What is a monoid? How I learnt to stop worrying and love skewness

Paul Blain Levy

University of Birmingham

July 12, 2019

The notion of monoid can be defined in each of these settings.

A monoid consists of

- an object *a*, the carrier
- a map $e: 1 \rightarrow a$, the unit
- a map $m \colon a \otimes a \to a$, the multiplication

Three diagrams must commute:

- Associativity
- Left unitality
- Right unitality.

- Monoid = monoid in \mathbf{Set} .
- Ring = monoid in Ab.
- Algebra = monoid in $\mathbf{Vect}_{\mathbb{R}}$.
- Quantale = monoid in CompSupLatt.
- Regular^{*} cardinal = monoid in Card.
- Monad on \mathcal{C} = monoid in $[\mathcal{C}, \mathcal{C}]$.

- Monoid = monoid in \mathbf{Set} .
- Ring = monoid in Ab.
- Algebra = monoid in $\mathbf{Vect}_{\mathbb{R}}$.
- Quantale = monoid in CompSupLatt.
- Regular^{*} cardinal = monoid in Card.
- Monad on \mathcal{C} = monoid in $[\mathcal{C}, \mathcal{C}]$.
- Monad on an object c of a bicategory.

In a multicategory, a morphism ("multi-map") goes from a list of objects to an object.

$$f \colon \overrightarrow{a} \to b$$

Example

Vector spaces and multilinear maps.

We have an identity maps $\operatorname{id}_a \colon a \to a$

and can compose $f : \overrightarrow{a} \to b_i$ with $g : \overrightarrow{b} \to c$.

Four equations must be satisfied.

A virtual bicategory has

- objects
- morphisms—not composable
- 2-cells

A virtual bicategory has

- objects
- morphisms—not composable
- 2-cells

Also: virtual double categories.

Monoids and monads, using multi-maps

Monoid in a multicategory

A monoid consists of an object a and multi-maps

 $e\colon \to a \qquad \qquad m\colon a,a\to a$

satisfying associativity, left and right unitality.

Monad on an object of a virtual bicategory

A monad on a consists of a 1-cell $g \colon a \to a$ and 2-cells

satisfying associativity, left and right unitality.

Often said

Small category = monad in the bicategory \mathbf{Span} .

Often said

Small category = monad in the bicategory \mathbf{Span} .

A category C is light (or "moderate and locally small")

when $|\mathcal{C}|$ is a class, and each $\mathcal{C}(a, b)$ is a set.

Light category = monad in ?

Often said

Small category = monad in the bicategory \mathbf{Span} .

A category C is light (or "moderate and locally small")

```
when |\mathcal{C}| is a class, and each \mathcal{C}(a, b) is a set.
```

```
Light category = monad in ?
```

Answer

The virtual bicategory of classes and set-valued relations.

A set-valued relation $A \rightarrow B$ is a family of sets $(\mathcal{C}(a, b))_{a \in A, b \in B}$.

Composites don't exist; they would be class-valued.

Let **Bimod** be the virtual bicategory of light categories and bimodules. A (light) bimodule $\mathcal{C} \twoheadrightarrow \mathcal{D}$ is a functor $\mathcal{C}^{op} \times \mathcal{D} \to \mathbf{Set}$. Composites of bimodules don't exist: they would be functors to **Class**. Let **Bimod** be the virtual bicategory of light categories and bimodules. A (light) bimodule $\mathcal{C} \rightarrow \mathcal{D}$ is a functor $\mathcal{C}^{op} \times \mathcal{D} \rightarrow \mathbf{Set}$. Composites of bimodules don't exist: they would be functors to **Class**. A monad in **Bimod** on \mathcal{C} is a (Heunen-Jacobs) arrow on \mathcal{C} i.e. an identity-on-objects functor $\mathcal{C} \rightarrow \mathcal{D}$.

- Let **Bimod** be the virtual bicategory of light categories and bimodules. A (light) bimodule $\mathcal{C} \twoheadrightarrow \mathcal{D}$ is a functor $\mathcal{C}^{op} \times \mathcal{D} \to \mathbf{Set}$. Composites of bimodules don't exist: they would be functors to **Class**. A monad in **Bimod** on \mathcal{C} is a (Heunen-Jacobs) arrow on \mathcal{C} i.e. an identity-on-objects functor $\mathcal{C} \to \mathcal{D}$.
- We can adapt this example to include strength. (Freyd category)

In some multicategories, tensors don't exist.

