Segal-type models of weak *n*-categories

Simona Paoli

Department of Mathematics University of Leicester

CT2019, University of Edinburgh

Simona Paoli (University of Leicester)

July 2019 1/54

Idea of strict *n*-category: in a strict *n*-category there are cells in dimension 0, ..., n, identity cells and compositions which are associative and unital. Each *k*-cell has source and target which are (k - 1)-cells, $1 \le k \le n$.

Idea of weak *n*-category: in a weak *n*-category there are cells in dimension $0, \ldots, n$, identity cells and compositions which are associative and unital up to an invertible cell in the next dimension, in a coherent way.

イロト イヨト イヨト イヨト

An environment for higher categories

To build a model of weak *n*-category we need a combinatorial machinery that allows to encode:

- i) The sets of cells in dimension 0 up to *n*.
- ii) The behavior of the compositions (including their coherence laws).
- iii) The higher categorical equivalences.

Multi-simplicial objects are a good environment for the definition of higher categorical structures because there are natural candidates for the compositions given by the Segal maps.

We will introduce three Segal-type models, denoted collectively Segn

• • • • • • • • • • • •

Segal maps

Let $X \in [\Delta^{op}, C]$ be a simplicial object in a category C with pullbacks. Denote $X[k] = X_k$.

For each $k \ge 2$, let $\nu_i : X_k \to X_1$, $\nu_j = X(r_j)$, $r_j(0) = j - 1$, $r_j(1) = j$

There is a unique map, called Segal map

$$\eta_k: X_k \to X_1 \times_{X_0} \cdots \times_{X_0} X_1$$
.

Segal maps and internal categories

There is a nerve functor

$$N: \operatorname{Cat} \mathcal{C} \to [\Delta^{op}, \mathcal{C}]$$

 $X \in \operatorname{Cat} \mathcal{C}$

$$NX \quad \cdots X_1 \times_{X_0} X_1 \times_{X_0} X_1 \xrightarrow{\longrightarrow} X_1 \times_{X_0} X_1 \xrightarrow{\longrightarrow} X_1 \xrightarrow{\longrightarrow} X_1 \xrightarrow{\longrightarrow} X_0$$

Fact: $X \in [\Delta^{op}, C]$ is the nerve of an internal category in C if and only if all the Segal maps $\eta_k : X_k \to X_1 \times_{X_0} \stackrel{k}{\cdots} \times_{X_0} X_1$. are isomorphisms.

Multi-simplicial objects

• Let
$$\Delta^{n^{op}} = \Delta^{op} \times \stackrel{n}{\cdots} \times \Delta^{op}$$
.

- Multi-simplicial objects in C are functors $[\Delta^{n^{op}}, C]$.
- They have *n* different simplicial directions and every *n*-fold simplicial object in C is a simplicial object in (*n* − 1)-fold simplicial objects in C in *n* possible ways:

$$[\Delta^{n^{op}}, \mathcal{C}] \underset{\xi_k}{\cong} [\Delta^{op}, [\Delta^{n-1^{op}}, \mathcal{C}]] \qquad 1 \le k \le n$$

Thus for each $X \in [\Delta^{n^{op}}, C]$ we have Segal maps in each of the *n* simplicial directions.

Simona Paoli (University of Leicester)

Definition

n-Fold categories are defined inductively by

 $Cat^0 = Set$ $Cat^n = Cat(Cat^{n-1})$

Definition

Strict *n*-categories are defined inductively by

0-Cat = Setn-Cat = ((n-1)-Cat)-Cat

Simona Paoli (University of Leicester)

< ■> ■ つへで July 2019 7/54

Multi-simplicial descriptions

 By iterating the nerve construction, we obtain fully faithful multinerve functors

 $egin{aligned} & \textbf{N}_{(n)}: ext{Cat}^n
ightarrow [\Delta^{n^{op}}, ext{Set}], \ & \textbf{J}_n: ext{Cat}^n
ightarrow [\Delta^{n-1^{op}}, ext{Cat}], \end{aligned}$

 $egin{aligned} & {m N}_{(n)}: n ext{-}{
m Cat}
ightarrow [\Delta^{n^{op}}, {
m Set}] \ & {m J}_n: n ext{-}{
m Cat}
ightarrow [\Delta^{n-1^{op}}, {
m Cat}] \;. \end{aligned}$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

 We next characterize the essential image of these multinerve functors. This amounts to describing strict *n*-categories and *n*-fold categories multi-simplicially.

