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The Birkhoff Variety Theorem (1935)

@ The Birkhoff Theorem
A a full subcategory of >-Alg:

A presentable by equations
< variety (= HSP class)

N

regular quotients  subobjects  products
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The Birkhoff Variety Theorem (1935)

@ The Birkhoff Theorem
A a full subcategory of >-Alg:

A presentable by equations
< variety (= HSP class)

N

regular quotients  subobjects  products

@ Lawvere: equations are pairs of n.t. «a: U" — U for
U: - Alg — Set

An algebra A satisfies « = o iff anq = &y
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——
The Reiterman Theorem (1982)

@ The Reiterman Theorem
A a full subcategory of (Z— Alg)f:

A presentable by pseudoequations
< pseudovariety (= HSPs class)
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——
The Reiterman Theorem (1982)

@ The Reiterman Theorem
A a full subcategory of (Z— Alg)f:

A presentable by pseudoequations
< pseudovariety (= HSPs class)

o Ur: (X-Alg), — Sety
Pseudoequations are pairs of n.t. a: U7 — Ur
a finite algebra A satisfies @ = o' iff aq = o/,
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——
The Reiterman Theorem (1982)

e Example Un, unary algebras

o A=A

A finite = 3 n: 0" = (o")?
Notation : ¢* = o"
Pseudoequation : *(x) = x
presents : finite algebras
with o invertible
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Banaschewski and Herrlich (1976)

@ D a complete category

(€, M) a proper factorization system (e.g. regular epi - mono)
notation — and —

D has enough projectives X: VD3I X — D

Definitions An equation e: X — A, X projective.
It is satisfied by D € D if X Ve D

(D is e-injective)

Theorem A full subcategory A of D:
A presentable by equations < a variety (= HSP class)
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Pseudovariety Presentation

@ Assume : D and (£, M) as above
D¢ C D full subcategory closed under S and Pr

'finite’ objects
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Pseudovariety Presentation

@ Assume : D and (£, M) as above
D¢ C D full subcategory closed under S and Py

'finite’ objects
o Definition A pseudovariety is a full subcategory of D¢
closed under HSPs.
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Pseudovariety Presentation

e Definition A quasi-equation over X (projective) is a
semilattice Q of finite quotients e: X — A (A € D)
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Pseudovariety Presentation

e Definition A quasi-equation over X (projective) is a
semilattice Q of finite quotients e: X — A (A € D)

Ve, e e Al oo B Al

e=eNne e A x A"
@ An object D satisfies Q if it is injective: X vE D
N
AN /1
JecQ N 7 3
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Pseudovariety Presentation

@ Proposition A a full subcategory of Ds:
A presentable by quasi-equations < A a pseudovariety
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Pseudovariety Presentation

@ Proposition A a full subcategory of Ds:
A presentable by quasi-equations < A a pseudovariety

@ Proof <= For every X projective
Qx: X —» A(A S A)

Qx semilattice < A is SPs-class
D € A = D satisfies Qx ... trivial

D satisfies each Qx = D € A : choose X LA, ,

X projective, e € £, Ac A=Dec A
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T —
Our Goal

@ Given : D, (£, M) and Dr as above
T a monad on D preserving £
Describe pseudovarieties in DT by equations
in some extension of DT
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T —
Our Goal

e Given : D, (£, M) and Dy as above
T a monad on D preserving £
Describe pseudovarieties in DT by equations
in some extension of DT

@ DT has the factorization system inherited from D
it has enough projectives : (TX, uX) with X projective
DI = all algebras (A, a) with A € Dy
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T —
Our Goal

e Given : D, (£, M) and Dy as above
T a monad on D preserving £
Describe pseudovarieties in DT by equations
in some extension of DT

@ DT has the factorization system inherited from D
it has enough projectives : (TX, uX) with X projective
DI = all algebras (A, a) with A € Dy

@ Thus pseudovarieties are presentable by quasi-equations in DT
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B ——
The Category Dy

