Duality, definability and conceptual completeness for κ-pretoposes

Christian Espíndola

POSTDOCTORAL RESEARCHER AT MASARYK UNIVERSITY
BRNO, CZECH REPUBLIC

July 11th, 2019
The completeness theorem

Definition

A \(\kappa \)-topos is a topos of sheaves on a site with \(\kappa \)-small limits in which the covers of the topology satisfy in addition the transfinite transitivity property (a transfinite version of the transitivity property), i.e., transfinite composites of covering families form a covering family.
The completeness theorem

Definition

A κ-topos is a topos of sheaves on a site with κ-small limits in which the covers of the topology satisfy in addition the transfinite transitivity property (a transfinite version of the transitivity property), i.e., transfinite composites of covering families form a covering family.

A κ-topos is κ-separable if the underlying category of the site has at most κ many objects and morphisms, and where the Grothendieck topology is generated by at most κ many covering families.
The completeness theorem

Definition

A \(\kappa \)-topos is a topos of sheaves on a site with \(\kappa \)-small limits in which the covers of the topology satisfy in addition the transfinite transitivity property (a transfinite version of the transitivity property), i.e., transfinite composites of covering families form a covering family.

A \(\kappa \)-topos is \(\kappa \)-separable if the underlying category of the site has at most \(\kappa \) many objects and morphisms, and where the Grothendieck topology is generated by at most \(\kappa \) many covering families.

A \(\kappa \)-point of a \(\kappa \)-topos is a point whose inverse image preserves all \(\kappa \)-small limits.
The completeness theorem

Theorem

(E.) Let \(\kappa \) be a regular cardinal such that \(\kappa^{<\kappa} = \kappa \). Then a \(\kappa \)-separable \(\kappa \)-topos has enough \(\kappa \)-points.

This is an infinitary version of Deligne completeness theorem. When \(\kappa \) is strongly compact (e.g., \(\kappa = \omega \)), we recover the usual version: a \(\kappa \)-coherent topos has enough \(\kappa \)-points.
The completeness theorem

Theorem

(E.) Let κ be a regular cardinal such that $\kappa^{<\kappa} = \kappa$. Then a κ-separable κ-topos has enough κ-points.

This is an infinitary version of Deligne completeness theorem. When κ is strongly compact (e.g., $\kappa = \omega$), we recover the usual version: a κ-coherent topos has enough κ-points. From the point of view of the internal logic of the topos, the transfinite transitivity property corresponds to the following logical rule of inference:
The completeness theorem

Theorem

(E.) Let κ be a regular cardinal such that $\kappa^{<\kappa} = \kappa$. Then a κ-separable κ-topos has enough κ-points.

This is an infinitary version of Deligne completeness theorem. When κ is strongly compact (e.g., $\kappa = \omega$), we recover the usual version: a κ-coherent topos has enough κ-points. From the point of view of the internal logic of the topos, the transfinite transitivity property corresponds to the following logical rule of inference:

\[
\phi_f \vdash y_f \quad \bigvee_{g \in \gamma^{\beta+1}, g|_\beta = f} \exists x_g \phi_g \quad \beta < \kappa, f \in \gamma^\beta
\]

\[
\phi_f \not\vdash y_f \quad \bigwedge_{\alpha < \beta} \phi_f|_\alpha \quad \beta < \kappa, \text{ limit } \beta, f \in \gamma^\beta
\]

\[
\phi_\emptyset \vdash y_\emptyset \quad \bigvee_{f \in B} \exists \beta < \delta_f x_f|_{\beta+1} \bigwedge_{\beta < \delta_f} \phi_f|_{\beta+1}
\]
κ-geometric logic

Extension of geometric logic in which we have:

- Arities of cardinality less than κ.
- Conjunction of less than κ many formulas.
- Existential quantification of less than κ many variables.

More logical axioms or rules are needed.

Example: the theory of well-orderings:

\[\top \vdash x < y \lor y < x \lor x = y \]

\[\exists x_0 x_1 x_2 \ldots \bigwedge_{n \in \omega} x_{n+1} < x_n \vdash \bot \]

López-Escobar: the theory of well-orderings is not axiomatizable in $L^{\kappa,\omega}$ for any κ.