These descriptions facilitate the geometric intuition of how to modify the structure to build weak models. An *n*-fold category is $X \in [\Delta^{n-1^{op}}, Cat] \hookrightarrow [\Delta^{n^{op}}, Set]$ such that the Segal maps in all directions are isomorphisms.

Note that $\operatorname{Cat}^n \hookrightarrow [\Delta^{op}, \operatorname{Cat}^{n-1}]$.

Let's illustrate the cases n = 2, 3.

Example: double categories

July 2019 10/54

イロン イ理 とく ヨン イヨン 二 ヨー

Corner of the 3-fold nerve of a 3-fold category X

In the following picture, $X \in \operatorname{Cat}^3$ thus for all $i, j, k \in \Delta^{op}$ $X_{2jk} \cong X_{1jk} \times_{X_{0jk}} X_{1jk}, \ X_{i2k} \cong X_{i1k} \times_{X_{i0k}} X_{i1k}, \ X_{ij2} \cong X_{ij1} \times_{X_{ij0}} X_{ij1}$.

Geometric picture of the 3-fold nerve of a 3-fold category X

 $X \in \operatorname{Cat}^3 \xrightarrow{N_{(3)}} [\Delta^{3^{op}}, \operatorname{Set}]$

A strict *n*-category is $X \in [\Delta^{n-1^{op}}, Cat] \hookrightarrow [\Delta^{n^{op}}, Set]$ such that

- i) Segal condition: The Segal maps in all directions are isomorphisms.
- ii) Globularity condition: X₀ ∈ [Δ^{n-2^{op}}, Cat] and X_{k1...kr0} ∈ [Δ^{n-r-2^{op}}, Cat] are constant functors taking value in a discrete category for all 1 ≤ r ≤ n − 2 and all (k₁,..., k_r) ∈ Δ^{r^{op}}.

< ロ > < 同 > < 回 > < 回 >

Strict *n*-categories multi-simplicially, cont.

- The sets underlying the discrete structures X_0 , (resp. $X_{1,..,10}$) correspond to the sets of 0-cells (resp. *r*-cells) for $1 \le r \le n-2$.
- The set of (n 1) (resp. *n*)-cells is given by $ob(X_{1...1})$ (resp. $mor(X_{1...1})$).
- Note that n-Cat $\hookrightarrow [\Delta^{op}, (n-1)$ -Cat].

Let's illustrate the cases n = 2, 3.

Simona Paoli (University of Leicester)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example: strict 2-categories

■ ◆ ■ ▶ ■ • クへの July 2019 15/54

・ロト ・ 四ト ・ ヨト ・ ヨト

Corner of the 3-fold nerve of a strict 3-category X

$$egin{aligned} X_{2jk} &\cong X_{1jk} imes_{X_{0jk}} X_{1jk}, \ X_{i2k} &\cong X_{i1k} imes_{X_{i0k}} X_{i1k}, \ X_{ij2} &\cong X_{ij1} imes_{X_{ij0}} X_{ij1} \ . \ & X \in \ \mathbf{3} - \mathbf{Cat} \stackrel{N_{(3)}}{\longrightarrow} [\Delta^{\mathbf{3}^{op}}, \mathbf{Set}] \end{aligned}$$

Simona Paoli (University of Leicester)

Geometric picture of the 3-fold nerve of a strict 3-category X

Simona Paoli (University of Leicester)

July 2019 17/54

Hom(n - 1)-category and truncation functor

• Hom (n-1)-category. For each $a, b \in X_0$, $X(a, b) \in (n-1)$ -Cat is the fiber at (a, b) of $X_1 \xrightarrow{(\partial_0, \partial_1)} X_0 \times X_0$.

• Truncation functor $p^{(n-1)}$: *n*-Cat $\hookrightarrow [\Delta^{n-1^{op}}, Cat] \to (n-1)$ -Cat

$$(p^{(n-1)}X)_{k_1...k_{n-1}} = pX_{k_1...k_{n-1}}$$

where p : Cat \rightarrow Set is the isomorphism classes of object functor.

The truncation functor divides out by the highest dimensional invertible cells.

イロト 不得 トイヨト イヨト ヨー ろくの

n-Equivalences

• A 1-equivalence is an equivalence of categories.

