Graphical Linear Algebra (a CT2019 tutorial)

Pawel Sobocinski
U. Southampton -> Technical University of Tallinn

(joint work with Filippo Bonchi, Brendan Fong, Dusko Pavlovic, Robin Piedeleu, Josh Holland, Jens Seeber, Fabio Zanasi)

Mathematics of Open Systems

(Shannon 1942; Baez and Erbele 2014; Bonchi, S., Zanasi 2014)

(S 2010, Bonchi, Holland, Piedeleu, S. Zanasi 2019)

(Katis, Sabadini, Walters 1996)

(Baez, Coya, Rebro 2017; Coya 2018; Bonchi, Piedeleu, S., Zanasi 2019)

- components with open terminals
- arrows of some (symmetric) monoidal category
- monoidal functor Syntax → Semantics
- relational semantics as opposed to functional semantics

Plan

- ** composing props
- * interacting Hopf algebras
- * graphical linear algebra in action
- ** cartesian bicategories and Frobenius theories
- ****** generating functions and signal flow graphs
- ****** graphical affine algebra and non-passive electrical circuits

Props

(Mac Lane 1965, Lack 2004)

- symmetric strict monoidal categories where
 - 1. objects are natural numbers and
 - 2. m⊗n := m+n
- morphisms of props = identity-on-objects symmetric strict monoidal functors
- examples
 - **P** arrows m to n are permutations from {1,...,m} to {1,...,n} (empty if m≠n)
 - **F** arrows m to n are functions from {1,...,m} to {1,...,n}
 - any Lawvere theory
 - Rel_X arrows m to n are relations from X^m to Xⁿ
 - LinRel_k arrows n to n are linear relations from k^m to kⁿ

Presentations of Props

(Lack 2004)

- props can be used as coat hangers for algebraic structure
- example: the prop of commutative monoids Cm

observation: Cm ≅ F, to give a string diagram m→n in Cm is to give a function {1,...m}→{1,...,n}

Composing props - Intuition

When can we understand P;Q as a prop?

Composing Props - A Rough Sketch

(Lack 2004)

- recall (Street 1972): monads as arrows of a 2-category
- mental gymnastics: category = monad in Span(Set)
- prop = monad in Prof(Mon) on object P
- now, given two props R, S, we can compose them
- to make sense of the composite as a monad (i.e. a prop) we need a distributive law

Example - Composing

with

• ie. we need to turn a cospan of functions

$$m_1 \longrightarrow n \longleftarrow m_2$$

into a span of functions

$$m_1 \leftarrow m_2 \rightarrow m_2$$

in a way that satisfies the requirements of distributive laws

• taking the pullback in **F** works!

other pullbacks responsible for:

$$= -\bullet$$

$$= -\bullet$$

$$= -\bullet$$

$$= -\bullet$$

$$= -\bullet$$

$$= id_0$$

i.e. the theory of commutative bialgebra

 \cong

Plan

- ** composing props
- ***** interacting Hopf algebras
- * graphical linear algebra in action
- ** cartesian bicategories and Frobenius theories
- ****** generating functions and signal flow graphs
- ****** graphical affine algebra and non-passive electrical circuits

Span(F) = commutative bialgebra = matrices of natural numbers Mat_N

Sugar:

Lemma

Proof

commutative Hopf algebra = matrices of integers

Add an antipode — and equations:

- Matz has both pullbacks and pushouts
- a slight generalisation of Lack's notion of composing props allows us to derive presentations for
 - IH^{Span} A presentation of Span(Matz)
 - IH^{Span} presentation of Cospan(Matz)

Presentation of Span(Matz)

Нор

Presentation of Cospan(Matz)

H
Hop
$$(p \neq 0)$$

$$= id_0$$

$$= id_0$$

Glueing Spans and Cospans

GLA: a presentation of LinRel_Q

Plan

- ** composing props
- * interacting Hopf algebras
- ***** graphical linear algebra in action
- ** cartesian bicategories and Frobenius theories
- ****** generating functions and signal flow graphs
- ****** graphical affine algebra and non-passive electrical circuits

Colour

- black and white satisfy exactly the same equations in the equational theory
- so every proof is in fact a proof of two theorems: invert the colours!

