The (big) infinitesimal topos as a classifying topos

Matthias Hutzler

Universität Augsburg

CT 2019

Goal: Understand toposes from algebraic geometry (from a logical perspective).

Promise: You will fully understand the key ingredient of the proof (in a simplified case)!

Ex: $[C^{op}, Set]$ is a topos.

Ex: $[C^{\text{op}}, \mathbf{Set}]$ is a topos. **Ex:** Sh(X) is a topos.

Definition

A site is a small category C together with a Grothendieck topology J, distinguishing some covering families $(c_i \rightarrow c)_{i \in I}$. A sheaf is a presheaf $F : C^{\text{op}} \rightarrow \mathbf{Set}$ satisfying a "glueing" condition for every covering family $(c_i \rightarrow c)_{i \in I}$.

Definition

A (Grothendieck) topos is a category equivalent to some Sh(C, J).

Geometric theories

A geometric theory consists of:

- sorts
- function symbols
- relation symbols
- axioms

The theory of rings:

- one sort: A
- five function symbols: $0, 1 : A, +, \cdot : A \times A \rightarrow A,$ $- : A \rightarrow A$
- no relation symbols
- eight axioms:

. . .

$$0 + x = x, x \cdot y = y \cdot x,$$

Geometric theories

A geometric theory consists of:

- sorts
- function symbols
- relation symbols
- axioms $\phi \vdash \psi$, where ϕ and ψ may contain $\top, \bot, \land, \lor, \bigvee, \exists$ but no $\bigwedge, \forall, \Rightarrow, \neg$

The theory of *local* rings:

- one sort: A
- five function symbols: $0, 1: A, +, \cdot : A \times A \rightarrow A,$ $-: A \rightarrow A$
- no relation symbols

• eight axioms:

$$\begin{array}{c} \top \vdash_{x} 0 + x = x, \\ \top \vdash_{x,y} x \cdot y = y \cdot x, \\ \dots, \\ 0 = 1 \vdash \bot, \\ x + y = 1 \vdash_{x,y} \\ (\exists z. xz = 1) \lor (\exists z. yz = 1) \end{array}$$

Definition

A classifying topos for $\mathbb T$ is a topos $\textbf{Set}[\mathbb T]$ with

```
\mathbb{T}(\mathcal{E})\simeq \text{Geom}(\mathcal{E},\text{Set}[\mathbb{T}])
```

for every topos \mathcal{E} .

In other words, there is a *universal model* of \mathbb{T} in **Set**[\mathbb{T}].

Theorem

Every geometric theory has a classifying topos. Every topos classifies some geometric theory.

Theories of presheaf type

Definition

 \mathbb{T} is of presheaf type if $\mathbf{Set}[\mathbb{T}] \simeq [C^{\mathrm{op}}, \mathbf{Set}]$ for some C.

Theorem

Any algebraic theory is of presheaf type. Any Horn theory (only \top, \land , no $\bot, \lor, \bigvee, \exists$) is of presheaf type. Any cartesian theory is of presheaf type.

Theories of presheaf type

Definition

 \mathbb{T} is of presheaf type if $\mathbf{Set}[\mathbb{T}] \simeq [C^{\mathrm{op}}, \mathbf{Set}]$ for some C.

Theorem

Any algebraic theory is of presheaf type. Any Horn theory (only \top, \land , no $\bot, \lor, \bigvee, \exists$) is of presheaf type. Any cartesian theory is of presheaf type.

Theorem

If \mathbb{T} is of presheaf type, then $\mathbf{Set}[\mathbb{T}] \simeq [\mathbb{T}(\mathbf{Set})_c, \mathbf{Set}]$, where $-_c$ denotes the compact objects (those for which $\operatorname{Hom}_{\mathbb{T}(\mathbf{Set})}(M, -)$ preserves filtered colimits).

Ex: The theory of rings is classified by $[\operatorname{Ring}_c, \operatorname{Set}] = [\operatorname{Ring}_{fp}, \operatorname{Set}]$. **Ex:** The *object classifier* is $[\operatorname{Set}_c, \operatorname{Set}] = [\operatorname{FinSet}, \operatorname{Set}]$. additional axioms \leftrightarrow subtopos \leftrightarrow Grothendieck topology

Example

For $\mathbb{T} =$ theory of rings, the axioms

• $0 = 1 \vdash \bot$

•
$$x + y = 1 \vdash_{x,y} (\exists z. xz = 1) \lor (\exists z. yz = 1)$$

mean:

- The zero-ring is covered by the empty family.
- A is covered by $A[x^{-1}]$ and $A[y^{-1}]$ whenever x + y = 1.

