Morgan Stanley

OpenAFS
On Solaris 11 x86

Why Solaris?

o /FS
— Transparent and in-line data compression and deduplication
e Big $$ savings
— Transactional file system (no fsck)
— End-to-end data and meta-data checksumming
— Encryption

e DTrace
— Online profiling and debugging of AFS
o Many improvements to AFS performance and scalability
— Safe to use In production

Morgan Stanley

ZFS — Estimated Disk Space Savings

Disk space usage

7FS 128KB GZIP |

ZFS 32KB GZIP

ZFS 128KB LZJB

ZFS 32KB LZJB

ZFS 64KB no-comp

Linux ext3

1TB sample of production data from AFS plant in 2010
Currently, the overall average compression ratio for AFS on ZFS/gzip is over 3.2x

Morgan Stanley

Compression — Performance Impact

Read Test

Linux ext3 #

ZFS 32KB no-comp

ZFS 64KB no-comp

ZFS 128KB no-comp

ZFS 32KB DEDUP + LZJB
ZFS 32KB LzJB

ZFS 64KB LzJB

ZFS 128KB LzZJB

ZFS 32KB DEDUP + GZIP
ZFS 32KB GZIP

ZFS 128KB GZIP

ZFS 64KB GZIP

I I
[[
I I
[[
I I
[[
[[
[[
I I
[[
I I
I I
I I
[[
[[
I I
I I
[[
I I
I I
I I
T T
T T

I
[
I
[
I
[
[
[
I
[
I
I
[
[
I
[
I
I
T
T

Morgan Stanley

Compression — Performance Impact

Write Test

ZFS 128KB GZIP

ZFS 64KB GZIP

ZFS 32KB GZIP

Linux ext3

ZFS 32KB no-comp

ZFS 64KB no-comp

ZFS 128KB no-comp

ZFS 128KB LZJB

ZFS 64KB LZJB

ZFS 32KB LZJB

Morgan Stanley

Solaris — Cost Perspective

e Linux server
~ X86 hardware
— Linux support (optional for some organizations)
— Directly attached storage (10TB+ logical)

e Solaris server
- The same x86 hardware as on Linux

— 1,000% per CPU socket per year for Solaris support
(list price) on non-Oracle x86 server

— Over 3x compression ratio on ZFS/GZIP
o 3x fewer servers, disk arrays

e 3X less rack space, power, cooling, maintenance ...

Morgan Stanley

AFS Unique Disk Space Usage — last 5 years

Morgan Stanley

MS AFS High-Level Overview

e AFS RW Cells
— Canonical data, not available in prod

e AFS RO Cells
— Globally distributed
— Data replicated from RW cells
— In most cases each volume has 3 copies in each cell
— ~80 RO cells world-wide, almost 600 file servers

e This means that a single AFS volume in a RW cell, when
promoted to prod, is replicated ~240 times (80x3)

e Currently, there is over 3PB of storage presented to AFS

Morgan Stanley

Typical AFS RO Cell

e Before

— 5-15 x86 Linux servers, each with directly attached disk
array, ~6-9RU per server

e Now

— 4-8 x86 Solaris 11 servers, each with directly attached disk
array, ~6-9RU per server
e Significantly lower TCO

e Soon

— 4-8 x86 Solaris 11 servers, internal disks only, 2RU
e Lower TCA
e Significantly lower TCO

Morgan Stanley

Migration to ZFS

e Completely transparent migration to clients
— Migrate all data away from a couple of servers in a cell
o Rebuild them with Solaris 11 x86 with ZFS
— Re-enable them and repeat with others

e Over 300 servers (+disk array) to decommission

— Less rack space, power, cooling, maintenance... and yet
more available disk space

e Fewer servers to buy due to increased capacity

Morgan Stanley

g.ny cell migration to Solaris/ZFS

Usage (TB)

I

U1

W_—_—

1
20100801 2010mez2 20110212 20110505 2010726 20MA01E 20120106 20120328 20120618 20120201

Date/Time
= User Data =— Total Size

e Cell size reduced from 13 servers down to 3

e Disk space capacity expanded from ~44TB to ~90TB (logical)

e Rack space utilization went down from ~90U to 6U

Morgan Stanley

Solaris Tuning

e /FS

— Largest possible record size (128k on pre GA Solaris 11,
1MB on 11 GA and onwards)