Suppose, inductively, that we defined (n - 1)-equivalences. A morphism $F : X \to Y$ in *n*-Cat is an *n*-equivalence if

(a) For all
$$a, b \in X_0$$
, $F(a, b) : X(a, b) \to Y(Fa, Fb)$ is a $(n-1)$ -equivalence.

(b)
$$p^{(n-1)}F$$
 is a $(n-1)$ -equivalence.

This definition is a higher dimensional generalization of a functor which is fully faithful and essentially surjective on objects.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Weakening the multi-simplicial definition of strict *n*-categories

<i>n</i> -Cat	Seg _n		
Multi-simplicial embedding	$Seg_{n} \hookrightarrow [\Delta^{n-1^{op}}, Cat] \hookrightarrow [\Delta^{n^{op}}, Set]$		
Inductive definition	$Seg_1 = Cat, Seg_n \hookrightarrow [\Delta^{^{op}}, Seg_{n-1}]$		
Truncation functor	$p^{(n-1)}: \operatorname{Seg}_n o \operatorname{Seg}_{n-1}$		
Hom (n – 1)-category	Similar definition		
<i>n</i> -equivalences	Same definition		
Globularity condition	Different (weak globularity)		
Segal condition	Different (induced Segal condition)		

- A homotopically discrete category is an equivalence relation.
- Given $X \in \text{Cat}_{hd}$, there is a functor $X \to pX$.

A homotopically discrete *n*-fold category is an *n*-fold category suitably equivalent to a discrete one both 'globally' and in each simplicial dimension.

The formal definition of the category Catⁿ_{hd}

Definition

Let $Cat_{hd}^0 = Set.$

Suppose, inductively, we defined the subcategory $\operatorname{Cat}_{hd}^{n-1} \subset \operatorname{Cat}^{n-1}$ of homotopically discrete (n-1)-fold categories. We say that the *n*-fold category $X \in \operatorname{Cat}^n \hookrightarrow [\Delta^{n-1^{op}}, \operatorname{Cat}]$ is homotopically discrete if:

• X is a levelwise equivalence relation.

•
$$p^{(n-1)}X \in \operatorname{Cat}_{\operatorname{hd}}^{n-1}$$
.

We denote $Cat_{hd}^1 = Cat_{hd}$.

The discretization map

Definition

• Given $X \in \operatorname{Cat}_{hd}^n$ let $\gamma_X^{(n-1)} : X \to p^{(n-1)}X$ be the morphism given levelwise for each $\underline{s} \in \Delta^{n-1^{op}}$ by

$$(\gamma_X^{(n-1)})_{\underline{s}}: X_{\underline{s}} \to pX_{\underline{s}}$$

• The discretization map is the composite

$$\gamma_{(n)}: X \xrightarrow{\gamma^{(n-1)}} p^{(n-1)} X \xrightarrow{\gamma^{(n-2)}} p^{(n-2)} p^{(n-1)} X \to \cdots \xrightarrow{\gamma^{(0)}} X^{d}$$

where $X^d = p^{(0)}p^{(1)}...p^{(n-1)}X$ is called discretization of X.

Weak globularity condition and Hom(n-1)-category

Let $X \in Seg_n$.

Weak globularity condition: X₀, X_{k1,...,kr0} are homotopically discrete for all 1 ≤ r ≤ n − 2 and all (k₁,...,k_r) ∈ Δ^{r^{op}}.

The sets underlying the discrete structures X_0^d , $X_{1\dots 10}^d$ correspond to the sets of *r*-cells for $0 \le r \le n-2$. The sets of (n-1) (resp. *n*)-cells correspond to $ob(X_{1\dots 1})$ (resp. $mor(X_{1\dots 1})$).

• For each $a, b \in X_0^d$, let X(a, b) be the fiber at (a, b) of

$$X_1 \xrightarrow{(\partial_0,\partial_1)} X_0 \times X_0 \xrightarrow{\gamma \times \gamma} X_0^d \times X_0^d$$

Induced Segal maps condition

Given $X \in \text{Seg}_n \subset [\Delta^{\circ p}, \text{Seg}_{n-1}]$, consider the commuting diagram

where $k \ge 2$, $\nu_j = X(r_j)$, $r_j(0) = j - 1$, $r_j(1) = j$. The corresponding induced Segal map

$$\hat{\mu}_k: X_k \to X_1 \times_{X_0^d} \cdots \times_{X_0^d} X_1$$
.

is required to be an (n-1)-equivalences in Seg_{n-1} for each $k \ge 2$.