Christian Espíndola (POSTDOCTORAL RESEARCHER AT MASARYK UNIVERSITY BRNO, CZECH REPUBLIC)

Duality, definability and conceptual completeness for κ-pretoposes

July 11th, 2019 4 / 15
κ-geometric logic

Extension of geometric logic in which we have:

- Arities of cardinality less than κ
- Conjunction of less than κ many formulas
- Existential quantification of less than κ many variables

More logical axioms or rules are needed.

Example: the theory of well-orderings:

$$\top \vdash x \mathrel{<} y \lor y \mathrel{<} x \lor x = y$$

$$\exists x_0 \mathrel{x_1} \mathrel{x_2} \ldots \land n \in \omega \ x_{n + 1} < x_n \vdash \bot$$

López-Escobar: the theory of well-orderings is not axiomatizable in L_κ^ω for any κ.
Extension of geometric logic in which we have:

- Arities of cardinality less than κ
κ-geometric logic

Extension of geometric logic in which we have:

- Arities of cardinality less than κ
- Conjunction of less than κ many formulas

Example: the theory of well-orderings:
\[\top \vdash x < y \lor y < x \lor x = y \]
\[\exists x_0 x_1 x_2 \ldots \bigwedge_{n \in \omega} x_{n+1} < x_n \vdash \bot \]

López-Escobar: the theory of well-orderings is not axiomatizable in \(L_{\kappa, \omega} \) for any \(\kappa \).

Christian Espíndola (POSTDOCTORAL RESEARCHER AT MASARYK UNIVERSITY BRNO, CZECH REPUBLIC)

Duality, definability and conceptual completeness for κ-pretoposes

July 11th, 2019 4 / 15
Extension of geometric logic in which we have:

- Arities of cardinality less than κ
- Conjunction of less than κ many formulas
- Existential quantification of less than κ many variables

More logical axioms or rules are needed.

Example: the theory of well-orderings:
\[
\top \vdash x < y \lor y < x \lor x = y
\]
\[
\exists x_0 x_1 x_2 \ldots \land n \in \omega x_{n+1} < x_n \vdash \bot
\]

López-Escobar: the theory of well-orderings is not axiomatizable in $L_{\kappa,\omega}$ for any κ.
Extension of geometric logic in which we have:

- Arities of cardinality less than κ
- Conjunction of less than κ many formulas
- Existential quantification of less than κ many variables
- More logical axioms or rules are needed.

Example: the theory of well-orderings:

$$
\top \vdash x < y \lor y < x \lor x = y
$$

$$
\exists x_0 x_1 x_2 \ldots \land_{n \in \omega} x_{n+1} < x_n \vdash \bot
$$

López-Escobar: the theory of well-orderings is not axiomatizable in $\mathcal{L}_{\kappa, \omega}$ for any κ.

Christian Espíndola (POSTDOCTORAL RESDuality, definability and conceptual completer)
κ-geometric logic

Extension of geometric logic in which we have:

- Arities of cardinality less than \(\kappa \)
- Conjunction of less than \(\kappa \) many formulas
- Existential quantification of less than \(\kappa \) many variables
- More logical axioms or rules are needed.

Example: the theory of well-orderings:

\[
\top \vdash x < y \lor y < x \lor x = y
\]

∃\(x_0 \) ∃\(x_1 \) ∃\(x_2 \) ... ∃\(n \in \omega \) ∃\(x_{n+1} \) \(x_{n+1} < x_n \) \(\vdash \bot
\]

L´opez-Escobar: the theory of well-orderings is not axiomatizable in \(\mathcal{L}_\kappa,\omega \) for any \(\kappa \).
κ-geometric logic

Extension of geometric logic in which we have:

- Arities of cardinality less than \(\kappa \)
- Conjunction of less than \(\kappa \) many formulas
- Existential quantification of less than \(\kappa \) many variables
- More logical axioms or rules are needed.

Example: the theory of well-orderings:

\[
\top \vdash_{xy} x < y \lor y < x \lor x = y
\]

\[
\exists x_0 x_1 x_2 \ldots \bigwedge_{n \in \omega} x_{n+1} < x_n \vdash \bot
\]
κ-geometric logic

Extension of geometric logic in which we have:

- Arities of cardinality less than \(\kappa \)
- Conjunction of less than \(\kappa \) many formulas
- Existential quantification of less than \(\kappa \) many variables
- More logical axioms or rules are needed.

