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Split extensions vs actions

In the category of groups, there is a well-known equivalence

SplExt(Grp) ∼ Act(Grp),

between the category of split extensions, that is diagrams

X
k // A

p
// B,

soo

with k = ker(p), p = coker(k) and ps = 1B , and the category of
group actions, i.e. group homomorphisms ϕ : B → Aut(X ).

Based on Bourn’s theory of protomodular categories (1991) and on
the theory of monads, this equivalence for groups was extended by
D. Bourn and G.Janelidze (1998) to the context of semi-abelian
categories in the sense of G. Janelidze, L. Márki and W. Tholen
(2002).
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Beyond the semi-abelian context

Going beyond the semi-abelian context is possible, but then split
extensions should be defined differently, involving an additional
structure and properties.

In the case of monoids, actions can be defined in a similar way as
for groups: an action of a monoid B on a monoid X being a
monoid homomorphism ϕ : B → End(X ).
But these actions are not equivalent to all split extensions of
monoids.

The question naturally arises of characterizing the split extensions
of monoids that correspond to monoid actions.

With Martins-Ferreira and Montoli we identified these split
extensions.
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Schreier split epimorphisms

Definition
A Schreier split epimorphism in the category of monoids is a split
epimorphism (A,B, p, s) (also called a point) equipped with a
unique set-theoretical map q : A 99K Ker [f ], called the Schreier
retraction,

X = Ker [p] //
k
// A

qoo

p
// B,
oosoo

such that, for every a ∈ A, a = kq(a) + sp(a).

Equivalently, the following conditions should be satisfied
(i) a = kq(a) + sp(a)

(ii) q(k(x) + s(b)) = x ,

for all a ∈ A, b ∈ B and x ∈ X , since (ii) gives de uniqueness of q.

The name was inspired by the Schreier internal categories in the
category of monoids introduced by A. Patchkoria (1998).



Schreier split epimorphisms

Definition
A Schreier split epimorphism in the category of monoids is a split
epimorphism (A,B, p, s) (also called a point) equipped with a
unique set-theoretical map q : A 99K Ker [f ], called the Schreier
retraction,

X = Ker [p] //
k
// A

qoo

p
// B,
oosoo

such that, for every a ∈ A, a = kq(a) + sp(a).

Equivalently, the following conditions should be satisfied
(i) a = kq(a) + sp(a)

(ii) q(k(x) + s(b)) = x ,

for all a ∈ A, b ∈ B and x ∈ X , since (ii) gives de uniqueness of q.

The name was inspired by the Schreier internal categories in the
category of monoids introduced by A. Patchkoria (1998).



Schreier split epis vs monoid actions

A Schreier split epimorphism

X = Ker [p] //
k
// A

qoo

p
// B,
oosoo

induces an action, ϕ : B → End(X ), defined by

ϕ(b)(x) = q(s(b) + k(x)).

Monoid actions determine Schreier split epimorphisms, via the
semidirect product

X //
〈1,0〉

// X oϕ B
πXoo

πB
// B,
oo〈0,1〉oo

This defines an equivalence between the category of Schreier split
epimorphisms and the one of monoid actions.
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Examples

Direct products (X × B, πB , 〈0, 1〉) are Schreier split epimorphisms.

If B is a group then every split epimorphism with codomain B is
Schreier split epimorphism.(And the converse is also true).

For a monoid X , defining Hol(X ) = X o End(X ), we obtain a
Schreier split epimorphism:

X
<1,0>

// Hol(X )
πXoo

πEnd(X )

// End(X )
<0,1>oo

The split epimorphism

N 0 // N× N
+
// N,

<0,1>oo

is not a Schreier split epimorphism.
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First properties

Given a Schreier split epimorphism in the category of monoids

X
k
// A

qoo
p
// B

soo

we have that, for a, a′ ∈ A, x ∈ X and b ∈ B ,
(a) qk = 1X ;
(b) qs = 0;
(c) q(0) = 0;
(d) kq(s(b) + k(x)) + s(b) = s(b) + k(x);
(d) q(a+ a′) = q(a) + q(sp(a) + kq(a′)).

