Left Cancellative Categories and Ordered Groupoids

Dorette Pronk¹ with Darien DeWolf²

¹Dalhousie University

²St Francis Xavier University

CT 2019

Edinburgh, July 11, 2019

Outline

Between Ordered Groupoids and Left Cancellative Categories

- 4 Ehresmann Topologies
- 5 Geometric Morphisms

Representations of Etendues

Sheaves on Etale Groupoiols

Sheaves on Ordered Groupoids With an Ehresmann Topology (Lawson-Steinberg, 2004]

Representations of Etendues

Ordered groupoids with an Ehresmann topology Covering preserving Covering flat dowole functors.

(

Representations of Etendues

Ordered Groupoids - the Internal Approach

- Ordered groupoids are internal groupoids in the category of posets such that the domain arrow is a fibration: they form double categories that are horizontally groupoidal and vertically posetal.
- Double cells are of the form

where $f' \leq f$.

- Given *f* and $A' \le A$, there is exactly one such cell and we write $f' = f|_{A'}$.
- Morphisms are double functors.

Lawson: from oGpd to lcCat

The functor $L: \mathbf{oGpd} \rightarrow \mathbf{lcCat}$ maps an ordered groupoid \mathcal{G} to the category $L(\mathcal{G})$ defined by:

- Objects: those of G;
- Arrows: $A \rightarrow B$ in L(G) are formal composites

$$A \xrightarrow{h} B' \longrightarrow B$$

of a horizontal and vertical arrow in G.

• Composition uses the fibration property of G,

Lawson: from IcCat to oGpd

The functor $G: IcCat \rightarrow oGpd$ mapping a left cancellative category C to the ordered groupoid G(C) is defined by:

• **Objects**: subobjects $[m: A \rightarrow B]$ in C; i.e.,

 $[m: A \rightarrow B] = [m': A' \rightarrow B]$ if there is an isomorphism $k: A \xrightarrow{\sim} A'$ such that m'k = m;

• Horizontal arrows: isomorphism classes of spans,

$$[m, n] \colon [m] \to [n], \qquad B \stackrel{m}{\longleftrightarrow} A \stackrel{n}{\longrightarrow} C$$

and [m, n] = [m', n'] if and only if there is an isomorphism *h* giving a commutative diagram,

Vertical Arrows and Double Cells

• Vertical Arrows: there is a unique

$$[m': A' \to B] \longrightarrow [m: A \to B]$$

if there is an arrow $k \colon A' \to A$ in C such that mk = m'.

• There is a (unique) double cell

if there is an arrow k giving a commutative diagram,

The composite $LG: IcCat \rightarrow IcCat$

- The objects of LG(C) are subobjects in $C: [m: A \rightarrow B]$.
- The arrows are constructed as

$$[m,n']\colon [m]\to [n']\leq [n]$$

and this corresponds to a diagram

Arrows in LG(C)

An arrow $[h]: [m: A' \rightarrow B] \rightarrow [n: A \rightarrow C]$ is given by an arrow $h: A' \rightarrow A$. Furthermore,

$$\left([m] \xrightarrow{[h]} [n]\right) \equiv \left([m'] \xrightarrow{[h']} [n']\right)$$

if and only if

Composition in LG(C)

Composition of $[m] \xrightarrow{[h_1]} [n]$ and $[n'] \xrightarrow{[h_2]} [p]$ is defined when there is an arrow *k* as in the diagram

and the composition is

 $[h_2kh_1]: [m] \rightarrow [p].$

The Natural Transformation $\eta \colon \mathsf{Id}_{\mathsf{lcCat}} \Rightarrow \mathbf{LG}$

The natural transformation η : Id \Rightarrow LG has components

$$\eta_C \colon C \to \mathbf{LG}(C)$$

defined by

on objects,

$$A \mapsto [1_A]$$

on arrows,

$$(h: A \to B) \mapsto [h]: [1_A] \to [1_B])$$

Each η_C is a (weak) equivalence of categories ($[m: A \rightarrow B] \cong [1_A]$ and η_C is full and faithful) and subject to the axiom of choice there is a pseudo inverse.