イロト イポト イヨト イヨト 二日

Summary of main common features of Seg_n.

- Multi-simplicial embeddings $\text{Seg}_n \hookrightarrow [\Delta^{n-1^{op}}, \text{Cat}] \hookrightarrow [\Delta^{n^{op}}, \text{Set}].$
- Inductive definition $\text{Seg}_1 = \text{Cat}, \text{Seg}_n \hookrightarrow [\Delta^{\text{op}}, \text{Seg}_{n-1}].$
- Weak globularity condition.
- Functor $p^{(n-1)}$: Seg_n \rightarrow Seg_{n-1}
- n-Equivalences.
- (n-1)-Equivalences of the induced Segal maps for each $k \ge 2$

$$\hat{\mu}_k: X_k \to X_1 \times_{X_0^d} \cdots \times_{X_0^d} X_1$$

The three models

We discuss three Segal-type models, collectively denoted Segn

Taⁿ Tamsamani *n*-categories [Tamsamani and Simpson] Catⁿ_{wg} \subset Catⁿ weakly globular *n*-fold categories [P.] Taⁿ_{wg} weakly globular Tamsamani *n*-categories [P.] Respective functor $p^{(n-1)}$: Seg_n \rightarrow Seg_{n-1} for each model.

The three models, cont.

Three different models corresponding to different behavior of:Induced Segal maps $\hat{\mu}_k: X_k \to X_1 \times_{X_0^d} \cdots \times_{X_0^d} X_1$ Segal maps $\eta_k: X_k \to X_1 \times_{X_0} \cdots \times_{X_0} X_1$

	X_0, X_{k_1,\ldots,k_r0}	$\hat{\mu}_{m{k}}$	η_{k}		
Ta ⁿ	discrete	(<i>n</i> – 1)-eq	(<i>n</i> – 1)-eq		
Cat ⁿ wg	homotopically discrete	(<i>n</i> – 1)-eq	isomorphisms		
Ta ⁿ wg	homotopically discrete	(<i>n</i> – 1)-eq	-		

Main results [P. and Pronk n = 2, P. for n > 2]

Theorem A. There is a functor *rigidification*

 $Q_n: \mathrm{Ta}^n_{\mathrm{wg}} \to \mathrm{Cat}^n_{\mathrm{wg}}$

and for each $X \in Ta_{wq}^n$ an *n*-equivalence natural in X

 $s_n(X): Q_nX \to X.$

Theorem B. There is a functor *discretization*

 $\textit{Disc}_n: \textit{Cat}^n_{wg} \to \textit{Ta}^n$

and, for each $X \in Cat_{wg}^n$, a zig-zag of *n*-equivalences in Ta_{wg}^n between X and $Disc_n X$.

Simona Paoli (University of Leicester)

< ロ > < 同 > < 回 > < 回 >

Main results, cont.

Theorem C. The functors

$$Q_n$$
 : Taⁿ \leftrightarrows Catⁿ_{wg} : Disc_n

induce an equivalence of categories after localization with respect to the *n*-equivalences

 $\mathrm{Ta}^n/\!\sim^n\simeq \mathrm{Cat}^n_{\mathrm{wg}}/\!\sim^n$.

Theorem D. There is an equivalence of categories

 $\operatorname{GCat}_{\operatorname{wg}}^n/\sim^n \simeq \operatorname{Ho}(n\text{-types})$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

July 2019

30/54

where $GCat_{wg}^n \subset Cat_{wg}^n$ is the subcategory of groupoidal weakly globular *n*-fold categories.

Simona Paoli (University of Leicester)

Using pseudo-functors to rigidify Taⁿwa

We identify a subcategory

$$\mathsf{SegPs}[\Delta^{n-1^{op}},\mathsf{Cat}]\subset\mathsf{Ps}[\Delta^{n-1^{op}},\mathsf{Cat}]$$

of Segalic pseudo-functors with the property that the strictification functor St : Ps[$\Delta^{n-1^{op}}$, Cat] \rightarrow [$\Delta^{n-1^{op}}$, Cat] restricts to

$$\mathsf{SegPs}[\Delta^{n-1^{\textit{op}}},\mathsf{Cat}] \xrightarrow{St} \mathsf{Cat}^n_{\mathsf{wg}} \subset [\Delta^{n-1^{\textit{op}}},\mathsf{Cat}]$$

We will then build the rigidification functor Q_n as a composite

$$Q_n: \mathrm{Ta}^n_{\mathrm{wg}} \to \mathrm{SegPs}[\Delta^{n-1^{op}}, \mathrm{Cat}] \xrightarrow{St} \mathrm{Cat}^n_{\mathrm{wg}}.$$

Segal maps for pseudo-functors.

