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e components with open terminals

e arrows of some (symmetric) monoidal category

monoidal functor Syntax — Semantics

relational semantics as opposed to functional semantics



Plan

¥ composing props

¥ interacting Hopf algebras

¥ graphical linear algebra in action

¥ cartesian bicategories and Frobenius theories
¥ generating functions and signal flow graphs

¥ graphical affine algebra and non-passive electrical circuits



(Mac Lane 1965, Lack 2004)
e symmetric strict monoidal categories where
1. objects are natural numbers and

2. M®N ;= Mm+n

e morphisms of props = identity-on-objects symmetric strict monoidal functors

* examples

* P - arrows m to n are permutations from {1,...,m} to {1,...,n} (empty if mzn)

e F - arrows m to n are functions from {1,...,m} to {1,...,n}

any Lawvere theory

e Relx - arrows m to n are relations from Xm to Xn

LinRelk - arrows n to n are linear relations from km to kn



Presentations of Props

(Lack 2004)

e props can be used as coat hangers for algebraic structure

e example: the prop of commutative monoids Cm

e observation: Cm = F, to give a string diagram m—n in Cm is to give a
function {1,...m}—{1,...,n}



Composing props - Intuition

— P — Green prop P

— Purple prop Q

When can we understand P;Q as a prop?
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Composing Props - A Rough Sketch

(Lack 2004)

recall (Street 1972): monads as arrows of a 2-category
mental gymnastics: category = monad in Span(Set)
prop = monad in Prof(Mon) on object P

now, given two props R, S, we can compose them

to make sense of the composite as a monad (i.e. a prop)
we need a distributive law



e ie. we need to turn a cospan of functions

M- > N < m2

into a span of functions

M1 < N » Mo

in a way that satisfies the requirements of distributive laws

* taking the pullback in F works!
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Span(F) = commutative
bialgebra = matrices of
natural numbers Matn




commutative Hopf algebra =
matrices of integers

e Add an antipode —@B— and equations:

G e T S G G =

I

e Matz has both pullbacks and pushouts

* a slight generalisation of Lack’s notion of composing props allows us to
derive presentations for

e |HSpran - A presentation of Span(Matz)

e |HSran - presentation of Cospan(Matz)






Presentation of Span(Matz)

Presentation of Cospan(Matz)
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Glueing Spans and Cospans

H + HOP > |SPan
IHCospan »1H
\
Matz -+ Matzop »Span(MatZ)

N 4

Cospan(Mat-) »LinRelq




GLA: a presentation of LinRelq

c. bialgebra

c. monoid . c. comonoid

e.s. Frobenius

c. comonoid | i CH-

c. bialgebra
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c. bialgebra
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c. bialgebra

e Colour

e black and white satisfy exactly the same equations in the equational
theory

e S0 every proof is in fact a proof of two theorems: invert the colours!
o Left-Right

e every fact is still a fact when viewed in the mirror



Basic concepts, diagrammatically

transpose

e combine colour
and mirror image
symmetries

kernel (nullspace)

cokernel (left
nullspace)

image
(columnspace)

coimage
(rowspace)

UL L

Fact. Given a linear subspace R:0->k in
LinRel, its orthogonal complement R+

IS its colour inverted diagram

Pl o
(5)1=em=0 ()

Corollary. The “fundamental theorem of
linear algera”

kerA = im(A")+
kerA' = im(A)*"



Diagrammatic reasoning in action

Fact. A is injective iff —A—A_

Theorem. A is injective iff ker A =0
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Span vs Cospan

e every linear relation can be written in span form, or in
cospan form

e span form = choose a basis ™(¢ F{D)-"

 cospan form = choose a set of equations M A)KFE}n

x+y=0

x+y=0 2y-z=0 . 2y-z=0 .  '- a[t, -1, 0] b[O 1, 2] a[1, -1, 0]+b[0,1,2]
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Fun Stuff - Rediscovering Fraction Arithmetic
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Fun Stuff - Dividing by Zero

* LinRelq[1,1]

e projective arithmetic with two
additional elements

e the unique 0-dimensional
subspace L ={(0,0)}

e The unique 2-dimensional
subspace T ={(x,y) | x,y € Q}
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Cartesian categories

(Fox 1976)

commutative comonoid structure

and everything commutes with the structure
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Example: Set.



Cartesian bicategories

(Carboni, Walters 1987)

special Frobenius structure where monoid is right adjoint to comonoid
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and everything laxly commutes with the structure
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Example: Relx



LinRel is a cartesian bicategory

 LinRel is a cartesian bicategory

e |n fact, it is an abelian bicategory

 Jo obtain a presentation we add just one inequality
(Bonchi, Holland, Pavlovic, S. 2017)

— 0 <= —e

* This breaks the symmetry between white and black!



Lawvere theories

* recipe for Lawvere-theories-as-props

1. add a cocommutative comonoid
structure

2. make all generators commute with it B < : : -

3. add your other equations (which may
make use of the comonoid structure)



Frobenius theories

(Bonchi, Pavlovic, S. 2017)

» recipe for Frobenius-theories- |
as-locally-ordered-props ‘

e add a Frobenius bimonoid
structure where monoid is
right adjoint to comonoid

 make all your generators
laxly commute with it

e add your other equations
(which may make use of the |
Frobenius structure) eg. idp < e—e



Functorial semantics

* For Lawvere theories
* models = cartesian functors
e homomorphisms = natural transformations
* For Frobenius theories
* models = morphisms of cartesian bicategories
* homomorphisms = lax natural transformations

e Rel models of GLA = Vectq
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Generalising GLA

H + HOP »SPan
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IHCospan »|H
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Matz + Matzop —>Span Matz

+/ #/

Cospan(Mat) —p-LinRel

e The cube construction works for Matr whenever R is a PID
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Generating Functions and
Laurent series

Span ]
Hapg +Hapg ™ — Moy equational Theory
IH Cospan >'HQ(x)
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polynomial fractions
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isomorphisms

faithful homomorphisms



Example

_3{1 -x-x2 .

As linear relation over Q(x) is the space generated by

(1, X/(1-x-x2))

As linear relation over Q((x)) is the space generated by

(1,0,0,... , 0,1,1,23538,...)




Signal flow graphs

(Shannon 1942)

e directed circuits with

The Theory and Design of

e addition gates Linear Differential Equation Machines*
Clawde E. Shanman

* Junctions e i,

e “registers”

e act as integrators in the continuous semantics
e act as one place buffers in the discrete semantics

e guarded feedback



Example - FIbOnaCCI

(Bonchi, S., Zanasi 2015)

1 X >_C1-x-x2 — = 1 X
X
X —(x
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Graphical Affine Algebra

(Bonchi, Piedeleu, S., Zanasi 2019)

Definition. Given a field k, a k-affine relation k->I is a set
Rckkxk! which is either empty, or s.t. there is a k-linear

relation C and a vector (a,b) s.t. R=(a,b) + C

GLA + above = AffRelk



Example: Non-passive electrical circuits
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Resistors In parallel
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Current sources in parallel
are additive
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Voltage sources In parallel are “illegal”
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See you in Tallinn!

PhD projects in open game theory, CT in programming, Frobenius theories,
string diagrams in database theory and logic, ...

Visitors welcome!