The composite $GL: oGpd \rightarrow oGpd$

For an ordered groupoid \mathcal{G} , the double category $\mathbf{GL}(\mathcal{G})$ is given by:

- Objects: (B', B) with $B' \longrightarrow B$ in \mathcal{G}
- Horizontal Arrows: $(B', B) \xrightarrow{h} (C', C)$ where $h: B' \to C'$ in \mathcal{G} .
- Vertical Arrows: $(B', B) \longrightarrow (D', D)$ if and only if B = D and $B' \leq D'$.
- Double Cells:

$$(A', A) \xrightarrow{h} (B', B)$$

$$\downarrow \qquad \leq \qquad \downarrow$$

$$(A'', A) \xrightarrow{k} (B'', B)$$

if and only if $k|_{A'} = h$ in \mathcal{G} .

The Natural Transformation $\kappa: \mathbf{GL} \to \mathsf{Id}_{\mathsf{oGpd}}$

For each ordered groupoid \mathcal{G} , there is a double functor $\kappa_{\mathcal{G}}$: **GL**(\mathcal{G}) $\rightarrow \mathcal{G}$,

- On objects: $(B', B) \mapsto B'$
- On horizontal arrows: $(B', B) \xrightarrow{h} (C', C) \mapsto B' \xrightarrow{h} C'$.
- On vertical arrows:

$$\begin{array}{cccc} (A',A) & & A' \\ \downarrow & \mapsto & \downarrow \\ (A'',A) & & A'' \end{array}$$

On double cells:

$$(A', A) \xrightarrow{h} (B', B) \qquad A' \xrightarrow{h} B'$$

$$\downarrow \leq \downarrow \qquad \mapsto \qquad \downarrow \leq \downarrow$$

$$(A'', A) \xrightarrow{k} (B'', B) \qquad A'' \xrightarrow{h} B''$$

Double Categories and Ordered Groupoids

Properties of *k*

- The components $\kappa_{\mathcal{G}}$ are weak equivalences of internal categories.
- If the ordered groupoid *G* has maximal objects, κ_G has a pseudo inverse.
- Do L and G define a 2-adjunction/equivalence?
- What are the 2-cells between ordered functors?

Properties of *k*

- The components $\kappa_{\mathcal{G}}$ are weak equivalences of internal categories.
- If the ordered groupoid *G* has maximal objects, κ_G has a pseudo inverse.
- Do L and G define a 2-adjunction/equivalence?
- What are the 2-cells between ordered functors?

IcCat and oGpd as 2-categories

- The 2-cells in **IcCat** are natural transformations, $\alpha: F \Rightarrow F': C \Rightarrow \mathcal{D}.$
- For ordered groupoids G and H, the double category
 DblFun(G, H) of double functors G → H, horizontal transformations, vertical transformations and modifications, is again an ordered groupoid.
- Apply the functor **L** to obtain a notion of transformation between double functors that is a formal composition of a horizontal and a vertical transformation.

2-Adjunction

Theorem

• There is a 2-adjunction,

The unit and counit of this adjunction have components that are essential equivalences.

• This 2-adjunction restricts to a 2-equivalence

lcCat ≃₂ *oGpd_{max}*

where **oGpd**_{max} is the full subcategory on ordered groupoids with maximal objects.

2-Adjunction

Theorem

• There is a 2-adjunction,

The unit and counit of this adjunction have components that are essential equivalences.

• This 2-adjunction restricts to a 2-equivalence

$lcCat \simeq_2 oGpd_{max}$

where **oGpd**_{max} is the full subcategory on ordered groupoids with maximal objects.

Presheaves on Ordered Groupoids

Let

QSet

be the quartet double category on the category of sets (double cells are commutative squares).

• A presheaf *F* on an ordered groupoid *G* is a functor

$$F: \mathcal{G}^{\mathsf{op, op}} \to \mathbb{Q}\mathsf{Set}$$

that is contravariant in both the horizontal and vertical directions.