Notation:

$$\underline{k} = (k_1, \ldots, k_{n-1}) \in \Delta^{n-1^{op}}, \ 1 \le i \le n-1$$

$$\underline{k}(1, i) = (k_1, \ldots, k_{i-1}, 1, k_{i+1}, \ldots, k_{n-1})$$

$$\underline{k}(0,i) = (k_1, \ldots, k_{i-1}, 0, k_{i+1}, \ldots, k_{n-1})$$

• Let $H \in Ps[\Delta^{n-1^{op}}, Cat]$ be such that $H_{\underline{k}(0,i)}$ is discrete for all $\underline{k} \in \Delta^{n-1^{op}}$ and all $1 \le i \le n-1$.

For pseudo-functors *H* satisfying this condition we can define Segal maps as follows.

July 2019

32/54

Simona Paoli (University of Leicester)

Segal maps for pseudo-functors, cont.

The following diagram in Cat commutes

< ロ > < 同 > < 回 > < 回 >

The functor $p^{(n-1)}$

Definition

We denote by

$$p^{(n-1)}$$
: Ps[$\Delta^{n-1^{op}}$, Cat] \rightarrow [$\Delta^{n-1^{op}}$, Set]

the functor $(p^{(n-1)}X)_{\underline{k}} = pX_{\underline{k}}$ for $X \in \mathsf{Ps}[\Delta^{n-1^{op}},\mathsf{Cat}]$ and $\underline{k} \in \Delta^{n-1^{op}}$.

イロト イヨト イヨト イヨト

Segalic pseudo-functors.

Definition

Define $H \in \text{SegPs}[\Delta^{n-1^{op}}, \text{Cat}] \subset \text{Ps}[\Delta^{n-1^{op}}, \text{Cat}]$ if

- i) $H_{\underline{k}(0,i)}$ is discrete for all $\underline{k} \in \Delta^{n-1^{op}}$ and $1 \le i \le n-1$.
- ii) All Segal maps are isomorphisms.
- iii) The functor $p^{(n-1)}$: Ps[$\Delta^{n-1^{op}}$, Cat] \rightarrow [$\Delta^{n-1^{op}}$, Set] restricts to a functor

$$p^{(n-1)}: \mathsf{SegPs}[\Delta^{n-1^{op}},\mathsf{Cat}] o \mathsf{Cat}_{\mathsf{wg}}^{\mathsf{n}-1}$$
 .

The idea is to add an extra pseudo-simplicial dimension to Cat_{wg}^{n-1} in such a way that Segal maps can be defined and are isomorphims.

		- <u>L</u>		-	2.40
Simona Paoli (University of Leicester)			July 2019		35/54

From Segalic pseudo-functors to weakly globular *n*-fold categories

Theorem

The strictification functor

$$St: \mathsf{Ps}[\Delta^{n-1^{op}},\mathsf{Cat}] \to [\Delta^{n-1^{op}},\mathsf{Cat}]$$

restricts to a functor

$$St: SegPs[\Delta^{n-1^{op}}, Cat] \xrightarrow{St} Cat^n_{wg}$$

Next we build a functor $Ta_{wg}^n \rightarrow SegPs[\Delta^{n-1^{op}}, Cat]$, distinguishing the cases n = 2 and n > 2.

< 回 > < 三 > < 三 >

From Ta²_{wa} to pseudo-functors

• By definition, $X \in Ta^2_{wg}$ if $X \in [\Delta^{op}, Cat]$ is such that

$$X_0 \in \operatorname{Cat}_{\operatorname{hd}}, \qquad X_k \simeq X_1 imes_{X_0^d} \cdots imes_{X_0^d} X_1 \quad k \geq 2.$$

Let

$$(Tr_{2}X)_{k} = \begin{cases} X_{0}^{d}, & k = 0\\ X_{1}, & k = 1\\ X_{1} \times_{X_{0}^{d}} \cdots \times_{X_{0}^{d}} X_{1}, & k > 1 \end{cases}$$

Then $X_k \simeq (Tr_2 X)_k$ for all k.

