (C′,C) where h : B′ → C′ in G.

Vertical Arrows: (B′,B) • // (D′,D) if and only if B = D and
B′ ≤ D′.
Double Cells:

(A′,A)

•

��

h //

≤

(B′,B)

•

��
(A′′,A) k // (B′′,B)

if and only if k |A′ = h in G.
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Between Ordered Groupoids and Left Cancellative Categories

The Natural Transformation κ : GL→ IdoGpd

For each ordered groupoid G, there is a double functor
κG : GL(G)→ G,

On objects: (B′,B) 7→ B′

On horizontal arrows: (B′,B)
h
→ (C′,C) 7→ B′

h
→ C′.

On vertical arrows:

(A′,A)
•

��
7→

A′

•

��
(A′′,A) A′′

On double cells:

(A′,A)
•

��

h //

≤

(B′,B)

•

��
7→

A′

•

��

h //

≤

B′

•

��
(A′′,A)

k
// (B′′,B) A′′

k
// B′′
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Between Ordered Groupoids and Left Cancellative Categories

Properties of κ

The components κG are weak equivalences of internal categories.
If the ordered groupoid G has maximal objects, κG has a pseudo
inverse.
Do L and G define a 2-adjunction/equivalence?
What are the 2-cells between ordered functors?

D. DeWolf, D. Pronk Double Categories and Ordered Groupoids July 11, 2019 16 / 35



Between Ordered Groupoids and Left Cancellative Categories

Properties of κ

The components κG are weak equivalences of internal categories.
If the ordered groupoid G has maximal objects, κG has a pseudo
inverse.
Do L and G define a 2-adjunction/equivalence?
What are the 2-cells between ordered functors?

D. DeWolf, D. Pronk Double Categories and Ordered Groupoids July 11, 2019 16 / 35



Between Ordered Groupoids and Left Cancellative Categories

lcCat and oGpd as 2-categories

The 2-cells in lcCat are natural transformations,
α : F ⇒ F ′ : C⇒ D.
For ordered groupoids G and H , the double category
DblFun(G,H) of double functors G → H , horizontal
transformations, vertical transformations and modifications, is
again an ordered groupoid.
Apply the functor L to obtain a notion of transformation between
double functors that is a formal composition of a horizontal and a
vertical transformation.
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Between Ordered Groupoids and Left Cancellative Categories

2-Adjunction

Theorem
There is a 2-adjunction,

lcCat
G //
⊥ oGpd
L

oo

The unit and counit of this adjunction have components that are
essential equivalences.
This 2-adjunction restricts to a 2-equivalence

lcCat '2 oGpdmax

where oGpdmax is the full subcategory on ordered groupoids with
maximal objects.
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Ehresmann Topologies

Presheaves on Ordered Groupoids

Let
QSet

be the quartet double category on the category of sets (double
cells are commutative squares).
A presheaf F on an ordered groupoid G is a functor

F : Gop, op → QSet

that is contravariant in both the horizontal and vertical directions.
Write PreSh (G) for the category of presheaves on G and
(horizontal/vertical) transformations.
Note: Horizontal and vertical transformations are the same in this
case and could be viewed as transformations that are natural in
the horizontal and the vertical direction.
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Ehresmann Topologies

Results

[Lawson-Steinberg, 2004] There is an isomorphism of categories,

PreSh(G) � PreSh(L(G)).

Note further:
PreSh(C) ' PreSh(LG(C)),

so
PreSh(G(C)) ' PreSh(C).

Also, an internal weak equivalence of ordered groupoids G → G′

induces an equivalence or presheaf categories,

PreSh(G) ' PreSh(G′).
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Ehresmann Topologies

Vertical Sieves for an Ordered Groupoid

Coverings for an Ehresmann topology on an ordered groupoid are
sieves of vertical arrows; i.e., vertical sieves.
We introduce the following notation: for a vertical sieve B on B
and a diagram

A f // B′
•��
B ,

we define

f ∗B =
{
A′ • //A

∣∣∣ f |A′ : A′ → B′′ with (B′′ • //B ) ∈ B
}
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Ehresmann Topologies

An Ehresmann Topology on an Ordered Groupoid

An Ehresmann topology on an ordered groupoid G is given by an
assignment of a collection T (A) of vertical sieves to each object A,
such that:

ET1 The trivial sieve (↓ A) ∈ T (A).
ET2 If B ∈ T (B) and f : A→ B′ with B′ • //B , then f ∗B ∈ T (A).
ET3 Let A ∈ T (A) and let B be any vertical sieve on A. If for each

C f // A′

•

��
A

with (A′ • //A) ∈ A, f ∗B ∈ T (C), then B ∈ T (A).
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Ehresmann Topologies

Results [Lawson-Steinberg,2004]

Sieves on a left cancellative category C are in one-to-one
correspondence to vertical sieves on G(G).
Vertical sieves on G are in one-to-one correspondence to sieves
on C(G).
Grothendieck topologies on a left cancellative category C are in
one-to-one correspondence to Ehresmann topologies on G(G).
Ehresmann topologies on G are in one-to-one correspondence to
sieves on C(G).
There is an isomorphism of categories,

Sh(G,T ) � Sh(L(G), JT ).
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Ehresmann Topologies

Functors Between Categories of Sites

G(C, J) = (G(C),TJ) where

TJ([m : A→ B]) = {[mS];S ∈ J(A)}

and
[mS] = { [mn] • // [m] |n ∈ S}.