— Disable SCSI CACHE FLUSHES
zfs:zfs_nocacheflush = 1

— Increase DNLC size
ncsize = 4000000

— Disable access time updates on all vicep partitions

— Multiple vicep partitions within a ZFS pool (AFS
scalability)

Morgan Stanley

Summary

e More than 3x disk space savings thanks to ZFS
— Big $$ savings

e No performance regression compared to ext3

e Several optimizations and bugs already fixed in AFS thanks to
DTrace

e Better and easier monitoring and debugging of AFS

e Moving away from disk arrays in AFS RO cells

Morgan Stanley

Why Internal Disks?

e Most expensive part of AFS is storage and rack space

e AFS on Internal disks

— More local/branch AFS cells
- How?
e ZFS GZIP compression (3x)
e 256GB RAM for cache (no SSD)
o 24+ Internal disk drives in 2U x86 server

Morgan Stanley

HW Requirements

e RAID controller
— ldeally pass-thru mode (JBOD)
— RAID in ZFS (initially RAID-10)
— No batteries (less FRUSs)
— Well tested driver

e 2U, 24+ hot-pluggable disks
— Front disks for data, rear disks for OS
— SAS disks, not SATA

o 2Xx CPU, 144GB+ of memory, 2x GbE (or 2x 10GbE)

e Redundant PSU, Fans, etc.
Morgan Stanley

SW Requirements

e Disk replacement without having to log into OS
— Physically remove a failed disk
— Putanew disk in
— Resynchronization should kick-in automatically

e Easy way to identify physical disks
— Logical <-> physical disk mapping
— Locate and Faulty LEDs

e RAID monitoring

e Monitoring of disk service times, soft and hard errors, etc.
— Proactive and automatic hot-spare activation
Morgan Stanley

Oracle/Sun X3-2L (x4270 M3)

o 2U
e 2X Intel Xeon E5-2600
e Up-to 512GB RAM (16x DIMM)

e 12x 3.5” disks + 2x 2.5” (rear)
o 24x 2.5” disks + 2x 2.5” (rear)
e 4x On-Board 10GbE
e 6X PCle 3.0

e SAS/SATA JBOD mode

Morgan Stanley

SSDs?

e ZIL (SLOG)
— Not really necessary on RO servers
— MS AFS releases >=1.4.11-3 do most writes as async

o L2ARC

— Currently given 256GB RAM doesn’t seem necessary
— Might be an option in the future

e Main storage on SSD
— Too expensive for AFS RO
- AFS RW?

Morgan Stanley

Future ldeas

e ZFS Deduplication
e Additional compression algorithms

e More security features
— Privileges
— Zones
— Signed binaries

e AFS RW on ZFS
e SSDs for data caching (ZFS L2ARC)
e SATA/Nearline disks (or SAS+SATA)

Morgan Stanley

Morgan Stanley

Questions

DTrace

e Safe to use In production environments

e No modifications required to AFS

e No need for application restart

e 0 Impact when not running

e Much easier and faster debugging and profiling of AFS

e OS/application wide profiling
— What is generating 1/0?
e How does it correlate to source code?

Morgan Stanley

DTrace — AFS Volume Removal

e OpenAFS 1.4.11 based tree

e 500k volumes in a single vicep partition

e Removing a single volume took ~15s

e It didn’t look like a CPU problem according to prstat(1M),
although lots of system calls were being called

Morgan Stanley

DTrace — AFS Volume Removal

e \What system calls are being called during the volume removal?

Morgan Stanley

DTrace — AFS Volume Removal

e What are the return codes from all these rmdir()’s?

e Almost all rmdir()’s failed with EEXISTS

Morgan Stanley

DTrace — AFS Volume Removal

e Where are these rmdir()’s being called from?

Morgan Stanley

DTrace — AFS Volume Removal

e After some more dtrace’ing and looking at the code, this are the
functions being called for a volume removal.

