Profinite Monads and Reiterman’s Theorem

J. Adámek, L.-T. Chen, S. Milius and H. Urbat

Category Theory 2019
Edinburgh
The Birkhoff Variety Theorem (1935)

- **The Birkhoff Theorem**
 - \(\mathcal{A} \) a full subcategory of \(\Sigma\text{-Alg} \):
 - \(\mathcal{A} \) presentable by equations
 - \(\iff \) variety \((= \text{HSP class}) \)

\[
\begin{align*}
\text{regular quotients} & \quad \text{subobjects} \quad \text{products}
\end{align*}
\]
The Birkhoff Variety Theorem (1935)

- **The Birkhoff Theorem**
 \(\mathcal{A} \) a full subcategory of \(\Sigma\text{-Alg} \):
 \(\mathcal{A} \) presentable by equations
 \(\iff \) variety \((= \text{HSP class})\)

 - regular quotients
 - subobjects
 - products

- **Lawvere**: equations are pairs of \(n.t. \) \(\alpha : U^n \to U \) for

 \[U : \Sigma\text{-Alg} \to \text{Set} \]

 An algebra \(A \) satisfies \(\alpha = \alpha' \) iff \(\alpha_A = \alpha'_A \)
The Reiterman Theorem (1982)

- **The Reiterman Theorem**
 - \mathcal{A} a full subcategory of $(\Sigma\text{-Alg})_f$:
 - \mathcal{A} presentable by pseudoequations
 - \Leftrightarrow pseudovariety ($= \text{HSP}_f$ class)
The Reiterman Theorem (1982)

- **The Reiterman Theorem**
 \(\mathcal{A} \) a full subcategory of \((\Sigma\text{-Alg})_f\):
 - \(\mathcal{A} \) presentable by pseudoequations
 - \(\Leftrightarrow \) pseudovariety (= HSP\(_f\) class)

- **\(U_f : (\Sigma\text{-Alg})_f \rightarrow \text{Set}_f \)**
 - Pseudoequations are pairs of \(n.t. \) \(\alpha : U_{f}^{n} \rightarrow U_{f} \)
 - A finite algebra \(A \) satisfies \(\alpha = \alpha' \) iff \(\alpha_A = \alpha'_A \)
The Reiterman Theorem (1982)

- **Example** Un, unary algebras

 \[\sigma : A \rightarrow A \]

 A finite $\Rightarrow \exists n : \sigma^n = (\sigma^n)^2$

 Notation : $\sigma^* = \sigma^n$

 Pseudoequation : $\sigma^*(x) = x$

 presents : finite algebras with σ invertible
Banaschewski and Herrlich (1976)

- \mathcal{D} a complete category
- $(\mathcal{E}, \mathcal{M})$ a proper factorization system (e.g. regular epi - mono)
 notation \twoheadrightarrow and \hookrightarrow
- \mathcal{D} has enough projectives $X: \forall D \exists X \twoheadrightarrow D$

Definitions An equation $e: X \twoheadrightarrow A$, X projective.

It is satisfied by $D \in \mathcal{D}$ if $X \xrightarrow{\forall f} D \xrightarrow{\exists} A$

(D is e-injective)

Theorem A full subcategory \mathcal{A} of \mathcal{D}:

\mathcal{A} presentable by equations \iff a variety ($= HSP$ class)
Assume: \(\mathcal{D} \) and \((\mathcal{E}, \mathcal{M})\) as above

\[\mathcal{D}_f \subseteq \mathcal{D} \] full subcategory closed under \(S \) and \(P_f \)

'finite' objects
Assume: \mathcal{D} and $(\mathcal{E}, \mathcal{M})$ as above
$\mathcal{D}_f \subseteq \mathcal{D}$ full subcategory closed under S and P_f
'finite' objects