Example: the theory of well-orderings:

\[
\top \vdash_{xy} x < y \lor y < x \lor x = y
\]

\[
\exists x_0 x_1 x_2 \ldots \bigwedge_{n \in \omega} x_{n+1} < x_n \vdash \bot
\]

López-Escobar: the theory of well-orderings is not axiomatizable in \(\mathcal{L}_{\kappa, \omega} \) for any \(\kappa \).
Every κ-geometric theory has a κ-classifying topos:

$$
\begin{array}{ccc}
\mathcal{C}_T & \xrightarrow{y} & \text{Sh}(\mathcal{C}_T, \tau) \\
\downarrow M & & \downarrow f^* \\
\mathcal{E} & & \\
\end{array}
$$

Let κ be a regular cardinal such that $\kappa^{<\kappa} = \kappa$ (resp. κ is weakly compact).
Every κ-geometric theory has a κ-classifying topos:

\[
\begin{array}{ccc}
C_T & \xrightarrow{y} & \text{Sh}(C_T, \tau) \\
\downarrow & & \downarrow f^* \\
\downarrow M & & \downarrow \text{f} \\
\mathcal{E} & & \end{array}
\]

Let κ be a regular cardinal such that $\kappa^{<\kappa} = \kappa$ (resp. κ is weakly compact). Let T be a theory in a κ-fragment of $\mathcal{L}_{\kappa^+,\kappa}$ (resp. in $\mathcal{L}_{\kappa,\kappa}$) with at most κ many axioms.
Every κ-geometric theory has a κ-classifying topos:

\[C_T \xrightarrow{y} \mathcal{S}h(C_T, \tau) \]

\[\Downarrow \quad M \quad \Downarrow \quad f^* \]

\[\mathcal{E} \]

Let κ be a regular cardinal such that $\kappa^{<\kappa} = \kappa$ (resp. κ is weakly compact). Let \mathcal{T} be a theory in a κ-fragment of $\mathcal{L}_{\kappa^+ \kappa}$ (resp. in $\mathcal{L}_{\kappa \kappa}$) with at most κ many axioms. Let $\lambda > \kappa$ be regular and satisfy $\lambda^{<\lambda} = \lambda$. Let $\text{Mod}_\lambda(\mathcal{T})$ be the full subcategory of λ-presentable models.
Every κ-geometric theory has a κ-classifying topos:

Let κ be a regular cardinal such that $\kappa^{<\kappa} = \kappa$ (resp. κ is weakly compact). Let T be a theory in a κ-fragment of $\mathcal{L}_{\kappa^+,\kappa}$ (resp. in $\mathcal{L}_{\kappa,\kappa}$) with at most κ many axioms. Let $\lambda > \kappa$ be regular and satisfy $\lambda^{<\lambda} = \lambda$. Let $\text{Mod}_\lambda(T)$ be the full subcategory of λ-presentable models.
The \(\lambda \)-classifying topos of a \(\kappa \)-theory

Let \(\mathbb{T}' \) be the theory in \(\mathcal{L}_{\lambda^+, \lambda} \) with the same axioms as those of \(\mathbb{T} \).
Let \mathbb{T}' be the theory in $\mathcal{L}_{\lambda^+\lambda}$ with the same axioms as those of \mathbb{T}.

Theorem

(E.) The λ-classifying topos of \mathbb{T}' is equivalent to the presheaf topos $\text{Set}^{\text{Mod}_{\lambda}(\mathbb{T})}$. Moreover, the canonical embedding of the syntactic category $\mathcal{C}_{\mathbb{T}'} \hookrightarrow \text{Set}^{\text{Mod}_{\lambda}(\mathbb{T})}$ is given by the evaluation functor, which on objects acts by sending (x, ϕ) to the functor $\{M \mapsto [[\phi]]^M\}$.
The \(\lambda \)-classifying topos of a \(\kappa \)-theory

The first consequence is a positive result regarding definability theorems for infinitary logic. If \(C_T \) is the syntactic category of \(T \) considered in \(\mathcal{L}_{\lambda^+,\lambda} \), we have that

\[
ev : C_T \longrightarrow \text{Set}^{\text{Mod}_\lambda(T)}
\]

can be identified with Yoneda embedding

\[
Y : C_T \longrightarrow \text{Sh}(C_T, \tau)
\]

where the coverage \(\tau \) consists of \(\lambda^+ \)-small jointly epic families of arrows.
The λ-classifying topos of a κ-theory

The first consequence is a positive result regarding definability theorems for infinitary logic. If C_T is the syntactic category of T considered in $\mathcal{L}_{\lambda^+,\lambda}$, we have that

$$\text{ev} : C_T \rightarrow \text{Set}^{\text{Mod}_\lambda(T)}$$

can be identified with Yoneda embedding

$$Y : C_T \rightarrow \text{Sh}(C_T, \tau)$$

where the coverage τ consists of λ^+-small jointly epic families of arrows.

