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Throughout science and engineering, people use networks,
drawn as boxes connected by wires:

So, they’re using categories! Which categories are these?

http://math.ucr.edu/home/baez/networks/networks_1.html
http://johncarlosbaez.wordpress.com/2012/06/27/the-mathematics-of-biodiversity-part-3/


Networks of some particular kind, with specified inputs and
outputs, can be seen as morphisms in some symmetric
monoidal category:

X Y

Such networks let us describe “open systems”, meaning
systems where:
I stuff can flow in or out;
I we can combine systems to form larger systems by

composition and tensoring.
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We can describe networks with inputs and outputs using
cospans with extra structure. For example, this:

X Y

is really a cospan of finite sets:

S

X

i ??

Y

o__

where S is decorated with extra structure: edges making S into
the vertices of a graph.



Fong invented ‘decorated cospans’ to make this precise:

I Brendan Fong, Decorated cospans, arXiv:1502.00872.

We’ve used them to study many kinds of networks.

https://johncarlosbaez.wordpress.com/2015/05/01/decorated-cospans/
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Electrical circuits:

I Brendan Fong, JB, A compositional framework for passive
linear networks, arXiv:1504.05625.
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https://arxiv.org/abs/1504.05625
https://arxiv.org/abs/1504.05625


Markov processes:

I Brendan Fong, Blake Pollard, JB, A compositional
framework for Markov processes, arXiv:1508.06448.
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https://johncarlosbaez.wordpress.com/2015/09/04/a-compositional-framework-for-markov-processes/
https://johncarlosbaez.wordpress.com/2015/09/04/a-compositional-framework-for-markov-processes/


Petri nets with rates:

I Blake Pollard, JB, A compositional framework for reaction
networks, arXiv:1704.02051.
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https://johncarlosbaez.wordpress.com/2017/07/30/a-compositional-framework-for-reaction-networks/
https://johncarlosbaez.wordpress.com/2017/07/30/a-compositional-framework-for-reaction-networks/


Now Kenny Courser has developed a simpler formalism —
‘structured cospans’ — that avoids certain problems with
decorated cospans.

Kenny has redone most of the previous work using structured
cospans:

I Kenny Courser, Open Systems: A Double Categorical
Perspective, https://tinyurl.com/courser-thesis.

http://math.ucr.edu/home/baez/thesis_courser.pdf
http://math.ucr.edu/home/baez/thesis_courser.pdf


Given a functor
L : A→ X

a structured cospan is a diagram

L(a)

x

L(b)

i o

Think of A as a category of objects with ‘less structure’, and X
as a category of objects with ‘more structure’. L is often a left
adjoint.
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For example, a Petri net with rates is a diagram like this:

(0,∞) T N[S]
r s

t

where S and T are finite sets, and N[S] is the underlying set of
the free commutative monoid on S.

6

We call elements of S species ,
elements of T transitions ,
and r(t) the rate constant of the transition t ∈ T .
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There is a category Petri where morphisms are the obvious
things:

(0,∞)

T N[S]

T ′ N[S′]

r

s

t

r ′ s′

t ′

f N[g]

where the square involving s and s′ commutes, as does the
square involving t and t ′.



There is a functor R : Petri→ FinSet sending any Petri net with
rates to its underlying set of species.

This has a left adjoint L : FinSet→ Petri.

In this example, a structured cospan

L(a)

x

L(b)

i o

is called an open Petri net with rates:

1.3

a b
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We can compose open Petri nets with rates:

a

2

c

3

b

by identifying the outputs of the first with the inputs of the
second:

3 2

a c



In other words, given open Petri nets with rates:

L(a1)

x

L(a2) L(a2)

y

L(a3)

i o i ′ o′

we compose them by taking a pushout in the category Petri:

L(a1)

x

L(a2)

y

L(a3)

x +L(a2) y

i o i ′ o′



To tensor open Petri nets with rates:

a

2

b a′

9

b′

we set them side by side:

a + a′

2

b + b′

9



In other words, to tensor open Petri nets with rates:

L(a)

x

L(b) L(a′)

x ′

L(b′)

i o i ′ o′

we use coproducts in Set and Petri:

L(a) + L(a′)

x + x ′

L(b) + L(b′)

L(a + a′) L(b + b′)

i + i ′ o + o′

� �

and the fact that L : FinSet→ Petri preserves coproducts.



In general:

Theorem (Kenny Courser, JB)
Let A be a category with finite coproducts,
X a category with finite colimits, and
L : A→ X a functor preserving finite coproducts.

Then there is a symmetric monoidal category LCsp(X) where:
I an object is an object of A
I a morphism is an isomorphism class of structured

cospans:

L(a)

x

L(b)

i o



Here two structured cospans are isomorphic if there is a
commuting diagram of this form:

L(a)

x

x ′

L(b)f�

i o

i ′ o′



This theorem applies to many examples, giving structured
cospan categories whose morphisms are:

I open electrical circuits
I open Markov processes
I open Petri nets
I open Petri nets with rates

etcetera.

In all these examples A and X have finite colimits and L : A→ X
is a left adjoint, so all the conditions of the theorems hold.