Left-Right

every fact is still a fact when viewed in the mirror

Basic concepts, diagrammatically

- transpose
 - combine colour and mirror image symmetries

kernel (nullspace)

cokernel (left nullspace)

image (columnspace)

coimage (rowspace)

Fact. Given a linear subspace R:0->k in **LinRel**, its orthogonal complement R[⊥] is its colour inverted diagram

Corollary. The "fundamental theorem of linear algera"

$$\ker A = \operatorname{im}(A^T)^{\perp}$$

$$\ker A^T = \operatorname{im}(A)^{\perp}$$

Diagrammatic reasoning in action

Fact. A is injective iff

Theorem. A is injective iff ker A = 0

$$\Rightarrow \qquad = \qquad \boxed{A} \qquad \boxed{A} \qquad \bigcirc$$

$$= \qquad \bigcirc$$

Span vs Cospan

- every linear relation can be written in span form, or in cospan form
- span form = choose a basis $\frac{m}{C}$
- cospan form = choose a set of equations $\frac{m}{A}$

Fun Stuff - Rediscovering Fraction Arithmetic

$$- \left[\frac{p}{q} \right] := p - q$$

Fun Stuff - Dividing by Zero

- LinRel_Q[1,1]
- projective arithmetic with two additional elements
 - the unique 0-dimensional subspace $\bot = \{ (0,0) \}$
 - The unique 2-dimensional subspace ⊤ = { (x,y) | x,y ∈ Q }

+	0	r/s	⊗	Т	工
0	0	r/s	8	H	Т
p/q	_	(sp+qr)/ qs	8	Т	Т
∞	-	_	8	8	∞
Т	_	_	_	Т	∞
上	_	_	_	_	Т

×	0	r/s	8	Τ	Т
0	0	0	ᅴ	0	Т
p/q	0	pr/qs	8	<u> </u>	Т
8	Τ	8	8	Τ	8
Т	Т	Т	8	Т	∞
Т	0	Т	Т	0	Т

Plan

- ** composing props
- * interacting Hopf algebras
- ***** graphical linear algebra in action
- ***** cartesian bicategories and Frobenius theories
- ****** generating functions and signal flow graphs
- ****** graphical affine algebra and non-passive electrical circuits

Cartesian categories

(Fox 1976)

cartesian categories are those sym. mon. cats. where every object has

commutative comonoid structure

and everything commutes with the structure

$$\frac{n}{f} = \frac{n}{f} = \frac{n}{f}$$

Example: **Set**_×

Cartesian bicategories

(Carboni, Walters 1987)

special Frobenius structure where monoid is right adjoint to comonoid

$$\leq \qquad \qquad \leq \qquad \qquad \leq \qquad \operatorname{id}_0$$

$$= \qquad \qquad = \qquad \qquad =$$

and everything laxly commutes with the structure

Example: Relx

LinRel is a cartesian bicategory

- LinRel is a cartesian bicategory
 - In fact, it is an abelian bicategory

To obtain a presentation we add just one inequality

(Bonchi, Holland, Pavlovic, S. 2017)

This breaks the symmetry between white and black!

Lawvere theories

- recipe for Lawvere-theories-as-props
 - 1. add a cocommutative comonoid structure
 - 2. make all generators commute with it
 - 3. add your other equations (which may make use of the comonoid structure)

e.g.
$$x \cdot x^{-1} = e$$

Frobenius theories

(Bonchi, Pavlovic, S. 2017)

- recipe for Frobenius-theoriesas-locally-ordered-props
 - add a Frobenius bimonoid structure where monoid is right adjoint to comonoid
 - make all your generators laxly commute with it
 - add your other equations (which may make use of the Frobenius structure)

e.g.
$$id_0 \leq \bullet - \bullet$$

Functorial semantics

- For Lawvere theories
 - models = cartesian functors
 - homomorphisms = natural transformations
- For Frobenius theories
 - models = morphisms of cartesian bicategories
 - homomorphisms = lax natural transformations
- Rel models of GLA = VectQ

Plan

- ** composing props
- * interacting Hopf algebras
- * graphical linear algebra in action
- ** cartesian bicategories and Frobenius theories
- ****** generating functions and signal flow graphs
- ****** graphical affine algebra and non-passive electrical circuits

Generalising GLA

The cube construction works for Mat_R whenever R is a PID

Generating Functions and Laurent series

Example

As linear relation over $\mathbf{Q}(x)$ is the space generated by

$$(1, x/(1-x-x^2))$$

As linear relation over $\mathbf{Q}((x))$ is the space generated by

Signal flow graphs

(Shannon 1942)

- directed circuits with
 - addition gates
 - junctions
 - "registers"
 - act as integrators in the continuous semantics
 - act as one place buffers in the discrete semantics
 - guarded feedback

Claude E. Shannon

Report to National Dolense Research Council, January, 1942.

