Graphical Linear Algebra
(a CT2019 tutorial)

Pawel Sobocinski
U. Southampton -> Technical University of Tallinn

(joint work with Filippo Bonchi, Brendan Fong, Dusko Pavlovic, Robin Piedeleu, Josh Holland, Jens Seeber, Fabio Zanasi)
Mathematics of Open Systems

- components with open terminals
- arrows of some (symmetric) monoidal category
- monoidal functor Syntax \rightarrow Semantics
- relational semantics as opposed to functional semantics
Plan

- composing props
- interacting Hopf algebras
- graphical linear algebra in action
- cartesian bicategories and Frobenius theories
- generating functions and signal flow graphs
- graphical affine algebra and non-passive electrical circuits
Props
(Mac Lane 1965, Lack 2004)

- symmetric strict monoidal categories where
 1. objects are natural numbers and
 2. $m \otimes n := m + n$

- morphisms of props = identity-on-objects symmetric strict monoidal functors

- examples
 - \mathbf{P} - arrows m to n are permutations from $\{1,\ldots,m\}$ to $\{1,\ldots,n\}$ (empty if $m \neq n$)
 - \mathbf{F} - arrows m to n are functions from $\{1,\ldots,m\}$ to $\{1,\ldots,n\}$
 - any Lawvere theory
 - \mathbf{Rel}_X - arrows m to n are relations from X^m to X^n
 - \mathbf{LinRel}_k - arrows n to n are linear relations from k^m to k^n
Presentations of Props

(Lack 2004)

- props can be used as coat hangers for algebraic structure

- example: the prop of commutative monoids \mathbf{Cm}

- observation: $\mathbf{Cm} \cong \mathbf{F}$, to give a string diagram $m \rightarrow n$ in \mathbf{Cm} is to give a function $\{1, \ldots m\} \rightarrow \{1, \ldots, n\}$
Composing props - Intuition

Green prop P

Purple prop Q

When can we understand $P;Q$ as a prop?

λ

$P \Lambda Q$
Composing Props - A Rough Sketch

(Lack 2004)

• recall (Street 1972): monads as arrows of a 2-category

• *mental gymnastics*: category = monad in \text{Span}(extbf{Set})

• prop = monad in \text{Prof}(extbf{Mon}) on object \(P \)

• now, given two props \(R, S \), we can compose them

• to make sense of the composite as a monad (i.e. a prop) we need a **distributive law**
Example - Composing with

- i.e. we need to turn a cospan of functions

 \[
 \begin{array}{c}
 m_1 \\
 \downarrow \\
 n \\
 \downarrow \\
 m_2
 \end{array}
 \]

 into a span of functions

 \[
 \begin{array}{c}
 m_1 \\
 \downarrow \\
 n \\
 \downarrow \\
 m_2
 \end{array}
 \]

 in a way that satisfies the requirements of distributive laws

- taking the pullback in \(F \) works!
other pullbacks responsible for:

- \[\begin{array}{c}
\text{other pullbacks responsible for:} \\
\end{array} \]

i.e. the theory of commutative bialgebra
Plan

- composing props
- interacting Hopf algebras
- graphical linear algebra in action
- cartesian bicategories and Frobenius theories
- generating functions and signal flow graphs
- graphical affine algebra and non-passive electrical circuits
Span(\(F\)) = commutative bialgebra = matrices of natural numbers Mat\(_N\)

Sugar:

\[
\begin{align*}
0 & := \begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array}, \\
2^{k+1} & := \begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array}.
\end{align*}
\]

Lemma

\[
\begin{align*}
\begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array} + \begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array} & = \begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array}.
\end{align*}
\]

Proof

\[
\begin{align*}
\begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array} + \begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array} & = \begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array}, \\
\begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array} + 1 & = \begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array}.
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array} + \begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array} & = \begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array}, \\
\begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array} + 1 & = \begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array}.
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array} + \begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array} & = \begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array}, \\
\begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array} + 1 & = \begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array}.
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array} + \begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array} & = \begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array}, \\
\begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array} + 1 & = \begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array}.
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array} + \begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array} & = \begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array}, \\
\begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array} + 1 & = \begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array}.
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array} + \begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array} & = \begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array}, \\
\begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array} + 1 & = \begin{array}{c}
\text{small black dot} \\
\text{solid circular node}
\end{array}.
\end{align*}
\]
commutative Hopf algebra = matrices of integers

- Add an antipode and equations:

- Mat\(\mathbb{Z}\) has both pullbacks and pushouts

- a slight generalisation of Lack’s notion of composing props allows us to derive presentations for

 - \(\text{IH}^{\text{Span}}\) - A presentation of \(\text{Span}(\text{Mat}\mathbb{Z})\)

