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The Birkhoff Variety Theorem (1935)

The Birkhoff Theorem
A a full subcategory of Σ-Alg:

A presentable by equations
⇔ variety (= HSP class)

regular quotients

77ppppppppppp
subobjects

OO

products

ddHHHHHHHHH

Lawvere: equations are pairs of n.t. α : Un → U for

U : Σ- Alg→ Set

An algebra A satisfies α = α′ iff αA = α′A
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The Reiterman Theorem (1982)

The Reiterman Theorem
A a full subcategory of

(
Σ- Alg

)
f
:

A presentable by pseudoequations
⇔ pseudovariety (= HSPf class)

Uf :
(
Σ- Alg

)
f
→ Setf

Pseudoequations are pairs of n.t. α : Un
f → Uf

a finite algebra A satisfies α = α′ iff αA = α′A
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The Reiterman Theorem (1982)

Example Un, unary algebras

σ : A→ A

A finite ⇒ ∃ n : σn = (σn)2

Notation : σ∗ = σn

Pseudoequation : σ∗(x) = x
presents : finite algebras

with σ invertible
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Banaschewski and Herrlich (1976)

D a complete category
(E ,M) a proper factorization system (e.g. regular epi - mono)
notation � and �
D has enough projectives X : ∀D∃X � D

Definitions An equation e : X � A, X projective.

It is satisfied by D ∈ D if X
∀f // //

e
��???????? D

A
∃

??�
�

�
�

(D is e-injective)

Theorem A full subcategory A of D:
A presentable by equations ⇔ a variety (= HSP class)
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Pseudovariety Presentation

Assume : D and (E ,M) as above
Df ⊆ D full subcategory closed under S and Pf

’finite’ objects

Definition A pseudovariety is a full subcategory of Df

closed under HSPf .
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Pseudovariety Presentation

Definition A quasi-equation over X (projective) is a
semilattice Ω of finite quotients e : X � A (A ∈ Df )

X

e

�����������
ē����

e′

�� ��9999999

∀e, e ′ ∈ Ω A′
u′
//

��8888888 Ā��

��

A′′

���������u′′
oo

ē = e ∧ e ′ ∈ Ω A′ × A′′

An object D satisfies Ω if it is injective: X

∃e∈Ω �� ��?
?

?
?

∀f // D

A
∃

??�
�

�
�
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Pseudovariety Presentation

Proposition A a full subcategory of Df :
A presentable by quasi-equations ⇔ A a pseudovariety

Proof ⇐ For every X projective

ΩX : X � A(A ∈ A)

ΩX semilattice ⇐ A is SPf -class
D ∈ A ⇒ D satisfies ΩX . . . trivial

D satisfies each ΩX ⇒ D ∈ A : choose X

����

f // // D

A

e

??~
~

~
~

,

X projective, e ∈ E , A ∈ A ⇒ D ∈ A
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Our Goal

Given : D, (E ,M) and Df as above
T a monad on D preserving E

Describe pseudovarieties in DT by equations
in some extension of DT

DT has the factorization system inherited from D
it has enough projectives : (TX , µX ) with X projective

DT
f

def
= all algebras (A, α) with A ∈ Df

Thus pseudovarieties are presentable by quasi-equations in DT
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The Category D̂f

Profinite completion Pro Df = D̂f (dual to Ind)
Df finitely complete ⇒ D̂f complete
Ê = cofiltered limits of quotients in Df

M̂ = cofiltered limits of subobjects in Df

Wanted: D̂f has enough Ê-projectives
T yields (canonically) a monad T̂ on D̂f preserving Ê

⇒ D̂f , (Ê ,M̂) and T̂ satisfy all of our assumptions

Goal : quasi-equations in DT ⇔ equations in (D̂f )T̂

Important: T and T̂ have the same finite algebras

DT
f ' D̂T̂

f
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⇒ D̂f , (Ê ,M̂) and T̂ satisfy all of our assumptions

Goal : quasi-equations in DT ⇔ equations in (D̂f )T̂

Important: T and T̂ have the same finite algebras

DT
f ' D̂T̂

f
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Profinite Factorization Systems

Definition (E ,M) is a profinite factorization system if
E is closed under cofiltered limits of quotients in D→f

Examples with E = surjective morphisms

Set : Ŝetf = Stone

Pos : with E = surjective monotone maps
P̂osf = Priestley

D ⊆ Σ-Str full subcategory closed under limits
arbitrary operation symbols
+ finitely many relation symbols

Pro Df ⊆ Stone D
Ê = surjective continuous homomorphisms
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Profinite monad T̂

T̂ is the codensity monad of the forgetful functor DT
f → D̂f

Example D = Set, TX = X ∗: the word monad
T̂ is the monad of profinite words on M̂onf = Stone Mon

T̂Y is the cofiltered limit of all finite Ê-quotients of Y carried
by T-algebras

Example For TX = X ∗: a profinite word in a Stone monoid
Y is a compatible choice of a member of A for every finite
quotient monoid A of Y .

Proposition If (E ,M) is profinite then
(1) T̂ preserves Ê

and
(2) finite T-algebras coincide with finite T̂-algebras
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Generalized Reiterman’s Theorem

Profinite equation = equation in D̂T̂
f

e : P → Q, P projective

A finite T-algebra satisfies e :
it is e-injective

Theorem A a full subcategory of DT
f :

A presentable by profinite equations ⇔ a pseudovariety
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Profinite equations in Σ-Str

Example D ⊆ Σ- Str closed under limits and subobjects
D̂f ⊆ Stone Σ-Str

A profinite equation : α = α′ where α, α′ ∈ T̂X

X projective in D̂f

Given e : (T̂X , µX )� A, take all (α, α′) ∈ ker
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Profinite Equations in Σ-Str

Back to Reiterman : Uf : (Σ-Alg)f → Setf

n.t. α : Un
f → Uf ! elements of T̂ n

pseudoequations ! profinite equations

Varieties of ordered algebras . . . inequalities α ≤ α′ between
terms

D = Pos D̂f = Priestley

profinite equations e : (T̂X , µX )� A,

X discretely ordered

! inequalities

J. E. Pin & P. Weil (1996)
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