- Write **PreSh** (*G*) for the category of presheaves on *G* and (horizontal/vertical) transformations.
- Note: Horizontal and vertical transformations are the same in this case and could be viewed as transformations that are natural in the horizontal and the vertical direction.

Results

• [Lawson-Steinberg, 2004] There is an isomorphism of categories,

 $PreSh(\mathcal{G}) \cong PreSh(L(\mathcal{G})).$

• Note further:

 $PreSh(C) \simeq PreSh(LG(C)),$

so

$$PreSh(G(C)) \simeq PreSh(C).$$

 Also, an internal weak equivalence of ordered groupoids G → G' induces an equivalence or presheaf categories,

 $\operatorname{PreSh}(\mathcal{G}) \simeq \operatorname{PreSh}(\mathcal{G}').$

Vertical Sieves for an Ordered Groupoid

- Coverings for an Ehresmann topology on an ordered groupoid are sieves of vertical arrows; i.e., vertical sieves.
- We introduce the following notation: for a vertical sieve \mathcal{B} on B and a diagram

$$A \xrightarrow{f} B' \\ \downarrow \\ B,$$

we define

$$f^*\mathcal{B} = \left\{ A' \longrightarrow A \mid f|_{A'} \colon A' \to B'' \text{ with } (B'' \longrightarrow B) \in \mathcal{B} \right\}$$

An Ehresmann Topology on an Ordered Groupoid

- An **Ehresmann topology** on an ordered groupoid G is given by an assignment of a collection T(A) of vertical sieves to each object A, such that:
 - ET1 The trivial sieve $(\downarrow A) \in T(A)$.
 - ET2 If $\mathcal{B} \in T(B)$ and $f: A \to B'$ with $B' \longrightarrow B$, then $f^*\mathcal{B} \in T(A)$.
 - ET3 Let $\mathcal{A} \in T(A)$ and let \mathcal{B} be any vertical sieve on A. If for each $C \xrightarrow{f} A'$ with $(A' \longrightarrow A) \in \mathcal{A}, f^*\mathcal{B} \in T(C)$, then $\mathcal{B} \in T(A)$.

Results [Lawson-Steinberg,2004]

- Sieves on a left cancellative category C are in one-to-one correspondence to vertical sieves on G(G).
- Vertical sieves on G are in one-to-one correspondence to sieves on C(G).
- Grothendieck topologies on a left cancellative category C are in one-to-one correspondence to Ehresmann topologies on G(G).
- Ehresmann topologies on *G* are in one-to-one correspondence to sieves on C(*G*).
- There is an isomorphism of categories,

 $\mathbf{Sh}(\mathcal{G}, T) \cong \mathbf{Sh}(\mathbf{L}(\mathcal{G}), J_T).$

Functors Between Categories of Sites

• $\mathbf{G}(C, J) = (\mathbf{G}(C), T_J)$ where

$$T_J([m: A \to B]) = \{[mS]; S \in J(A)\}$$

and

$$[mS] = \{ [mn] \longrightarrow [m] \mid n \in S \}.$$

• $L(G, T) = (L(G), J_T)$ where

$$\{B_i \xrightarrow{m_i} A'_j \xrightarrow{} A \mid i \in I\} \in J_T(A)$$

if and only if

$$\{A'_i \longrightarrow A \mid i \in I\} \in T(A).$$

Morphisms of Ehresmann Sites

A morphism of Ehresmann sites $(\mathcal{G}, T) \rightarrow (\mathcal{G}', T')$ is a double functor $\mathcal{G} \rightarrow \mathcal{G}'$ which satisfies the following two conditions:

- Cover preserving: If $\mathcal{R} \in T(A)$ then $F\mathcal{R} \in T'(FA)$.
- Covering-flat: For each collection of objects $(X_i)_{i \in I}$ in \mathcal{G} and each

cone
$$C \xrightarrow{t_i} Y_i$$
 for $i \in I$, there is a covering sieve
 $\downarrow \\ FX_i$

$$\left\{C'_{j} \longrightarrow C | j \in J\right\} \in T(C)$$

and a cone
$$E_j \xrightarrow{h_{ij}} X'_{ij}$$
 for each $j \in J$, such that $C'_j \longrightarrow FE_j$ and
 $\downarrow \\ X_i$
 $f_i|_{C'_i} = Fh_{ij}|_{C'_i}$.