 - \(\text{IH}^{\text{Span}}\) - presentation of \(\text{Cospan}(\text{Mat}\mathbb{Z})\)
Presentation of Span(MatZ)

\[\begin{align*}
\text{IH}^{\text{Span}} & \\
\text{IH}^\text{op} & \\
\end{align*} \]

\[\begin{align*}
\begin{array}{c}
p \rightarrow p \\
\end{array} & = \\
\begin{array}{c}
\longrightarrow \\
\end{array} & (p \neq 0) \\
\end{align*} \]

\[\begin{align*}
\begin{array}{c}
\longrightarrow \\
\end{array} & = \\
\begin{array}{c}
\longrightarrow \\
\end{array} & = id_0 \\
\end{align*} \]

Presentation of Cospan(MatZ)

\[\begin{align*}
\text{IH}^{\text{Cospan}} & \\
\text{IH}^\text{op} & \\
\end{align*} \]

\[\begin{align*}
\begin{array}{c}
p \rightarrow p \\
\end{array} & = \\
\begin{array}{c}
\longrightarrow \\
\end{array} & (p \neq 0) \\
\end{align*} \]

\[\begin{align*}
\begin{array}{c}
\longrightarrow \\
\end{array} & = \\
\begin{array}{c}
\longrightarrow \\
\end{array} & = id_0 \\
\end{align*} \]
Glueing Spans and Cospans

\[\text{IH} \cong \text{LinRel}_Q \]

\[\text{Cospan} \left(\text{Mat}_\mathbb{Z} \right) \]
GLA: a presentation of LinRel_\mathcal{Q}

e.s. Frobenius

\begin{align*}
\text{c. bialgebra} & \quad \text{c. bialgebra} \\
\text{c. monoid} & \quad \text{c. comonoid} \\
\text{c. comonoid} & \quad \text{c. monoid}
\end{align*}

\begin{align*}
\text{e.s. Frobenius} & \quad (p \neq 0) \\
\text{e.s. Frobenius} & \quad (p \neq 0)
\end{align*}
Plan

- composing props
- interacting Hopf algebras
- **graphical linear algebra in action**
- cartesian bicategories and Frobenius theories
- generating functions and signal flow graphs
- graphical affine algebra and non-passive electrical circuits
• Colour
 • black and white satisfy exactly the same equations in the equational theory
 • so every proof is in fact a proof of two theorems: invert the colours!

• Left-Right
 • every fact is still a fact when viewed in the mirror
Basic concepts, diagrammatically

- transpose
- combine colour and mirror image symmetries
- kernel (nullspace)
- cokernel (left nullspace)
- image (columnspace)
- coimage (rowspace)

Fact. Given a linear subspace $R:0\to k$ in LinRel, its orthogonal complement R^\perp is its colour inverted diagram.

Corollary. The “fundamental theorem of linear algebra”

$$\ker A = \text{im}(A^T)^\perp$$

$$\ker A^T = \text{im}(A)^\perp$$
Diagrammatic reasoning in action

Fact. A is injective iff $\begin{array}{c} \text{A} \ \text{A} \end{array} = \begin{array}{c} \text{A} \ \text{A} \end{array}$

Theorem. A is injective iff $\ker A = 0$
Span vs Cospan

• every linear relation can be written in span form, or in cospan form

• span form = choose a basis

• cospan form = choose a set of equations

\[\begin{align*}
\text{Span: } & \quad \begin{array}{c}
\text{Choose a basis: } a[1, -1, 0] + b[0, 1, 2] \\
\text{Cospan: } & \quad \begin{array}{c}
\text{Choose a set of equations: } x + y = 0, 2y - z = 0 \\
\end{array}
\end{array}
\end{align*} \]
Fun Stuff - Rediscovering Fraction Arithmetic

\[\frac{p}{q} \] := \[\frac{p}{q} \]

\[p \quad q \] = \[r \quad s \]

\(\Leftrightarrow \)

\(sp = qr \)

\[p \quad q \quad r \quad s \] = \[p \quad r \quad q \quad s \]

= \[rp \quad sq \]

= \[sp + qr \quad sq \]
Fun Stuff - Dividing by Zero

- LinRel_1,1

- Projective arithmetic with two additional elements

 - The unique 0-dimensional subspace \(\perp = \{ (0,0) \} \)

 - The unique 2-dimensional subspace \(\top = \{ (x,y) \mid x,y \in \mathbb{Q} \} \)

Table 1: Projective Arithmetic Operators

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>r/s</th>
<th>(\infty)</th>
<th>(\top)</th>
<th>(\perp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>r/s</td>
<td>(\infty)</td>
<td>(\top)</td>
<td>(\perp)</td>
</tr>
<tr>
<td>(\frac{p}{q})</td>
<td>(\frac{(sp+qr)}{qs})</td>
<td>(\infty)</td>
<td>(\top)</td>
<td>(\perp)</td>
<td></td>
</tr>
<tr>
<td>(\infty)</td>
<td></td>
</tr>
<tr>
<td>(\top)</td>
<td></td>
</tr>
<tr>
<td>(\perp)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Linear Relational Operators