A Schreier split epimorphism is a strong split epimorphism (also a
strong point): the pair (k , s) is jointly strongly epimorphic.

Schreier split sequences are exact, that is p = Coker(k) and so we
recover the equivalence between SplExt(Mon) ∼ Act(Mon), with
split extensions = Schreier split extensions.
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Stability properties

With D. Bourn we started a systematic study of Schreier split
epimorphisms, observing that they satisfy many relevant properties,
namely:

Schreier split epimorphisms are stable under pullbacks.

Schreier split epimorphisms are closed under composition.

If (gf , st) is a Schreier split epimorphism then (g , t) is also a
Schreier split epimorphism.

The full subcategory of Schreier points SPt(Mon) is closed under
limits in the category of all points Pt(Mon).
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The Schreier Split Short Five Lemma

Theorem
Consider the following commutative diagram, where the two rows
are Schreier split extensions:

X

w
��

k
// A

u
��

p
// //

qoo B
soo

v
��

X ′
k ′
// A′

q′oo
p′
// // B ′.

s′oo

.

We have that u is an isomorphism if and only if both v and w are.
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Schreier internal structures

An internal reflexive graph in the category of monoids

X1
d1

//

d0 //
X0s0oo , d0s0 = 1X0 = d1s0,

is a Schreier reflexive graph if the split epimorphism (d0, s0) is a
Schreier split epimorphism.

An internal reflexive relation, category or groupoid in Mon is a
Schreier reflexive relation, category or groupoid if the underlying
reflexive graph is a Schreier reflexive graph.
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Mal’tsev-type properties

Theorem
Any Schreier reflexive relation

R
r1
//

r0 //
Xs0oo

is transitive. It is a congruence if and only if Ker(r0) is a group.

Example
The usual order between natural numbers:

ON
r1
//

r0 //
N,s0oo

where
ON = {(x , y) ∈ N× N | x ≤ y},

is a Schreier order relation, with Schreier retraction defined by
q(x , y) = y − x .
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Mal’tsev-type properties

Recall that a pointed finitely complete category is unital if, for
every pair of objects X ,Y , the morphisms

X
〈1,0〉 // X × Y Y

〈0,1〉oo

are jointly strongly epimorphic.

A category C is Mal’tsev if and only every fiber PtB(C) with respect
to the fibration of points cod : Pt(C)→ C is unital (Bourn, 1996).

In the category of monoids all fibers SPtB(Mon) w.r. to the
subfibration of Schreier points, S-cod : SPt(Mon)→ Mon, are
unital categories. That is, for all pullback diagram of two Schreier
split epimorphisms (f , r) and (g , s)

A×B C

π1

��

π2
// C

g

��

e2oo

A

e1

OO

f
// B

s

OO

roo

the morphisms induced by the universal property of the pullback
e1 = 〈1A, sf 〉, e2 = 〈rg , 1C 〉 are jointly strongly epimorphic.
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Special Schreier homomorphisms

Definition
A homomorphism f : A→ B is special Schreier if its kernel
congruence

Eq(f )
f1
//

f0 //
A〈1,1〉oo

is a Schreier congruence.

This is equivalent to the existence of a partial subtraction on A:
if f (a1) = f (a2), then there exists a unique x ∈ Ker(f ) such that
a2 = x + a1. In particular, Ker(f ) is a group.
If f : A→ B is a surjective special Schreier homomorphism, then it
is the cokernel of its kernel. Hence we get an extension of monoids

X
k // A

f // B.
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Properties of special Schreier extensions

The special Schreier extensions are stable under pullbacks.

The Short Five Lemma holds for special Schreier extensions.

Special Schreier morphisms are used to characterize Schreier
groupoids among the Schreier internal categories: they are exactly
those Schreier internal categories for which d0 is special Schreier.

Looking at a monoid as a category with one object our approach
can be compared with the one of G. Hoff (1974) where the
low-dimensional cohomology of small categories was described by
means of suitable extensions that are the special Schreier
extensions in the case of monoids.
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Special Schreier extensions with abelian kernel

A special Schreier extension of monoids f : A→ B with abelian
kernel X determines an action of B on X , ϕ : B → End(X ),
defined by

ϕ(b)(x) = q(a+ x , a),

where q is the Schreier retraction of (Eq(f ),A, f1, 〈1, 1〉), and
a ∈ A is such that f (a) = b.