\VolDeleteVolume() -> VPurgeVolume() -> PurgeHeader r() -> IH_DEC/namei_dec()

e How long each function takes to run in seconds

Morgan Stanley

DTrace — AFS Volume Removal

Morgan Stanley

DTrace — AFS Volume Removal

e L ets print arguments (strings) passed to delTree()

e delTree() will try to remove all dirs under /vicepa/AFSldat/+

— But there are many other volumes there — directories full of
files, so rmdir() fails on them

o After this was fixed - http://gerrit.openafs.org/2651
— |t takes <<1s to remove the volume (~15s before)
— It only takes 5 rmdir()’s now (~8k before)

Morgan Stanley

DTrace — Accessing Application Structures

Morgan Stanley

volume_top.d

Morgan Stanley

rx_clients.d

Morgan Stanley

Morgan Stanley

Questions

Morgan Stanley

DTrace — Attaching AFS Volumes

e OpenAFS 1.4.11 based tree
e 500k volumes in a single vicep partition

e Takes ~118s to pre-attached them
— All metadata cached in memory, 100% dnlc hit, no physical i/o

e Asingle thread spends 99% on CPU (USR) during pre-attachment

e Another thread consumes 99% CPU as well (36% USR, 64% SYYS)

Morgan Stanley

DTrace — Attaching AFS Volumes, tid=6

lwp yield
FSYNC sync

pthread yield();

Morgan Stanley

DTrace — Attaching AFS Volumes, tid=6

e FSSYNC is the mechanism by which different processes communicate with
fileserver

e There is a dedicated thread to handle all requests
e [t “waits” for a fileserver to pre-attach all volumes by calling pthread_yield()
In a loop

— This saturates a single CPU/core

— Might or might not impact start-up time depending on a number of
CPUs and other threads requiring them, in this test case it doesn’t
contribute to the start-up time

e FIX: introduce a CV
— CPU utilization by the thread drops down from 100% to 0%

Morgan Stanley

DTrace — Attaching AFS Volumes, tid=8

e It must be the 2nd thread (tid=8) responsible for the long start
up time

Morgan Stanley

DTrace — Attaching AFS Volumes, tid=8

Morgan Stanley

DTrace — Attaching AFS Volumes, tid=8

<- VPreAttachVolumeByName
-> VPreAttachVolumeByName

Morgan Stanley

DTrace — Attaching AFS Volumes, tid=8

Morgan Stanley

mailto:%@d/n",@);clear(@);}'
mailto:%@d/n",@);clear(@);}'
mailto:%@d/n",@);clear(@);}'

DTrace — Freguency Distributions

Morgan Stanley

DTrace — Attaching AFS Volumes, tid=8

It took 118s to pre-attach all volumes. Out of the 118s fileserver spent 68s in
VLookupVolume_r(), the next function is only 8s. By optimizing the
VLookupVolume_r() we should get the best benefit. By looking at source
code of the function it wasn’t immediately obvious which part of it is
responsible...

Morgan Stanley

DTrace — Attaching AFS Volumes, tid=8

e | ets count each assembly instruction in the function during the pre-attach

11459739
11568134
11568134
11568134
11568134
11568134
11568134
11568134
11568135
11568135
11568135

Morgan Stanley

DTrace — Attaching AFS Volumes, tid=8

e The corresponding disassembly and source code

Morgan Stanley

DTrace — Attaching AFS Volumes, tid=8

e Larger hash size should help

e Hash size can be tuned by -vhashsize option
— Fileserver supports only values between <6-14>
— |t set it to 8 if outside of the range
— We had it set to 16... (only In dev)
— Fixed In upstream
o Over 20x reduction in start up time

Morgan Stanley

DTrace — Attaching AFS Volumes, Multiple Partitions

Two AFS partitions

900k empty volumes (400k + 500k)

How well AFS scales when restarted?

— One thread per partition pre-attaches volumes
— All data is cached in-memory, no physical i/o
e Each thread consumes 50-60% of CPU (USR) and spends about 40% of its
time in user locking
— But with a single partition the thread was able to utilize 100% CPU

Morgan Stanley

DTrace — Attaching AFS Volumes, Locking

183494 139494

e plockstat utility uses DTrace underneath
— It has an option to print a dtrace program to execute

Morgan Stanley

DTrace — Attaching AFS Volumes, Locking

e For each volume being pre-attached a global lock is required

e It gets worse if more partitions are involved

e F1IX: pre-allocate structures and add volumes in batches

Morgan Stanley

DTrace — Attaching AFS Volumes

e Fixes (all in upstream)
— Introduce CV for FSYNC thread during initialization
— Allow for larger hash sizes
e Increase the default value
o Fileserver warns about out of range value
— Pre-attach volumes in batches rather than one at a time

e For 1.5mIn volumes distributed across three vicep partitions
— All data is cached in memory, no physical i/0
— Before the above fixes it took to pre-attach
— With the fixes it takes less than 10s

— This is over 60x improvement (better yet for more volumes)
Morgan Stanley