Definition A **pseudovariety** is a full subcategory of \mathcal{D}_f
closed under HSP_f.
Definition A quasi-equation over X (projective) is a semilattice Ω of finite quotients $e: X \rightarrow A$ ($A \in D_f$)

\[\forall e, e' \in \Omega \]

\[\bar{e} = e \wedge e' \in \Omega \]

\[A' \rightleftharpoons A \leftleftharpoons A'' \]

\[A' \times A'' \]
Pseudovariety Presentation

- **Definition** A *quasi-equation* over X (projective) is a semilattice Ω of finite quotients $e : X \rightarrow A$ ($A \in D_f$)

- **Diagram**

 \[
 \begin{array}{c}
 X \\
 \downarrow e \quad \downarrow e' \\
 \downarrow \bar{e} \\
 \bar{A} \\
 \downarrow u' \quad \downarrow u'' \\
 A' \quad A'' \\
 \end{array}
 \]

 $\forall e, e' \in \Omega$

 $\bar{e} = e \land e' \in \Omega$

 $A' \times A''$

- **An object** D satisfies Ω if it is injective:

 \[
 \begin{array}{c}
 X \\
 \downarrow \forall f \\
 \Downarrow \exists e \in \Omega \\
 \Downarrow \exists A \\
 \end{array}
 \]

 \[
 D
 \]

J. Adámek, L.-T. Chen, S. Milius and H. Urbat

Profinite Monads and Reiterman’s Theorem
Proposition \mathcal{A} a full subcategory of \mathcal{D}_f:

\mathcal{A} presentable by quasi-equations $\iff \mathcal{A}$ a pseudovariety
Proposition \(\mathcal{A} \) a full subcategory of \(D_f \):
\(\mathcal{A} \) presentable by quasi-equations \(\iff \mathcal{A} \) a pseudovariety

Proof \(\iff \) For every \(X \) projective

\[\Omega_X : X \to A(A \in \mathcal{A}) \]

\(\Omega_X \) semilattice \(\iff \mathcal{A} \) is \(SP_f \)-class
\(D \in \mathcal{A} \implies D \) satisfies \(\Omega_X \) \(\ldots \) trivial

\(D \) satisfies each \(\Omega_X \) \(\implies D \in \mathcal{A} \): choose \(X \)

\[\xymatrix{ X \ar[r]^f & D \ar@/^1pc/[l] \ar@/_1pc/[l] } \]

\(X \) projective, \(e \in \mathcal{E} \), \(A \in \mathcal{A} \implies D \in \mathcal{A} \)
Our Goal

- Given: \mathcal{D}, $(\mathcal{E}, \mathcal{M})$ and \mathcal{D}_f as above
 - \mathcal{T} a monad on \mathcal{D} preserving \mathcal{E}
- Describe pseudovarieties in $\mathcal{D}^\mathcal{T}$ by equations
 in some extension of $\mathcal{D}^\mathcal{T}$
Our Goal

- Given: \(\mathcal{D}, (\mathcal{E}, \mathcal{M}) \) and \(\mathcal{D}_f \) as above
 - \(\mathbb{T} \) a monad on \(\mathcal{D} \) preserving \(\mathcal{E} \)
 - Describe pseudovarieties in \(\mathcal{D}^\mathbb{T} \) by equations
 in some extension of \(\mathcal{D}^\mathbb{T} \)

- \(\mathcal{D}^\mathbb{T} \) has the factorization system inherited from \(\mathcal{D} \)
 - it has enough projectives: \((TX, \mu X) \) with \(X \) projective
 - \(\mathcal{D}^\mathbb{T} \) def all algebras \((A, \alpha) \) with \(A \in \mathcal{D}_f \)
Our Goal

- Given: \(D, (E, M) \) and \(D_f \) as above
 - \(T \) a monad on \(D \) preserving \(E \)
- Describe pseudovarieties in \(D^T \) by **equations**
 - in some extension of \(D^T \)