Theorem (Bourn, Martins-Ferreira, Montoli, S. (2013))

When X is an abelian group, the set SpSExt(B,X , ϕ), of
isomorphic classes of special Schreier extensions of B by X inducing
a fixed action ϕ, has an abelian group structure.

An explicit description of the Baer sum in terms of factor sets was
given by Martins-Ferreira, Montoli and S. (2016). This provides an
interpretation of the cohomology theory introduced by A.
Patchkoria (1977), which was obtained by generalizing to monoids
the classical bar resolution.

The Nine Lemma was then proved for special Schreier extensions by
Martins-Ferreira, Montoli and S. (2018) and it was used to describe
a push forward construction for special Schreier extensions with
abelian kernel in monoids, an alternative, functorial description of
the Baer sum of such extensions.
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The special Schreier Nine Lemma

Theorem (Martins-Ferreira, Montoli, S.(2018))

Consider the following commutative diagram, where the three

columns are special Schreier extensions: N
η //

_��
l
��

H_��
r
��

λ // K_��
s
��

X
σ //

f ����

Y
ϕ //

g
����

Z

p
����

A α
// B

β
// C .

1 If the first two rows are special Schreier extensions, then the
lower also is;

2 if the last two rows are special Schreier extensions, then the
upper also is;

3 if ϕσ = 0 and the first and the last rows are special Schreier
extensions, then the middle also is.
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The push forward construction

Theorem
Consider the following situation:

X

g

��

� ,2 k // A
f // // B,

Y

where

- f is a special Schreier extension with abelian kernel;
- ϕ is the corresponding action of B on X ;
- Y is an abelian group, equipped with an action ψ of B on it;
- g is a morphism which is equivariant, that is, for all b ∈ B and all
x ∈ X , g(b ·ϕ x)) = (b ·ψ g(x)).
Then there exists a special Schreier extension f ′ with kernel Y and
codomain B , which induces the action ψ and is universal among all
such extensions.
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The universality of the construction

It means that, given any diagram of the form

X

u

��

g
��

� ,2 k // A

v

��

f // //

g ′

��

B

Y � ,2 k
′
//

r
��

C
f ′ // //

α
��

B

Z � ,2
l
// E p

// // B,

where p is a special Schreier extension with abelian kernel Z , (u, v)
is a morphism of extensions and u = rg , then there exists a unique
homomorphism α such that v = αg ′ and (r , α) is a morphism of
extensions.



Looking for a conceptual notion

Many properties of all split epimorphisms in a protomodular
category are satisfied by the Schreier split epimorphisms in the
category of monoids.

This is also true for the class of Schreier split epimorphisms in
semirings, indeed, in any category of what we called “monoids with
operations" (Martins-Ferreira, Montoli and S. (2013)).

A conceptual notion to capture this algebraic context was
introduced, in the pointed case, by Bourn, Martins-Ferreira, Montoli
and S. (2013), under the name of S-protomodular category.
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semirings, indeed, in any category of what we called “monoids with
operations" (Martins-Ferreira, Montoli and S. (2013)).

Monoids with operations are monoids (M,+, 0) that may be
equipped with other binary and unary operations such that

every binary operation ∗ 6= + is distributive with respect to the
monoid operation and x ∗ 0 = 0 for all x ∈ M,
for every unary operation w , w(x + y) = w(x) + w(y), and
w(x ∗ y) = w(x) ∗ y .

This is the counterpart for monoids of Porter’s “groups with
operations"(1987).

A conceptual notion to capture this algebraic context was
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S-protomodular categories

Let C be a pointed finitely complete category and S be a class of
points in C which is stable under pullbacks.

Then the full subcategory SPt(C) of Pt(C), whose objects are
those points which are in S , determines a subfibration of the
fibration of points cod : Pt(C)→ C.

Definition
The category C is said to be S-protomodular when:
(1) any object in SPt(C) is a strong point;
(2) SPt(C) is closed under finite limits in Pt(C).