In others they exist but are complicated,

Compare:

- A quantale is a monoid in the monoidal category CompSupLatt.
- \bullet A quantale is a monoid in the multicategory ${\bf CompSupLatt}.$

The latter is easy to unpack.

A left skew monoidal category consists of

- \bullet a category ${\cal C}$
- an object 1
- a bifunctor $\otimes \colon \mathcal{C} \times \mathcal{C} \to \mathcal{C}$
- an associator $(a \otimes b) \otimes c \rightarrow a \otimes (b \otimes c)$
- a left unitor $1 \otimes c \to c$
- a right unitor $a \to a \otimes 1$

satisfying five coherence laws.

In a skew monoidal category,

we can define monoids just as in a monoidal category.

Example: relative monads

Under certain size conditions:

relative monads are monoids in a skew monoidal category.

(Altenkirch, Chapman, Uustalu)

The notion of monoid in a multicategory generalizes to

- monoid in a left skew monoidal category
- monoid in a right skew monoidal category
- monoid in a multicategory.

The notion of monoid in a multicategory generalizes to

- monoid in a left skew monoidal category
- monoid in a right skew monoidal category
- monoid in a multicategory.

Bourke and Lack introduced skew multicategories.

- Bourke, Lack; Veltri, Uustalu, Zeilberger
- In a left skew multicategory C, a morphism goes from $s[\overrightarrow{a}]$ where the house \overrightarrow{a} is a list of objects.
- and the left stoup s is either nothing or an object.

- Bourke, Lack; Veltri, Uustalu, Zeilberger
- In a left skew multicategory C, a morphism goes from $s[\overrightarrow{a}]$ where the house \overrightarrow{a} is a list of objects.
- and the left stoup s is either nothing or an object.
- A morphism f from $c[\overrightarrow{a}]$ can be left-housed giving $f^{[}$ from $[c, \overrightarrow{a}]$.

- Bourke, Lack; Veltri, Uustalu, Zeilberger
- In a left skew multicategory C, a morphism goes from $s[\overrightarrow{a}]$ where the house \overrightarrow{a} is a list of objects.
- and the left stoup s is either nothing or an object.
- A morphism f from $c[\overrightarrow{a}]$ can be left-housed giving $f^{[}$ from $[c, \overrightarrow{a}]$. When left-housing is invertible, C is "just" a multicategory.

- In a bi-skew multicategory, a morphism goes from $s[\overrightarrow{a}]t$.
- The house \overrightarrow{a} is a list of objects.
- The left stoup s is either nothing or an object.
- The right stoup t is either nothing or an object.

- In a bi-skew multicategory, a morphism goes from $s[\overrightarrow{a}]t$.
- The house \overrightarrow{a} is a list of objects.
- The left stoup s is either nothing or an object.
- The right stoup t is either nothing or an object.
- We have left and right housing.
- They commute for a morphism from $c[\overrightarrow{a}]d$.

- In a bi-skew multicategory, a morphism goes from $s[\overrightarrow{a}]t$.
- The house \overrightarrow{a} is a list of objects.
- The left stoup s is either nothing or an object.
- The right stoup t is either nothing or an object.
- We have left and right housing.
- They commute for a morphism from $c[\overrightarrow{a}]d$.
- If right housing is an isomorphism, then it's "just" left skew.

- In a bi-skew multicategory, a morphism goes from $s[\overrightarrow{a}]t$.
- The house \overrightarrow{a} is a list of objects.
- The left stoup s is either nothing or an object.
- The right stoup t is either nothing or an object.
- We have left and right housing.
- They commute for a morphism from $c[\overrightarrow{a}]d$.
- If right housing is an isomorphism, then it's "just" left skew.
- 3 kinds of composition, 3 kinds of identity.

- A monoid consists of
- an object a and multi-maps $e: [] \to a$ and $m: a[]a \to a$ Associativity $a[a]a \to a$ Left unitality $a[] \to a$. Right unitality $[]a \to a$.

following:

- For each $x \in X, y \in Y$, a set $\mathcal{C}(x, y)$ of morphisms $x \to y$.
- For each $i \in I$, an identity $id_i \colon \alpha(i) \to \beta(i)$.