Example - Fibonacci

(Bonchi, S., Zanasi 2015)

Plan

- ** composing props
- * interacting Hopf algebras
- # graphical linear algebra in action
- * cartesian bicategories and Frobenius theories
- ***** generating functions and signal flow graphs
- ****** graphical affine algebra and non-passive electrical circuits

Graphical Affine Algebra

(Bonchi, Piedeleu, S., Zanasi 2019)

Definition. Given a field \mathbf{k} , a \mathbf{k} -affine relation \mathbf{k} ->I is a set $\mathbf{R} \subseteq \mathbf{k}^k \times \mathbf{k}^l$ which is either empty, or s.t. there is a \mathbf{k} -linear relation C and a vector (\mathbf{a},\mathbf{b}) s.t. $\mathbf{R} = (\mathbf{a},\mathbf{b}) + \mathbf{C}$

GLA + above ≅ **AffRel**_k

Example: Non-passive electrical circuits

$$\mathcal{I}\left(\begin{array}{c} \\ \\ \end{array}\right) = \begin{array}{c} \\ \\ \end{array}$$

$$\mathcal{I}\left(\begin{array}{c} \\ \end{array} \right) = \begin{array}{c} \\ \end{array}$$

$$\mathcal{I}(\bullet -) = \bigcirc$$

$$\mathcal{I}\left(\longrightarrow\right)=$$

$$\mathcal{I}\left(\begin{array}{c} k \\ -WW- \end{array}\right) = - \begin{array}{c} - \\ - \\ - \end{array}$$

$$\mathcal{I}\left(\begin{array}{c} k \\ - \\ - \\ - \end{array}\right) = \begin{array}{c} - \\ - \\ - \\ - \end{array}$$

$$\mathcal{I}(\mathbf{M}) = \mathbf{X} \mathbf{K}$$

$$\mathcal{I}(\frac{k}{-||-||}) = \frac{1}{||-||}$$

Resistors in parallel

$$= \mathcal{I}\left(\frac{ab/(a+b)}{-WW-}\right)$$

What if a=b=0?

Current sources in parallel are additive

Voltage sources in parallel are "illegal"

Bibliography

- J.C. Baez and J. Erbele. Categories in Control. arXiv:1405.6881, 2014
- F. Bonchi, P. Sobocinski, F. Zanasi. Interacting Bialgebras are Frobenius. FoSSaCS 2014
- F. Bonchi, D. Pavlovic, P. Sobocinski. Functorial semantics for relational theories. arXiv:1711.08699, 2017
- F. Bonchi, R. Piedeleu, P. Sobocinski, F. Zanasi. *Graphical Affine Algebra*. LiCS 2019.
- F. Bonchi, P. Sobocinski, F. Zanasi. Interacting Hopf Algebras. J Pure Appl Alg 221:144—184, 2017
- F. Bonchi, P. Sobocinski, F. Zanasi. Full abstraction for signal flow graphs. PoPL 2015.
- A. Carboni and R.F.C. Walters. Cartesian Bicategories I. J Pure Appl Alg 49:11-32, 1987
- B. Coya. Circuits, bond graphs, and signal-flow diagrams: a categorical perspective. PhD dissertation, U California Riverside 2018
- T. Fox. Coalgebras and cartesian categories. Comm Algebra 4.7:665-667, 1976
- S. Lack. Composing PROPs. TAC 13:147—164, 2004
- F. W. Lawvere. Functorial semantics of algebraic theories. PNAS, 1963.
- R. Street. *The formal theory of monads*. J Pure Appl Alg 2:149—168, 1972.

See you in Tallinn!

PhD projects in open game theory, CT in programming, Frobenius theories, string diagrams in database theory and logic, ...

Visitors welcome!