Results

Proposition

Both functors L and G preserve and reflect covering preservation and covering flatness.

The Comparison Lemma for Grothendieck Topologies

A functor $F: C \to C'$ induces an equivalence of topoi, $\mathbf{Sh}(C, J) \simeq \mathbf{Sh}(C', J')$ if it satisfies the following five conditions:

- Cover preserving *F* sends *J*-covers to *J*'-covers.
- **2** Locally full If $\varphi: FA \to FB$ in C', then there is a cover $\{\alpha_i: A_i \to A | i \in I\} \in J(A)$ with arrows $f_i: A_i \to B$ such that $\varphi \circ F(\alpha_i) = Ff_i$ for all $i \in I$.
- **3** Locally faithful If F(f) = F(g) for $f, g: A \Rightarrow B$ in *C*, then there is a cover $\{\alpha_i: A_i \rightarrow A | i \in I\} \in J(A)$ such that $f\alpha_i = g\alpha_i$ for all $i \in I$.
- **Output** Locally surjective on objects For each object C' in C' there is a covering $\{\gamma_i : F(C_i) \to C'\} \in J'(C')$.
- **6 Co-continuous** If $\{\gamma_i : C'_i \to F(C)\} \in J'(F(C))$ then the set $\{f : D \to C | F(f) \text{ factors through } \gamma_i \text{ for some } i \in I\}$ is in J(C).

The Comparison Lemma for Ehresmann Topologies

A functor $F: \mathcal{G} \to \mathcal{G}'$ induces an equivalence of topoi, $\mathbf{Sh}(\mathcal{G}, T) \simeq \mathbf{Sh}(\mathcal{G}', T')$ if it satisfies the following five conditions:

- Cover preserving *F* sends *T*-covers to *T*'-covers.
- Locally full For any diagram $FA \xrightarrow{f} B'$ in \mathcal{G}' there is a cover $\begin{cases} A_i \longrightarrow A | i \in I \\ i \in I \\$

The Comparison Lemma for Ehresmann Topologies, continued

- Locally faithful For any two horizontal arrows as in $A \xrightarrow{i_i} B_i$
 - with $Ff_1 = Ff_2$ there is a vertical cover $\{A_j \longrightarrow A | j \in J\} \in T(A)$ such that $f_1|_{A_j} = f_2|_{A_j}$ for all $j \in J$.
- Locally surjective on objects For each object A in \mathcal{G}' there is a cover $\{A_i \longrightarrow A | i \in I\} \in T(A)$ such that for each A_i there is a horizontal arrow of the form $FB_i \longrightarrow A_i$.
- **Co-continuous** For any cover $\{B_i \longrightarrow FA | i \in I\} \in T(A)$ in \mathcal{G}' the collection of arrows $\{A' \longrightarrow A | FA' \longrightarrow A_i \text{ for some } i \in I\}$ is in T(A).

Results

Proposition

- *F*: (*C*, *J*) → (*C'*, *J'*) satisfies the conditions of the comparison lemma for Grothendieck topologies if and only if
 G(*F*): (**G**(*C*), *T_J*) → (**G**(*C'*), *T_{J'}*) satisfies the conditions of the comparison lemma for Ehresmann topologies.
- φ: (G, T) → (G', T') satisfies the conditions of the comparison lemma for Ehresmann topologies if and only if
 L(φ): (L(G), J_T) → (L(G'), J_{T'}) satisfies the conditions of the comparison lemma for Grothendieck topologies.
- The components of η and κ satisfy the conditions of the respective comparison lemmas.

Concluding Remarks

- The 2-adjunctions and equivalences between left cancellative categories and ordered groupoids are 2-adjunctions and equivalences over the 2-category of topoi.
- It would be nice to have similar results between the 2-category of étale groupoids and the 2-category of Ehresmann sites.
- So far we have nice assignments on objects for the latter.