- \(D^T \) has the factorization system inherited from \(D \)
 - it has enough projectives: \((TX, \mu X)\) with \(X \) projective
 - \(D^T \) def = all algebras \((A, \alpha)\) with \(A \in D_f \)
- Thus pseudovarieties are presentable by quasi-equations in \(D^T \)
The Category $\hat{\mathcal{D}}_f$

- **Profinite completion** $\text{Pro } \mathcal{D}_f = \hat{\mathcal{D}}_f$ (dual to Ind)
 - \mathcal{D}_f finitely complete $\Rightarrow \hat{\mathcal{D}}_f$ complete
 - $\hat{\mathcal{E}} = \text{cofiltered limits of quotients in } \mathcal{D}_f$
 - $\hat{\mathcal{M}} = \text{cofiltered limits of subobjects in } \mathcal{D}_f$
The Category \hat{D}_f

- **Profinite completion** $\text{Pro } D_f = \hat{D}_f$ (dual to Ind)
 - D_f finitely complete $\Rightarrow \hat{D}_f$ complete
 - $\hat{E} = \text{cofiltered limits of quotients in } D_f$
 - $\hat{M} = \text{cofiltered limits of subobjects in } D_f$

- **Wanted**: \hat{D}_f has enough \hat{E}-projectives
 - T yields (canonically) a monad \hat{T} on \hat{D}_f preserving \hat{E}

$\Rightarrow \hat{D}_f, (\hat{E}, \hat{M})$ and \hat{T} satisfy all of our assumptions

Goal: quasi-equations in $D^T \Leftrightarrow$ equations in $(\hat{D}_f)^{\hat{T}}$

Important: T and \hat{T} have the same finite algebras

$$D^T_f \simeq \hat{D}_f^{\hat{T}}$$
Profinite Factorization Systems

Definition $(\mathcal{E}, \mathcal{M})$ is a **profinite** factorization system if \mathcal{E} is closed under cofiltered limits of quotients in D_f^\to

Examples with $\mathcal{E} =$ surjective morphisms

- **Set** : $\hat{\text{Set}}_f = \text{Stone}$
Definition \((\mathcal{E}, \mathcal{M})\) is a **profinite** factorization system if \(\mathcal{E}\) is closed under cofiltered limits of quotients in \(D_f\)

Examples with \(\mathcal{E} = \text{surjective morphisms}\)

- **Set**: \(\hat{\text{Set}}_f = \text{Stone}\)
- **Pos**: with \(\mathcal{E} = \text{surjective monotone maps}\)
 \(\hat{\text{Pos}}_f = \text{Priestley}\)
Definition \((\mathcal{E}, \mathcal{M})\) is a **profinite** factorization system if \(\mathcal{E}\) is closed under cofiltered limits of quotients in \(\mathcal{D}_f\).

Examples with \(\mathcal{E}\) = surjective morphisms

- **Set** : \(\check{\text{Set}}_f = \text{Stone}\)
- **Pos** : with \(\mathcal{E}\) = surjective monotone maps
 \(\check{\text{Pos}}_f = \text{Priestley}\)
- \(\mathcal{D} \subseteq \Sigma\text{-Str}\) full subcategory closed under limits
 arbitrary operation symbols
 + finitely many relation symbols

\(\text{Pro} \mathcal{D}_f \subseteq \text{Stone} \mathcal{D}\)
\(\hat{\mathcal{E}} = \text{surjective continuous homomorphisms}\)
Profinite monad \hat{T}

- \hat{T} is the codensity monad of the forgetful functor $D_f \to \hat{D}_f$

Example

$D_f = \text{Set}$, $TX = X^\ast$: the word monad

\hat{T} is the monad of profinite words on $\hat{\text{Mon}}_f = \text{Stone Mon}$

$\hat{T}Y$ is the cofiltered limit of all finite \hat{E}-quotients of Y carried by T-algebras

Example

For $TX = X^\ast$: a profinite word in a Stone monoid Y is a compatible choice of a member of A for every finite quotient monoid A of Y.