By transport of structure $Tr_2 X \in [ob(\Delta^{op}), Cat]$ lifts to a pseudo-functor $Tr_2 X \in Ps[\Delta^{op}, Cat]$, which is Segalic.

< ロ > < 同 > < 回 > < 回 >

The functor Q₂

Definition Let Q_2 be the composite $Q_2 : \operatorname{Ta}_{wg}^2 \xrightarrow{Tr_2} \operatorname{SegPs}[\Delta^{op}, \operatorname{Cat}] \xrightarrow{St} \operatorname{Cat}_{wg}^2$ and let $s_2(X) : Q_2X = St \operatorname{Tr}_2X \to X$ correspond by adjointness to $t_2(X) : \operatorname{Tr}_2X \to X$.

• One can show that $s_2(X)$ is a 2-equivalence.

From Taⁿ_{wa} to pseudo-functors

 The case n > 2 is more complex, since the induced Segal maps of X ∈ Taⁿ_{wg} are (n − 1)-equivalences but not, in general, levelwise equivalences of categories.

We identify a subcategory $LTa_{wg}^n \subset Ta_{wg}^n$ and functors $Ta_{wg}^n \xrightarrow{P_n} LTa_{wg}^n \xrightarrow{Tr_n} SegPs[\Delta^{n-1^{op}}, Cat]$.

• The functor Tr_n is built using transport of structure in a way formally analogous to the case n = 2.

The functor $q^{(n-1)}$

Let $q : Cat \rightarrow Set$ be the connected components functor.

Proposition

- The functor $q^{(n-1)} : [\Delta^{n^{op}}, \text{Set}] \to [\Delta^{n-1^{op}}, \text{Set}]$ obtained by applying q levelwise restricts to a functor $q^{(n-1)} : \text{Ta}_{wg}^n \to \text{Ta}_{wg}^{n-1}$.
- For each $X \in Ta_{wq}^n$, there is a map natural in X

 $\gamma^{(n-1)}: X \to q^{(n-1)}X$.

The functor $q^{(n-1)}$ divides out by the highest dimensional cells. Think of $q^{(n-1)}$ as a 'categorical Postnikov functor'.

We show that, if X ∈ Taⁿ_{wg} is such that q⁽ⁿ⁻¹⁾X can be approximated up to (n − 1)-equivalence with an object of Cat^{n−1}_{wg}, then X can be approximated up to an *n*-equivalence with an object of LTaⁿ_{wg}.

• This property is used to construct the functor $P_n : Ta^n_{wg} \rightarrow LTa^n_{wg}$.

The functor P_n

Suppose, inductively, that we defined Q_{n-1} : Taⁿ⁻¹_{wg} → Catⁿ⁻¹_{wg} and and the (n − 1)-equivalence s_{n-1} Y : Q_{n-1} Y → Y for each Y ∈ Taⁿ⁻¹_{wg}.

Given $X \in \operatorname{Ta}_{wq}^n$ let $P_n X$ be the pullback in $[\Delta^{n-1^{op}}, \operatorname{Cat}]$

Then $P_n X \in LTa_{wq}^n$ and $w_n(X)$ is an *n*-equivalence.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The rigidification functor

Definition

Let Q_2 be the composite

$$Q_2: \operatorname{Ta}^2_{\operatorname{wg}} \xrightarrow{\mathcal{T}_2} \operatorname{SegPs}[\Delta^{op}, \operatorname{Cat}] \xrightarrow{St} \operatorname{Cat}^2_{\operatorname{wg}}$$

Define Q_n for n > 2 to be the composite

$$Q_n: \mathsf{Ta}^n_{\mathsf{wg}} \xrightarrow{P_n} \mathsf{LTa}^n_{\mathsf{wg}} \xrightarrow{\mathit{Tr}_n} \mathsf{SegPs}[\Delta^{n-1^{op}}, \mathsf{Cat}] \xrightarrow{\mathit{St}} \mathsf{Cat}^n_{\mathsf{wg}}$$

Simona Paoli (University of Leicester)

Summary of rigidification process

- The idea of *Disc_n* : Catⁿ_{wg} → Taⁿ is to replace the homotopically discrete sub-structures in Catⁿ_{wg} by their discretizations.
- This recovers the globularity condition, but at the expenses of the Segal maps, which from being isomorphisms become (n-1)-equivalences.