L(G,T ) = (L(G), JT ) where

{ Bi
mi // A′i • // A |i ∈ I} ∈ JT (A)

if and only if
{ A′i • // A |i ∈ I} ∈ T (A).
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Geometric Morphisms

Morphisms of Ehresmann Sites

A morphism of Ehresmann sites (G,T )→ (G′,T ′) is a double
functor G → G′ which satisfies the following two conditions:

Cover preserving: If A ∈ T (A) then FA ∈ T ′(FA).
Covering-flat: For each collection of objects (Xi)i∈I in G and each

cone C
fi // Yi

•��
FXi

for i ∈ I, there is a covering sieve

{
C′j • //C |j ∈ J

}
∈ T (C)

and a cone Ej
hij // X ′ij

•��
Xi

for each j ∈ J, such that C′j • //FEj and

fi |C′j = Fhij |C′j
.

D. DeWolf, D. Pronk Double Categories and Ordered Groupoids July 11, 2019 25 / 35



Geometric Morphisms

Results

Proposition
Both functors L and G preserve and reflect covering preservation and
covering flatness.
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Geometric Morphisms

The Comparison Lemma for Grothendieck Topologies

A functor F : C → C′ induces an equivalence of topoi,
Sh(C, J) ' Sh(C′, J ′) if it satisfies the following five conditions:

1 Cover preserving F sends J-covers to J ′-covers.
2 Locally full If ϕ : FA→ FB in C′, then there is a cover
{αi : Ai → A|i ∈ I} ∈ J(A) with arrows fi : Ai → B such that
ϕ ◦ F (αi) = Ffi for all i ∈ I.

3 Locally faithful If F (f ) = F (g) for f ,g : A⇒ B in C, then there is a
cover {αi : Ai → A|i ∈ I} ∈ J(A) such that fαi = gαi for all i ∈ I.

4 Locally surjective on objects For each object C′ in C′ there is a
covering {γi : F (Ci)→ C′} ∈ J ′(C′).

5 Co-continuous If {γi : C′i → F (C)} ∈ J ′(F (C)) then the set
{f : D → C |F (f ) factors through γi for some i ∈ I} is in J(C).
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Geometric Morphisms

The Comparison Lemma for Ehresmann Topologies

A functor F : G → G′ induces an equivalence of topoi,
Sh(G,T ) ' Sh(G′,T ′) if it satisfies the following five conditions:

Cover preserving F sends T -covers to T ′-covers.

Locally full For any diagram FA f // B′
•��

FB

in G′ there is a cover

{
Ai • //A |i ∈ I

}
∈ T (A) and arrows Ai

ϕi // B′i
•��
B

in G such that

f |FAi = Fϕi .
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Geometric Morphisms

The Comparison Lemma for Ehresmann Topologies,
continued

Locally faithful For any two horizontal arrows as in A
fi // Bi

•��
B

with Ff1 = Ff2 there is a vertical cover
{
Aj • //A |j ∈ J

}
∈ T (A)

such that f1|Aj = f2|Aj for all j ∈ J.
Locally surjective on objects For each object A in G′ there is a
cover

{
Ai • //A |i ∈ I

}
∈ T (A) such that for each Ai there is a

horizontal arrow of the form FBi //Ai .

Co-continuous For any cover
{
Bi • //FA |i ∈ I

}
∈ T (A) in G′ the

collection of arrows
{

A′ • // A |FA′ • // Ai for some i ∈ I
}

is in
T (A).
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Geometric Morphisms

Results

Proposition

F : (C, J)→ (C′, J ′) satisfies the conditions of the comparison
lemma for Grothendieck topologies if and only if
G(F ) : (G(C),TJ)→ (G(C′),TJ ′) satisfies the conditions of the
comparison lemma for Ehresmann topologies.
ϕ : (G,T )→ (G′,T ′) satisfies the conditions of the comparison
lemma for Ehresmann topologies if and only if
L(ϕ) : (L(G), JT )→ (L(G′), JT ′) satisfies the conditions of the
comparison lemma for Grothendieck topologies.
The components of η and κ satisfy the conditions of the respective
comparison lemmas.
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Geometric Morphisms

Concluding Remarks

The 2-adjunctions and equivalences between left cancellative
categories and ordered groupoids are 2-adjunctions and
equivalences over the 2-category of topoi.
It would be nice to have similar results between the 2-category of
étale groupoids and the 2-category of Ehresmann sites.
So far we have nice assignments on objects for the latter.
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Geometric Morphisms

Weak Equivalences of Double Categories, Part 1

A double functor F : C→ D is a weak equivalence if it satisfies the
following two conditions:

It is essentially surjective on objects: the composition d1π2 in

C0 ×D0 D1

π1

��

π2 // Iso(D1)

d0

��

d1 // D0

C0 F0

// D0

is surjective on objects, arrows, and composable pairs of arrows.
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Geometric Morphisms

Weak Equivalences of Double Categories, Part 2

It is full and faithful: the square

C1

(d0,d1)
��

F1 // D1

(d0,d1)

��
C0 × C0 F0×F0

// D0 × D0

is a pullback of categories.
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Geometric Morphisms

G and GL(G) are weakly equivalent

For F = κG,
d1π2 : GC(G)0 ×G0 G1 → G0

is surjective on objects, since κG(B ≤ B) = B;
d1π2 : GL(G)0 ×G0 G1 → G0 is surjective on arrows, since

κG

(
(B′ ≤ B′) ≤

• //(D′ ≤ D′)
)
=

(
B′ ≤

• //D′
)

It is also easy to see that it is surjective on composable pairs of
inequalities, A′ ≤ B′ ≤ C′.
So κG is essentially surjective on objects.
κG is both order preserving and order reflecting; hence, fully
faithful.
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Geometric Morphisms

Equivalence of oGpd and lcCat?

Since the arrows κG : GL(G)→ G and ηC : C → LG(C) are only weak
equivalences, without inverse arrows, we need to compare these
categories as 2-categories.
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