Proposition

If (E, M) is profinite then

1. \hat{T} preserves \hat{E} and
2. finite T-algebras coincide with finite \hat{T}-algebras
Profinite monad \hat{T}

- \hat{T} is the codensity monad of the forgetful functor $D_f^T \to \hat{D}_f$

 Example $D = \text{Set}$, $TX = X^*$: the word monad
 \hat{T} is the monad of **profinite words** on $\hat{\text{Mon}}_f = \text{Stone Mon}$

- $\hat{T}Y$ is the cofiltered limit of all finite \hat{E}-quotients of Y carried by T-algebras

 Example For $TX = X^*$: a profinite word in a Stone monoid Y is a compatible choice of a member of A for every finite quotient monoid A of Y.

Profinite monad \hat{T}

- \hat{T} is the codensity monad of the forgetful functor $D_f \rightarrow \hat{D}_f$

Example $D = \text{Set}, \ TX = X^*$: the word monad

\hat{T} is the monad of **profinite words** on $\hat{\text{Mon}}_f = \text{Stone Mon}$

- $\hat{T}Y$ is the cofiltered limit of all finite \hat{E}-quotients of Y carried by T-algebras

Example For $TX = X^*$: a profinite word in a Stone monoid Y is a compatible choice of a member of A for every finite quotient monoid A of Y.

Proposition If $(\mathcal{E}, \mathcal{M})$ is profinite then

1. \hat{T} preserves \hat{E}
2. finite T-algebras coincide with finite \hat{T}-algebras
Profinite equation = equation in \hat{D}_f

$e: P \rightarrow Q$, P projective
Generalized Reiterman’s Theorem

- Profinite equation = equation in $\hat{\mathcal{D}}_f$

 \[e: P \to Q, \ P \text{ projective} \]

- A finite T-algebra satisfies e:

 it is e-injective
Generalized Reiterman’s Theorem

- Profinite equation = equation in $\hat{\mathcal{D}}_f$
 \[e : P \rightarrow Q, \text{ } P \text{ projective} \]
- A finite \mathcal{T}-algebra satisfies e :
 it is e-injective
- **Theorem** \mathcal{A} a full subcategory of $\mathcal{D}_f^\mathcal{T}$:
 \mathcal{A} presentable by profinite equations \iff a pseudovariety
Profinite equations in Σ-Str

Example $\mathcal{D} \subseteq \Sigma$-$\text{Str}$ closed under limits and subobjects

$\hat{\mathcal{D}}_f \subseteq \text{Stone } \Sigma$-$\text{Str}$

A **profinite equation**: $\alpha = \alpha'$ where $\alpha, \alpha' \in \hat{T}X$

X projective in $\hat{\mathcal{D}}_f$

Given $e : (\hat{T}X, \mu_X) \to A$, take all $(\alpha, \alpha') \in \ker$
Profinite Equations in \(\Sigma\text{-Str} \)

- Back to Reiterman: \(U_f : (\Sigma\text{-Alg})_f \rightarrow \text{Set}_f \)

\[
\text{n.t. } \alpha : U_f^n \rightarrow U_f \quad \leftrightarrow \quad \text{elements of } \hat{T}n
\]

\[
\text{pseudoequations} \quad \leftrightarrow \quad \text{profinite equations}
\]
Profinite Equations in Σ-Str

- Back to Reiterman: $U_f : (\Sigma\text{-Alg})_f \rightarrow \text{Set}_f$

 n.t. $\alpha : U^n_f \rightarrow U_f \leftrightarrow$ elements of $\hat{T}n$
 pseudoequations \leftrightarrow profinite equations

- Varieties of ordered algebras . . . inequalities $\alpha \leq \alpha'$ between terms

 $\mathcal{D} = \text{Pos} \quad \hat{\mathcal{D}}_f = \text{Priestley}$

 profinite equations $e : (\hat{T}X, \mu_X) \rightarrow A,$
 X discretely ordered

 \leftrightarrow inequalities

J. E. Pin & P. Weil (1996)