Theorem

(Infinitary Beth) Let $\phi(R)$ be a formula in $\mathcal{L}_{\kappa^+,\kappa}$ over the language $\mathcal{L} \cup R$ containing the predicate R. If every \mathcal{L}-structure has a unique expansion to a model of $\phi(R)$ and the interpretation of R in each such model is preserved by \mathcal{L}-homomorphisms, then there is an \mathcal{L}-formula ψ of $\mathcal{L}_{\lambda^+,\lambda}$ such that $R \vDash_x \psi$.
Another consequence is the conceptual completeness theorem for $\mathcal{L}_{\kappa^+, \kappa}$:

Theorem

(Infinitary conceptual completeness) If a λ^+-coherent functor $I : \mathcal{P} \to \mathcal{S}$, where \mathcal{P} is a λ^+-pretopos, induces an equivalence between their categories of models $I^* : \text{Mod}(\mathcal{S}) \to \text{Mod}(\mathcal{P})$, then I is itself an equivalence.
The λ-classifying topos of a κ-theory

Another consequence is the conceptual completeness theorem for $\mathcal{L}_{\kappa^+,\kappa}$:

Theorem

(Infinitary conceptual completeness) If a λ^+-coherent functor $I : \mathcal{P} \rightarrow \mathcal{S}$, where \mathcal{P} is a λ^+-pretopos, induces an equivalence between their categories of models $I^* : \text{Mod}(\mathcal{S}) \rightarrow \text{Mod}(\mathcal{P})$, then I is itself an equivalence.

Theorem

(Infinitary Joyal) If \mathcal{T} is intuitionistic first-order, the functor:

$$ev : \mathcal{C}_\mathcal{T} \rightarrow \text{Set}^{\text{Mod}_{\lambda}(\mathcal{T})}$$

preserves universal quantification.

Christian Espíndola (POSTDOCTORAL RESDuality, definability and conceptual completer)
The λ-classifying topos of a κ-theory

Another consequence is the conceptual completeness theorem for $\mathcal{L}_{\kappa^+,\kappa}$:

Theorem

(Infinitary conceptual completeness) If a λ^+-coherent functor $I : \mathcal{P} \rightarrow \mathcal{S}$, where \mathcal{P} is a λ^+-pretopos, induces an equivalence between their categories of models $I^* : \text{Mod}(\mathcal{S}) \rightarrow \text{Mod}(\mathcal{P})$, then I is itself an equivalence.

Theorem

(Infinitary Joyal) If \mathcal{T} is intuitionistic first-order, the functor:

\[\text{ev} : \mathcal{C}_\mathcal{T} \rightarrow \text{Set}^{\text{Mod}_\lambda(\mathcal{T})} \]

preserves universal quantification.

This version of Joyal’s theorem provides a proof of completeness with respect to Kripke models for theories in $\mathcal{L}_{\kappa^+,\kappa,\kappa}$.
Consider a \(\lambda \)-accessible category \(K \) and the subcategory \(\text{Pres}_\lambda(K) \) of its \(\lambda \)-presentable objects. Then the category of \(\lambda \)-points of the presheaf topos \(\text{Set}^{\text{Pres}_\lambda(K)} \) is equivalent to \(K \) itself.
Consider a λ-accessible category K and the subcategory $\text{Pres}_\lambda(K)$ of its λ-presentable objects. Then the category of λ-points of the presheaf topos $\text{Set}^{\text{Pres}_\lambda(K)}$ is equivalent to K itself. Since K is the category of models of an infinitary theory, the previous observation could produce a syntax-semantics duality provided we can give an intrinsic characterization of the syntactic side.
Consider a λ-accessible category K and the subcategory $\text{Pres}_\lambda(K)$ of its λ-presentable objects. Then the category of λ-points of the presheaf topos $\text{Set}^{\text{Pres}_\lambda(K)}$ is equivalent to K itself. Since K is the category of models of an infinitary theory, the previous observation could produce a syntax-semantics duality provided we can give an intrinsic characterization of the syntactic side.