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>r/s</th>
<th>(\infty)</th>
<th>(\top)</th>
<th>(\perp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(\perp)</td>
<td>0</td>
<td>(\perp)</td>
</tr>
<tr>
<td>(\frac{p}{q})</td>
<td>0</td>
<td>(\frac{pr}{qs})</td>
<td>(\top)</td>
<td>(\top)</td>
<td>(\perp)</td>
</tr>
<tr>
<td>(\infty)</td>
<td>(\top)</td>
<td>(\top)</td>
<td>(\top)</td>
<td>(\top)</td>
<td></td>
</tr>
<tr>
<td>(\top)</td>
<td></td>
</tr>
<tr>
<td>(\perp)</td>
<td></td>
</tr>
</tbody>
</table>
Plan

- composing props
- interacting Hopf algebras
- graphical linear algebra in action
- cartesian bicategories and Frobenius theories
- generating functions and signal flow graphs
- graphical affine algebra and non-passive electrical circuits
Cartesian categories

(Fox 1976)

cartesian categories are those sym. mon. cats. where every object has a commutative comonoid structure

and everything commutes with the structure

Example: Set_x
Cartesian bicategories
(Carboni, Walters 1987)

special Frobenius structure where monoid is right adjoint to comonoid

and everything laxly commutes with the structure

Example: Rel_x
LinRel is a cartesian bicategory

- LinRel is a cartesian bicategory
 - In fact, it is an abelian bicategory

- To obtain a presentation we add just one inequality

 (Bonchi, Holland, Pavlovic, S. 2017)

\[\begin{array}{c}
\circ \leq \bullet
\end{array}\]

- This breaks the symmetry between white and black!
Lawvere theories

- recipe for Lawvere-theories-as-props
 1. add a cocommutative comonoid structure
 2. make all generators commute with it
 3. add your other equations (which may make use of the comonoid structure)

\[x \cdot x^{-1} = e \]
Frobenius theories
(Bonchi, Pavlovic, S. 2017)

• recipe for Frobenius-theories-as-locally-ordered-prop

• add a Frobenius bimonoid structure where monoid is right adjoint to comonoid

• make all your generators laxly commute with it

• add your other equations (which may make use of the Frobenius structure)

\[\text{e.g. } \text{id}_0 \leq \bullet \bullet \]
Functorial semantics

• For Lawvere theories
 • models = cartesian functors
 • homomorphisms = natural transformations

• For Frobenius theories
 • models = morphisms of cartesian bicategories
 • homomorphisms = lax natural transformations

• Rel models of GLA = Vect_\mathbb{Q}
Plan

- composing props
- interacting Hopf algebras
- graphical linear algebra in action
- cartesian bicategories and Frobenius theories
- *generating functions and signal flow graphs*
- graphical affine algebra and non-passive electrical circuits
Generalising GLA

- The cube construction works for Mat_R whenever R is a PID.

\[
\begin{align*}
&\text{IH}^\text{Cospan} \rightarrow \text{IH}^\text{Span} \\
&\text{IH}^\text{Cospan} \rightarrow \text{IH} \rightarrow \text{IH}^\text{Span} \\
&\text{IH} \rightarrow \text{Span}(\text{Mat}_Z) \\
&\text{Cospan}(\text{Mat}_Z) \rightarrow \text{LinRel}
\end{align*}
\]
Generating Functions and Laurent series

equational Theory

polynomial fractions

Laurent series

isomorphisms

faithful homomorphisms
Example

As linear relation over $\mathbb{Q}(x)$ is the space generated by

\[(1, x/(1-x-x^2))\]

As linear relation over $\mathbb{Q}((x))$ is the space generated by

\[(1,0,0,\ldots, 0,1,1,2,3,5,8,\ldots)\]
Signal flow graphs
(Shannon 1942)

- directed circuits with
 - addition gates
 - junctions
 - “registers”
 - act as integrators in the continuous semantics
 - act as one place buffers in the discrete semantics
- guarded feedback
Example - Fibonacci

(Bonchi, S., Zanasi 2015)
Plan

- composing props
- interacting Hopf algebras
- graphical linear algebra in action
- cartesian bicategories and Frobenius theories
- generating functions and signal flow graphs
- graphical affine algebra and non-passive electrical circuits
Definition. Given a field k, a k-affine relation $k \rightarrow l$ is a set $R \subseteq k^k \times k^l$ which is either empty, or s.t. there is a k-linear relation C and a vector (a,b) s.t. $R = (a,b) + C$

$GLA + \text{ above} \cong \text{AffRel}_k$
Example: Non-passive electrical circuits

\[I(\text{[]}) = \]

\[I(\text{[]}) = \]
Resistors in parallel

\[I \left(\frac{1}{a} + \frac{1}{b} \right) = \frac{ab}{a+b} \]

What if \(a=b=0? \)
Current sources in parallel are additive
Voltage sources in parallel are "illegal"

• F. Bonchi, P. Sobocinski, F. Zanasi. *Interacting Bialgebras are Frobenius*. FoSSaCS 2014

• S. Lack. *Composing PROPs*. TAC 13:147—164, 2004

See you in Tallinn!

PhD projects in open game theory, CT in programming, Frobenius theories, string diagrams in database theory and logic, …

Visitors welcome!