Examples are the categories of monoids, semirings (indeed, all
categories of monoids with operations), and also the Jónsson-Tarski
varieties of algebras as proved by Martins-Ferreira and
Montoli(2017). All of them are S-protomodular for the class S of
Schreier split epimorphisms.
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Protomodularity relative to a class S

When C is S-protomodular then any change-of-base functor with
respect to the subfibration of S-points, S-cod : SPt(C)→ C, is
conservative.

Internal S-structures are defined in an analogous way as the ones
defined when S is the class of Schreier split epimorphisms and have
similar properties.

For example, we say that a morphism f : X → Y is S-special if its
kernel equivalence relation is an S-special equivalence relation.

An object X is S-special if the terminal morphism, X → 1, is
S-special.



Protomodularity relative to a class S

If the category C is S-protomodular then

Every S-reflexive relation (R, r0, r1, s0) is transitive. It is an
S-equivalence relation if and only if r0 is S-special.
The full subcategory of S-special objects is protomodular and
was called the protomodular core of C with respect to S .

If C is the category of monoids (semirings), then its
protomodular core with respect to the class S of Schreier split
epimorphisms is the category of groups (rings, respectively).
Indeed, in any category of monoids with operations, the
protomodular core with respect to the class S of Schreier split
epimorphisms is the corresponding subcategory of groups with
operations.
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Adding some conditions to S-protomodularity

Several conditions have been added to semi-abelian categories in
order to get a closer group-like behaviour, like

the so-called “Smith is Huq” condition (Bourn, Gran (2002);
Martins-Ferreira, Van der Linden (2012)).
(locally, fiberwise) algebraic cartesian closedness, (Gray
(2012); Bourn, Gray (2012));
algebraic coherence (Cigoli, Gray, Van der Linden (2015)).

The notion of S-protomodular categories raises a similar question:
how to get a description of S-protomodular categories with a
strong monoid-like behaviour?

Martins-Ferreira, Montoli and S. (2018) studied “relative” versions
of above conditions in the framework of S-protomodular categories
in parallel with the “absolute” semi-abelian context.
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Relative notions

Definition
An S-protomodular category C is

1 locally S-algebraically cartesian closed (S-lacc) if, for every
morphism f in C, the change-of-base functor f ∗ for the
subfibration of points in S has a right adjoint.

2 fiberwise S-algebraically cartesian closed (S-fwacc) if, for every
split epimorphism f in C, the change-of-base functor f ∗ for the
subfibration of points in S has a right adjoint;

3 S-algebraically coherent if, for every morphism f in C, the
change-of-base functor f ∗ for the subfibration of points in S
preserves jointly strongly epimorphic pairs.

S-(lacc)

#+

+3 S-alg. coherent

S-(fwacc)
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An hierarchy on S-protomodular categories

The relative versions of the conditions mentioned above enabled us
to obtain a hierarchy among S-protomodular categories that, for S
the class of Schreier split epimorphisms, is the following:

Condition Examples
S-protomodular Jónsson-Tarski varieties

S-(SH) (Martins-Ferreira, Montoli) monoids with operations
S-(fwacc) Mon, SRng

S-alg. coherent Mon, SRng
S-(lacc) Mon
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From monoids to unitary magmas

Our purpose now is to describe another generalization of the theory
of split extensions, namely from monoids to unitary magmas, that
is, to algebraic structures of the form M = (M, 0,+), where the
only axiom required is x + 0 = x = 0+ x .

This is joint work with M. Gran and G. Janelidze (2019).
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Actions and semidirect products of unitary magmas

Definition
Let B and X be magmas. A map h : B × X → X , written as
(b, x) 7→ bx , is said to be an action of B on X if 0x = x , b0 = 0,
for all x ∈ X and b ∈ B .