Definition

A functor $F : C \to D$ between λ-accessible categories is λ-coherent if the induced functor $F^* : FC_\lambda(D, \text{Set}) \to FC_\lambda(C, \text{Set})$ preserves λ-coherent objects.
Duality and descent

Theorem

(Infinitary Stone duality) Let $\lambda > \kappa$ be weakly compact. There is a (bi-)equivalence (given by homming into Set) between the following categories:

1. A: λ-pretopos completion of (syntactic categories of) theories in $\mathcal{L}_{\lambda,\lambda}$ with less than λ axioms; λ-pretopos morphisms; natural transformations.

2. B: μ-accessible categories for $\mu < \lambda$; λ-accessible, λ-coherent functors preserving λ-presentable objects; natural transformations.

Corollary

The category of A-morphisms between two objects T and S, in A, is equivalent to the category of B-morphisms between $\text{Mod}(S)$ and $\text{Mod}(T)$.
Theorem

(Infinitary Stone duality) Let $\lambda > \kappa$ be weakly compact. There is a (bi-)equivalence (given by homming into $\mathbb{S}et$) between the following categories:

1. A: λ-pretopos completion of (syntactic categories of) theories in $\mathcal{L}_{\lambda,\lambda}$ with less than λ axioms; λ-pretopos morphisms; natural transformations.

2. B: μ-accessible categories for $\mu < \lambda$; λ-accessible, λ-coherent functors preserving λ-presentable objects; natural transformations.

Corollary

The category of A-morphisms between two objects T and S, in A, is equivalent to the category of B-morphisms between $\text{Mod}(S)$ and $\text{Mod}(T)$.

Christian Espíndola (POSTDOCTORAL RESEARCHER AT MASARYK UNIVERSITY BRNO, CZECH REPUBLIC)
Definability, conceptual completeness and Kripke completeness results all imply their versions when κ is weakly compact and the theories are taken in $\mathcal{L}_{\kappa,\kappa}$. In particular, they work for $\kappa = \omega$, which gives the usual corresponding finitary results.
Definability, conceptual completeness and Kripke completeness results all imply their versions when κ is weakly compact and the theories are taken in $\mathcal{L}_{\kappa,\kappa}$. In particular, they work for $\kappa = \omega$, which gives the usual corresponding finitary results.

It turns out that the previous duality theorem is flexible enough to cast Zawadowski’s argument for the descent theorem, which simplifies his proof. We get:

Theorem (Infinitary Zawadowski) If κ is strongly compact, conservative κ-pretopos morphisms between κ-pretoposes are of effective descent.
Definability, conceptual completeness and Kripke completeness results all imply their versions when κ is weakly compact and the theories are taken in $\mathcal{L}_{\kappa,\kappa}$. In particular, they work for $\kappa = \omega$, which gives the usual corresponding finitary results.

It turns out that the previous duality theorem is flexible enough to cast Zawadowski’s argument for the descent theorem, which simplifies his proof. We get:

Theorem

(Infinitary Zawadowski) If κ is strongly compact, conservative κ-pretopos morphisms between κ-pretopose are of effective descent.
Categoricity and the λ-classifying topos

The completeness theorem allows to generalize a result of Barr and Makkai on the classifying topos of categorical theories:

Theorem

Let κ be a regular cardinal such that $\kappa < \kappa = \kappa$. Let T be a theory in a κ-fragment of $L_{\kappa + \kappa}$. Then for any $\lambda \geq \kappa$ such that $\lambda < \lambda = \lambda$, T is λ-categorical if and only if the λ-classifying topos of the theory:

$T_{\lambda} := T \cup \{"there are \lambda distinct elements"\}$

is two-valued and Boolean (alternatively, atomic and connected).

Corollary

A κ-separable κ-topos has a unique point of cardinality at most κ (up to isomorphism) if and only if it is two-valued and Boolean (alternatively, atomic and connected).
Categoricity and the λ-classifying topos

The completeness theorem allows to generalize a result of Barr and Makkai on the classifying topos of categorical theories:

Theorem

Let κ be a regular cardinal such that $\kappa^{<\kappa} = \kappa$. Let \mathbb{T} be a theory in a κ-fragment of $\mathcal{L}_{\kappa^+,\kappa}$. Then for any $\lambda \geq \kappa$ such that $\lambda^{<\lambda} = \lambda$, \mathbb{T} is λ-categorical if and only if the λ-classifying topos of the theory:

$$\mathbb{T}_\lambda := \mathbb{T} \cup \{\text{“there are } \lambda \text{ distinct elements”}\}$$

is two-valued and Boolean (alternatively, atomic and connected).
Categoricity and the \(\lambda \)-classifying topos