The case n = 2

• Let
$$X \in \operatorname{Cat}^2_{wg}$$
, then $X_0 \in \operatorname{Cat}_{hd}$.

• Choose a section $\gamma' : X_0^d \to X_0$ of $\gamma : X_0 \to X_0^d$.

Let $D_0 X \in [\Delta^{op}, Cat]$ be given by

$$\cdots X_1 \times_{X_0} X_1 \xrightarrow{\gamma \partial_0} X_1 \xrightarrow{\gamma \partial_1} X_0^d$$

The Segal maps of $D_0 X$ for each $k \ge 2$

$$X_k = X_1 imes_{X_0} imes_{\cdots}^k imes_{X_0} X_1 o X_1 imes_{X_0^d} imes_{\cdots}^k imes_{X_0^d} X_1$$

are equivalences of categories and X_0^d is discrete. Thus $D_0 X \in Ta^2$.

The case n = 2, cont.

Given a map *f* : *X* → *Y* in Cat²_{wg}, we have a pseudo-commuting diagram

for given choices of sections γ'_{X_0} , γ'_{Y_0} .

Therefore the corresponding map $D_0 X \to D_0 Y$ is in $Ps[\Delta^{o^p}, Cat]$. That is

$$D_0:\operatorname{Cat}^2_{\operatorname{wg}} o (\operatorname{Ta}^2)_{\operatorname{ps}}$$
 .

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Overall strategy

- To remedy this problem we introduce the category FCatⁿ_{wg} which exhibits functorial sections to the discretization maps of the homotopically discrete substructures in Catⁿ_{wa}.
- Because of this property of FCatⁿ_{wg}, the discretization process can be done functorially, using an iteration of the above idea, via a functor *D_n* : FCatⁿ_{wg} → Taⁿ.
- We show that we can approximate any object of Catⁿ_{wg} with an *n*-equivalent object of FCatⁿ_{wg} via a functor G_n : Catⁿ_{wg} → FCatⁿ_{wg}.

• $Disc_n$ is defined as the composite $Cat_{wg}^n \xrightarrow{G_n} FCat_{wg}^n \xrightarrow{D_n} Ta^n$.

Theorem

The functors

$$Q_n$$
 : Taⁿ \leftrightarrows Catⁿ_{wa} : *Disc*_n

induce an equivalence of categories after localization with respect to the n-equivalences

 $Ta^n/\sim^n \simeq Cat^n_{wg}/\sim^n$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

・ロト ・ 四ト ・ ヨト ・ ヨト

- 3

50/54

July 2019

Definition

Define $\underline{GCat^n_{wg}} \subset Cat^n_{wg}$ inductively

- n = 1 GCat¹_{wg} = Gpd
- Suppose we defined $GCat_{wg}^{n-1}$.

$$X \in \operatorname{GCat}_{wg}^n \subset \operatorname{Cat}_{wg}^n$$
 if

i) for all
$$a,b\in X_0^d,\,\,X(a,b)\in \operatorname{GCat}^{n-1}_{\operatorname{wg}}.$$

ii)
$$p^{(n-1)}X \in \operatorname{GCat}_{\operatorname{wg}}^{n-1} \subset \operatorname{Cat}_{\operatorname{wg}}^{n-1}$$
.

Simona Paoli (University of Leicester)

The homotopy hypothesis

From the comparison theorem between Catⁿ_{wq} and Taⁿ we obtain

Theorem

There is an equivalence of categories

 $\operatorname{GCat}_{\operatorname{wg}}^n/\sim^n \simeq \operatorname{Ho}(n\text{-types})$.

Note: An explicit description of the fundamental n-groupoid functor

 $Top \rightarrow GCat_{wg}^n$

is given by [Blanc and P.,2015].

Simona Paoli (University of Leicester)

July 2019 51/54

< ロ > < 同 > < 回 > < 回 >

Overall Summary

Further directions

• Postnikov systems of simplicial categories.

- Model category theoretic approaches.
- Weak globularity in the (∞, n) context.
- Weak units.
- Comparison of Segalic and operadic approaches.

▲ 同 ▶ | ▲ 三 ▶

Book

Simona Paoli

Algebra and Applications

Simplicial Methods for Higher Categories

Segal-type Models of Weak *n*-Categories

D Springer

< 🗗 >

★ E > < E >

Simona Paoli (University of Leicester)