Corollary

The (big) Zariski topos classifies the theory of local rings.

The infinitesimal topos (simple version)

Definition

The (big) infinitesimal topos is Sh(C, J) with C, J as follows.

 $\begin{array}{ll} \mathfrak{a} \hookrightarrow A \\ \downarrow & \downarrow \\ \mathfrak{a}' \hookrightarrow A' \end{array} \qquad \begin{array}{ll} C = \{ \text{finitely presented rings } A \text{ with a finitely} \\ \text{generated ideal } \mathfrak{a} \subseteq A \text{ such that every element} \\ \text{of } \mathfrak{a} \text{ is nilpotent} \}^{\mathrm{op}} \end{array}$

Hey, this is the category of compact models of a geometric theory \mathbb{T}_{inf} !

The infinitesimal topos (simple version)

Definition

The (big) infinitesimal topos is Sh(C, J) with C, J as follows.

$$\begin{array}{ll} \mathfrak{a} \hookrightarrow \mathcal{A} & \qquad \mathcal{C} = \{ \text{finitely presented rings } \mathcal{A} \text{ with a finitely} \\ & \downarrow & \downarrow \\ \mathfrak{a}' \hookrightarrow \mathcal{A}' & \qquad \qquad \mathcal{C} = \{ \text{finitely presented rings } \mathcal{A} \text{ with a finitely} \\ & \qquad \text{generated ideal } \mathfrak{a} \subseteq \mathcal{A} \text{ such that every element} \\ & \qquad \text{of } \mathfrak{a} \text{ is nilpotent} \}^{\mathrm{op}} \end{array}$$

Hey, this is the category of compact models of a geometric theory $\mathbb{T}_{\inf}!$

J =Zariski topology on C.

This will correspond to "local ring" axioms again.

The key ingredient: Is \mathbb{T}_{inf} of presheaf type?

 $\mathfrak{a} \subseteq A$ with

$$\top \vdash 0 \in \mathfrak{a}$$

$$x \in \mathfrak{a} \vdash_{x,y} x \cdot y \in \mathfrak{a}$$

$$x \in \mathfrak{a} \land y \in \mathfrak{a} \vdash_{x,y} x + y \in \mathfrak{a}$$

$$x \in \mathfrak{a} \vdash_{x} \bigvee_{n \in \mathbb{N}} x^{n} = 0$$

 $\mathfrak{a} \subseteq A$ with $\mathfrak{a}_n \subseteq A$, for each $n \in \mathbb{N}$, with

$$\begin{array}{cccc} \top \ \vdash \ 0 \in \mathfrak{a} & x \in \mathfrak{a}_n \ \dashv \vdash_x \ x^n = 0 \land x \in \mathfrak{a}_{n+1} \\ x \in \mathfrak{a} \land y \in \mathfrak{a} \ \vdash_{x,y} \ x + y \in \mathfrak{a} & \top \ \vdash \ 0 \in \mathfrak{a}_1 \\ x \in \mathfrak{a} \ \vdash_x \ \bigvee_{n \in \mathbb{N}} x^n = 0 & x \in \mathfrak{a}_n \ \vdash_{x,y} \ x \cdot y \in \mathfrak{a}_n \\ x \in \mathfrak{a}_n \land y \in \mathfrak{a} \ \vdash_{x,y} \ x + y \in \mathfrak{a}_{2n-1} \end{array}$$

These theories are Morita equivalent!

Let R be a finitely presented K-algebra.

Theorem

The big infinitesimal topos of Spec R/Spec K classifies the theory of surjective K-algebra homomorphisms $f : A \rightarrow B$ into an R-algebra B with locally nilpotent kernel.

$$\begin{array}{cccc} K & \longrightarrow & R & & \top & \vdash_{y:B} & \exists x : A. \ f(x) = y \\ \downarrow & & \downarrow & & \\ A & \stackrel{f}{\longrightarrow} & B & & & f(x) = 0 & \vdash_{x:A} & \bigvee_{n \in \mathbb{N}} x^n = 0 \end{array}$$

Proof idea: Start with algebraic theory, $f : A \rightarrow B$. Show that the induced topology is *rigid*.

- What about the crystalline topos? [Coming soon!]
- Can we apply this in algebraic geometry?

For more details see:

https://gitlab.com/MatthiasHu/master-thesis/raw/master/ thesis.pdf