What can we do with structured cospan categories?
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Given a Petri net with rates, we can write down a rate equation
describing dynamics. For example, this Petri net with rates:

A3

A2

A1

r1

r2

gives this rate equation:

dA1

dt
= −r1 A1A2

dA2

dt
= −r1 A1A2 + 2r2 A3

dA3

dt
= r1 A1A2 − r2 A3
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An open Petri net with rates f : X → Y gives an open rate
equation involving flows in and out, which can be arbitrary
smooth functions of time. For example this:

A1
A3

A2

r1

X Y

I1
I2
I3

O1

gives:
dA1

dt
= −r1 A1A2 + I1(t)

dA2

dt
= −r1 A1A2 + I2(t) + I3(t)

dA3

dt
= 2r1 A1A2 −O1(t)
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Let Open(Petri) be the category with open Petri nets with rates
as morphisms. The map sending open Petri nets to their open
rate equations gives a symmetric monoidal functor

� : Open(Petri)→ Dynam

where Dynam is a category of ‘open dynamical systems’.

So, we can describe dynamical systems compositionally, a
piece at a time, using open Petri nets with rates.

Jonathan Lorand and I are using this to study questions from
biochemistry.



What if we want to use actual structured cospans, rather than
isomorphism classes?

You might be thinking we should use a symmetric monoidal
bicategory... and we could.

=

But Mike Shulman noticed that it’s easier to use a symmetric
monoidal double category!
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For us a double category is a weak category object in the
2-category Cat. It has a category of objects Ob and a category
of morphisms Mor. Composition

◦ : Mor ×Ob Mor→ Mor

is associative and unital up to 2-isomorphisms obeying the
usual equations.

There is a 2-category Dbl of double categories, double
functors, and transformations. Dbl has finite products.

In any 2-category with finite products we can define symmetric
pseudomonoids. In Cat these are symmetric monoidal
categories. In Dbl we call them symmetric monoidal double
categories.
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More concretely, a double category has figures like this:

A B

C D

⇓ α

M

f g

N

So, it has:
I objects such as A,B,C,D,

I vertical 1-morphisms such as f and g,
I horizontal 1-cells such as M and N,
I 2-morphisms such as α.
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I objects such as A,B,C,D,
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2-morphisms can be composed vertically and horizontally, and
the interchange law holds:

A B

D E

⇓ α

B C

E F

⇓ β

D E

G H

⇓ α′
E F

H I

⇓ β′

M

f g

N

M ′

g h

N′

N

f ′ g′

O

N′

g′ h′

P

Vertical composition is strictly associative and unital, but
horizontal composition is not.



Theorem (Kenny Courser, JB)
Let A be a category with finite coproducts,
X a category with finite colimits, and
L : A→ X a functor preserving finite coproducts.

Then there is a symmetric monoidal double category LCsp(X)
where:
I an object is an object of A
I a vertical 1-morphism is a morphism of A

I a horizontal 1-cell is a structured cospan L(a)
i
→ x

o
← L(b)

I a 2-morphism is a commutative diagram

L(a) x L(b)

L(a′) x ′ L(b′)

i o

i ′ o′

L(f ) h L(g)



Horizontal composition is defined using pushouts in X;
composing these:

L(a) x L(b)

L(a′) x ′ L(b′)

L(b) y L(c)

L(b′) y ′ L(c′)

gives this:
L(a) x +L(b) y L(c)

L(a′) x ′ +L(b′) y ′ L(c′)

Vertical composition is straightforward.



Tensoring uses binary coproducts in both A and X, and the fact
that L : A→ X preserves these:

L(a1) L(b1)x1

L(a2) L(b2)x2

L(a′1) L(b′1)x ′1

L(a′2) L(b′2)x ′2

⊗

L(a1 + a′1) L(b1 + b′1)x1 + x ′1

L(a2 + a′2) L(b2 + b′2)x2 + x ′2

=



How do structured cospans compare to decorated cospans?

Given a suitable functor F : A→ Set, Fong defined an
F -decorated cospan to be a pair

a

c

b

d ∈ F (c)i o

For example, F (c) could be the set of Petri nets with rates
having c as their set of species.

1.3
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The problem is that a functor F : A→ Set corresponds to a
discrete opfibration R : X→ A. These are not general enough!

For example: the functor R : Petri→ FinSet sending any Petri
net with rates to its underlying set of species is an opfibration,
but not a discrete one.

The solution: use pseudofunctors F : A→ Cat.



Theorem (Kenny Courser, Christina Vasilakopoulou, JB)
Given a finitely cocomplete category A and a symmetric lax
monoidal pseudofunctor F : A→ Cat, there is a symmetric
monoidal double category FCsp where:
I an object is an object of A
I a vertical 1-morphism is a morphism of A
I a horizontal 1-cell is an F-decorated cospan:

a c b d ∈ F (c)
i o

I a 2-morphism is a commutative diagram and a triangle:

a

a′

c

c′

b

b′

1

F (c)

F (c′)

w ι

d

d ′

h F (h)

i o

f g

i ′ o′



Theorem (Kenny Courser, Christina Vasilakopoulou, JB)
Suppose A is finitely cocomplete, F : A→ Cat is a symmetric
lax monoidal pseudofunctor, and F factors through the
2-category Rex of finitely cocomplete categories. Then the
opfibration

R : ∫ F → A

has a left adjoint
L : A→ ∫ F

and there is an isomorphism of symmetric monoidal double
categories

LCsp(∫ F ) � FCsp.

So in this situation, which is common, structured cospans
agree with the ‘new improved’ decorated cospans!