The completeness theorem allows to generalize a result of Barr and Makkai on the classifying topos of categorical theories:

Theorem

Let \(\kappa \) be a regular cardinal such that \(\kappa^{<\kappa} = \kappa \). Let \(T \) be a theory in a \(\kappa \)-fragment of \(\mathcal{L}_{\kappa^+,\kappa} \). Then for any \(\lambda \geq \kappa \) such that \(\lambda^{<\lambda} = \lambda \), \(T \) is \(\lambda \)-categorical if and only if the \(\lambda \)-classifying topos of the theory:

\[
T_\lambda := T \cup \{ \text{“there are } \lambda \text{ distinct elements”} \}
\]

is two-valued and Boolean (alternatively, atomic and connected).

Corollary

A \(\kappa \)-separable \(\kappa \)-topos has a unique point of cardinality at most \(\kappa \) (up to isomorphism) if and only if it is two-valued and Boolean (alternatively, atomic and connected).
Categoricity and the \(\lambda \)-classifying topos

The completeness theorem allows to generalize a result of Barr and Makkai on the classifying topos of categorical theories:

Theorem

Let \(\kappa \) be a regular cardinal such that \(\kappa^{<\kappa} = \kappa \). Let \(\mathbb{T} \) be a theory in a \(\kappa \)-fragment of \(\mathcal{L}_{\kappa^+,\kappa} \). Then for any \(\lambda \geq \kappa \) such that \(\lambda^{<\lambda} = \lambda \), \(\mathbb{T} \) is \(\lambda \)-categorical if and only if the \(\lambda \)-classifying topos of the theory:

\[
\mathbb{T}_\lambda := \mathbb{T} \cup \{ "there are \lambda distinct elements" \}
\]

is two-valued and Boolean (alternatively, atomic and connected).

Corollary

A \(\kappa \)-separable \(\kappa \)-topos has a unique point of cardinality at most \(\kappa \) (up to isomorphism) if and only if it is two-valued and Boolean (alternatively, atomic and connected).
Shelah’s eventual categoricity conjecture

Shelah’s conjecture is an infinitary version of the behaviour of models of uncountable categorical theories:

Theorem

(Morley) If a countable theory \mathbb{T} is categorical in an uncountable cardinal λ, then it is categorical in every uncountable cardinal λ.

Shelah extended this theorem to the case of uncountable theories and conjectured that, more generally, an eventual version holds for models of theories in $\mathcal{L}_{\omega_1,\omega}$ and even more general classes of models known as abstract elementary classes:

Conjecture

(Shelah) If a theory in $\mathcal{L}_{\omega_1,\omega}$ is categorical in a sufficiently high cardinal $\lambda \geq \kappa$, then it is categorical in all $\lambda \geq \kappa$.
Shelah’s eventual categoricity conjecture

Let $\textbf{Set}[\mathbb{T}]_\lambda$ be the λ-classifying topos of \mathbb{T}. Suppose \mathbb{T} is λ-categorical and let M_0 be its unique model of cardinality λ.
Shelah’s eventual categoricity conjecture

Let $\text{Set}[\mathbb{T}]_\lambda$ be the λ-classifying topos of \mathbb{T}. Suppose \mathbb{T} is λ-categorical and let M_0 be its unique model of cardinality λ.

$\text{Set}[\mathbb{T}_\lambda]_{\lambda^+} \cong \text{Set}^{M_0^{\text{op}}}$

$\text{Set}[\mathbb{T}^1]_{\lambda^+} \cong \text{Set}^{\mathbb{M}_0^{\text{op}}}$

$\text{Set}[\mathbb{T}_1^{\lambda^+}]_{\lambda^+} \cong \text{Sh}(\mathbb{M}_0^{\text{op}}, \tau_D)$

$\text{Set}[\mathbb{T}_1^{\lambda^+}]_{\lambda^+} \cong \text{Set}^{\mathbb{M}_1^{\text{op}}}$

$\text{Set}[\mathbb{T}^2]_{\lambda^+} \cong \text{Sh}(\mathbb{M}_1^{\text{op}}, \tau_D^1)$

Christian Espíndola (POSTDOCTORAL RESEARCHER AT MASARYK UNIVERSITY BRNO, CZECH REPUBLIC)

July 11th, 2019 14 / 15
Thank you!