@ Profinite completion Pro Dy = Dy (dual to Ind)
Dy finitely complete = Dy complete
& = cofiltered limits of quotients in D¢
M = cofiltered limits of subobjects in Dy
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T —
The Category Dy

e Profinite completion Pro D = Df  (dual to Ind)
Dy finitely complete = Dy complete
& = cofiltered limits of quotients in D¢
M = cofiltered limits of subobjects in Dy

e Wanted: Dy has enough &-projectives
T vyields (canonically) a monad T on Dy preserving &£

= Dy, (£, M) and T satisfy all of our assumptions

Goal : quasi-equations in DT < equations in (15,:)T

Important: T and T have the same finite algebras
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Profinite Factorization Systems

Definition (£, M) is a profinite factorization system if
& is closed under cofiltered limits of quotients in D”

Examples with £ = surjective morphisms

e Set : Set; = Stone
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Profinite Factorization Systems

Definition (£, M) is a profinite factorization system if
& is closed under cofiltered limits of quotients in D”

Examples with £ = surjective morphisms

e Set : Set; = Stone

@ Pos : with £ = surjective monotone maps
Poss = Priestley
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Profinite Factorization Systems

Definition (£, M) is a profinite factorization system if
& is closed under cofiltered limits of quotients in D”

Examples with £ = surjective morphisms

e Set : Set; = Stone
@ Pos : with £ = surjective monotone maps
Poss = Priestley
@ D C ¥-Str full subcategory closed under limits
arbitrary operation symbols
+ finitely many relation symbols

Pro Df C Stone D
& = surjective continuous homomorphisms
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Profinite monad T

o T is the codensity monad of the forgetful functor D — D¢
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T —
Profinite monad T

o T is the codensity monad of the forgetful functor D}T — Dy

Example D = Set, TX = X*: the word monad
T is the monad of profinite words on Mons = Stone Mon

o TY is the cofiltered limit of all finite &-quotients of Y carried
by T-algebras

Example For TX = X*: a profinite word in a Stone monoid
Y is a compatible choice of a member of A for every finite
quotient monoid A of Y.
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N

Profinite monad T

o T is the codensity monad of the forgetful functor D}T — Dy

Example D = Set, TX = X*: the word monad
T is the monad of profinite words on Mons = Stone Mon

o TY is the cofiltered limit of all finite &-quotients of Y carried
by T-algebras

Example For TX = X*: a profinite word in a Stone monoid
Y is a compatible choice of a member of A for every finite
quotient monoid A of Y.

e Proposition If (£, M) is profinite then
(1) T preserves &
and
(2) finite T-algebras coincide with finite T-algebras
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Generalized Reiterman’s Theorem

@ Profinite equation = equation in 15?
e: P — @, P projective
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Generalized Reiterman’s Theorem

@ Profinite equation = equation in 15?
e: P — @, P projective
@ A finite T-algebra satisfies e :
it is e-injective
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Generalized Reiterman’s Theorem

@ Profinite equation = equation in ﬁ}r
e: P — @, P projective
@ A finite T-algebra satisfies e :
it is e-injective
e Theorem A a full subcategory of D} :
A presentable by profinite equations < a pseudovariety
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Profinite equations in >-Str

@ Example D C Y- Str closed under limits and subobjects
D¢ C Stone X-Str

A profinite equation : o = o/ where a,a’ € TX

X projective in Ds

Given e: (TX, ux) — A, take all (o, ) € ker
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B
Profinite Equations in X-Str

@ Back to Reiterman : Ur: (X-Alg)s — Sets

nt a:U? — Us  «~ elements of Tn

pseudoequations «  profinite equations
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T —
Profinite Equations in X-Str

@ Back to Reiterman : Ur: (X-Alg)s — Sets

nt a:U? — Us  «~ elements of Tn

pseudoequations «  profinite equations

@ Varieties of ordered algebras . . .inequalities o < o’ between
terms

D =Pos Ds= Priestley
profinite equations e: (7A'X, px) — A,
X discretely ordered

«~ inequalities

J. E. Pin & P. Weil (1996)
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