• For each $f: x \to \beta(i)$ and $g: \alpha(i) \to y$, a composite $f; g: x \to y$. Equations:

- Left identity for $g \colon \alpha(i) \to y$.
- Right identity for $f \colon x \to \beta(i)$.

• Associativity for $f \colon x \to \beta(i)$ and $g \colon \alpha(i) \to \beta(j)$ and $h \colon \alpha(j) \to y$.

Category on the span = monoid in ?

An object is a family of sets $(\mathcal{A}(x, y))_{x \in X, y \in Y}$ A map $\mathcal{A}[\mathcal{B}]\mathcal{C} \to \mathcal{D}$ is a family of functions

 $\mathcal{A}(x,\beta(i)) \times \mathcal{B}(\alpha(i),\beta(j)) \times \mathcal{C}(\beta(j),y) \to \mathcal{D}(x,y)$

A map $\mathcal{A}[\mathcal{B}] \to \mathcal{D}$ is a family of functions

 $\mathcal{A}(x,\beta(i)) \times \mathcal{B}(\alpha(i),\beta(j)) \to \mathcal{D}(x,\beta(j))$

Let \mathcal{O} be a bimodule $\mathcal{A} \rightarrow \mathcal{B}$.

For example $\mathbf{FinSet}\ { \rightarrow } \mathbf{Set}$ giving function sets.

A relative monad on \mathcal{O} provides

• for each $a \in \mathcal{A}$, an object $Ta \in \mathcal{B}$ and unit $\eta_a \colon a \to Ta$

• for each \mathcal{O} -map $f \colon a \to Tb$, a \mathcal{D} -map $f^* \colon Ta \to Tb$

subject to the three "Kleisli triple" laws.

Relative monad = monoid in ?

An object is a function $|\mathcal{A}| \to |\mathcal{B}|$. A map $S[T_0, T_1] \to U$ is a family of maps $\mathcal{O}(a_0, T_0 a_1) \times \mathcal{O}(a_1, T_1 a_2) \to \mathcal{D}(Sa_0, Ua_2)$ A map $[T_0, T_1] \to U$ is a family of maps $\mathcal{O}(a_0, T_0 a_1) \times \mathcal{O}(a_1, T_1 a_2) \to \mathcal{O}(a_0, Ua_2)$

Call-by-push-value: the type constructor F

- Two kinds of terms: values (e.g. variables) and computations.
- Two kinds of type: value type A and computation type \underline{B} .
- FA is the type of computations that aim to return a value of type A.

$$\frac{\Gamma \vdash^{\mathsf{v}} V : A}{\Gamma \vdash^{\mathsf{c}} \operatorname{return} V : FA} \qquad \frac{\Gamma \vdash^{\mathsf{c}} M : FA \quad \Gamma, x : A \vdash^{\mathsf{c}} N : \underline{B}}{\Gamma \vdash^{\mathsf{c}} M \text{ to } x. \ N : \underline{B}}$$
ree laws
$$(M \text{ to } x. \ N) \text{ to } y. \ P = M \text{ to } x. \ (N \text{ to } y. \ P)$$

$$(\operatorname{return} V) \text{ to } x. \ M = M[V/x]$$

$$M = M \text{ to } x. \text{ return } x$$

M

\bullet In any bi-skew multicategory $\mathcal C$, we have a notion of a monoid.

- \bullet In any bi-skew multicategory $\mathcal{C},$ we have a notion of a monoid.
- If C is a monoidal category or multicategory, this is just the standard notion of monoid.

- In any bi-skew multicategory C, we have a notion of a monoid.
- If C is a monoidal category or multicategory, this is just the standard notion of monoid.
- By choosing an appropriate bi-skew multicategory, the following notions are monoid notions:
 - category on a given span of classes
 - $\bullet\,$ model of the F fragment of call-by-push-value
 - relative monad on a bimodule
 - guardedness predicate.

- In any bi-skew multicategory C, we have a notion of a monoid.
- If C is a monoidal category or multicategory, this is just the standard notion of monoid.
- By choosing an appropriate bi-skew multicategory, the following notions are monoid notions:
 - category on a given span of classes
 - $\bullet\,$ model of the F fragment of call-by-push-value
 - relative monad on a bimodule
 - guardedness predicate.

THANKS FOR LISTENING!