Weak Equivalences of Double Categories, Part 1

A double functor $F : \mathbb{C} \to \mathbb{D}$ is a **weak equivalence** if it satisfies the following two conditions:

• It is essentially surjective on objects: the composition $d_1\pi_2$ in

is surjective on objects, arrows, and composable pairs of arrows.

Weak Equivalences of Double Categories, Part 2

• It is full and faithful: the square

is a pullback of categories.

\mathcal{G} and $\mathbf{GL}(\mathcal{G})$ are weakly equivalent

• For $F = \kappa_{\mathcal{G}}$,

$$d_1\pi_2\colon \mathbf{GC}(\mathcal{G})_0\times_{\mathcal{G}_0}\mathcal{G}_1\to \mathcal{G}_0$$

is surjective on objects, since $\kappa_{\mathcal{G}}(B \leq B) = B$;

- $d_1\pi_2$: **GL**(\mathcal{G})₀ × $_{\mathcal{G}_0}$ $\mathcal{G}_1 \to \mathcal{G}_0$ is surjective on arrows, since $\kappa_{\mathcal{G}}\left((B' \leq B') \xrightarrow{\leq} (D' \leq D')\right) = \left(B' \xrightarrow{\leq} D'\right)$
- It is also easy to see that it is surjective on composable pairs of inequalities, A' ≤ B' ≤ C'.
- So $\kappa_{\mathcal{G}}$ is essentially surjective on objects.
- $\kappa_{\mathcal{G}}$ is both order preserving and order reflecting; hence, fully faithful.

\mathcal{G} and $\mathbf{GL}(\mathcal{G})$ are weakly equivalent

• For $F = \kappa_{\mathcal{G}}$,

$$d_1\pi_2\colon \mathbf{GC}(\mathcal{G})_0\times_{\mathcal{G}_0}\mathcal{G}_1\to \mathcal{G}_0$$

is surjective on objects, since $\kappa_{\mathcal{G}}(B \leq B) = B$;

- $d_1\pi_2$: **GL**(\mathcal{G})₀ ×_{\mathcal{G}_0} $\mathcal{G}_1 \to \mathcal{G}_0$ is surjective on arrows, since $\kappa_{\mathcal{G}}\left((B' \leq B') \xrightarrow{\leq} (D' \leq D')\right) = \left(B' \xrightarrow{\leq} D'\right)$
- It is also easy to see that it is surjective on composable pairs of inequalities, A' ≤ B' ≤ C'.
- So $\kappa_{\mathcal{G}}$ is essentially surjective on objects.
- $\kappa_{\mathcal{G}}$ is both order preserving and order reflecting; hence, fully faithful.

\mathcal{G} and $\mathbf{GL}(\mathcal{G})$ are weakly equivalent

• For $F = \kappa_{\mathcal{G}}$,

$$d_1\pi_2\colon \mathbf{GC}(\mathcal{G})_0\times_{\mathcal{G}_0}\mathcal{G}_1\to \mathcal{G}_0$$

is surjective on objects, since $\kappa_{\mathcal{G}}(B \leq B) = B$;

- $d_1\pi_2$: **GL**(\mathcal{G})₀ ×_{\mathcal{G}_0} $\mathcal{G}_1 \to \mathcal{G}_0$ is surjective on arrows, since $\kappa_{\mathcal{G}}\left((B' \leq B') \xrightarrow{\leq} (D' \leq D')\right) = \left(B' \xrightarrow{\leq} D'\right)$
- It is also easy to see that it is surjective on composable pairs of inequalities, A' ≤ B' ≤ C'.
- So $\kappa_{\mathcal{G}}$ is essentially surjective on objects.
- $\kappa_{\mathcal{G}}$ is both order preserving and order reflecting; hence, fully faithful.

Equivalence of oGpd and lcCat?

Since the arrows $\kappa_{\mathcal{G}}$: **GL**(\mathcal{G}) $\rightarrow \mathcal{G}$ and η_{C} : $C \rightarrow$ **LG**(C) are only weak equivalences, without inverse arrows, we need to compare these categories as **2-categories**.