Definition
For magmas B and X and an action of B on X , the semidirect
product diagram is the diagram

X
〈1,0〉

// X o B π2
//

π1oo
B

〈0,1〉oo

in which X o B is a magma whose underlying set is X × B and
whose addition is defined by (x , b) + (x ′, b′) = (x + bx ′, b + b′).
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Defining split extensions of magmas

Definition
A split extension of magmas is a diagram

X κ
// A α

//
λoo

B
βoo

in which:

(a) X , A, and B are magmas, α, β, and κ are magma
homomorphisms, and λ preserves zero;

(b) the equalities (1) λκ = 1, αβ = 1,
(2) λβ = 0, ακ = 0,
(3) κλ+ βα = 1,
(4) λ(κ(x) + β(b)) = x ,
(5) κ(x) + (β(b) + a) = (κ(x) + β(b)) + a,
(6) κ(x) + (a+ β(b)) = (κ(x) + a) + β(b),
(7) a+ (κ(x) + β(b)) = (a+ κ(x)) + β(b),
hold for all x , x ′ ∈ X , a ∈ A and b, b′ ∈ B .
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Split extensions vs semidirect products

Consider the diagram X κ
// A α

//
λoo

ϕ

��

B
βoo

X ι1
// X o B π2

//
π1oo

ψ

OO

B
ι2oo

in which:

the top row is a split extension of magmas;
the bottom row is a semidirect product diagram in which B
acts on X as bx = λ(β(b) + k(x)), the action induced by the
split extension;
ϕ is defined by ϕ(a) = (λ(a), α(a));
ψ is defined by ψ(x , b) = κ(x) + β(b).

Then ϕ,ψ are homomorphisms of unitary magmas, inverse to each
other.



Categorical properties of split extensions

The following lemma collects purely categorical properties of a split
extension

X κ
// A α

//
λoo

B
βoo

Lemma
(a) κ and β are jointly strongly epic in the category of magmas;
(b) λ and α form a product diagram in the category of sets;
(c) κ is a kernel of α and α is a cokernel of κ in the category of

magmas.



The equivalence
Theorem
There is an equivalence between the category SplExt of split
extensions of magmas and the category Act of actions of magmas.

It is constructed as follows: to each morphisms of extensions
(f , u, p) : E → E ′,

X

u

��

κ
// A α

//
λoo

p

��

B
βoo

f

��
X ′

κ′
// A′

α′
//

λ′oo
B ′

β′
oo

assigns the morphism (f , u) : (B,X , h)→ (B ′,X ′, h′) between the
corresponding actions.
Conversely, to each morphism of actions
(f , u) : (B,X , h)→ (B ′,X ′, h′) corresponds a morphisms (f , u, p)
between the semidirect product extensions, where p is defined by
p(x , b) = (u(x), f (b)).
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Composition of split extensions

Lemma
The composite (γα, δγ) of two split extensions

E : X κ
// A α

//
λoo

B
βoo

F : Y µ
// B γ

//
νoo

D
δoo

is a split extension if and only if the equality

µ(y)(δ(d)x) = (µ(y) + δ(d))x

holds for all y ∈ Y , d ∈ D and x ∈ X .

So, in particular, it holds when the action induced by the extension
E satisfies the condition

b(b′x) = (b + b′)x .
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Other classes of split extensions of magmas

Let E denote the class of split extensions just defined.

Defining the corresponding actions of magmas we did not require
any property involving the addition.

Requiring that the actions satisfy the conditions

b(b′x) = (b + b′)x , or
b(b′x) = (b + b′)x and b(x + x ′) = bx + bx ′

the corresponding subclasses E ′ and E ′′ of split extensions have a
nicer behaviour.

Indeed, they are not only stable under pullbacks but also closed
under composition.

For each of these three classes of split extensions, the category of
unitary magmas is S-protomodular and so it satisfies the Split
Short Five Lemma.
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Final remarks

Everything is well known when we replace magmas with monoids.
In particular, in the definition of split extensions, the three last
conditions are automatically satisfied and they become simply
Schreier split extensions.

The group-theoretic case of our last Theorem is nothing but a
categorical formulation of a first step towards a cohomological
description of group extensions.

Different approaches to a cohomology of monoids were defined by
several authors, considering suitable notions of monoid extensions.

A generalization of the classical Eilenberg-Mac Lane cohomology
theory from groups to monoids was developed by Martins-Ferreira,
Montoli, Patchkoria and S. (2019), yielding a new, additional
interpretation of this classical theory via some kind of monoid
extensions, that are the special Schreier extensions when the kernel
is a group.
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