
OpenAFS Directory Objects

Sine Nomine Associates

October 16, 2012

OpenAFS Directory Objects 1 of 21

Introduction

• Description of directory objects in AFS

• Discussion of directory object defragmentation project

OpenAFS Directory Objects 2 of 21

Motivation

• How many files can I have in a directory?

• My directory is full, now what?

$ touch hello

touch: cannot touch ‘hello’: File too large

OpenAFS Directory Objects 3 of 21

Internet Draft

• AFS-3 Directory Object Type Definition

• Written by Tom Keiser

• draft-keiser-afs3-directory-object-00

OpenAFS Directory Objects 4 of 21

AFS Directory Objects

• Storage of directory entry names in AFS

• Path to AFS File Id (FID) lookup

• Servers and clients share a common object layout

• Servers and clients share a common lookup and
modification algorithms

Note

The current directory object format was introduced in 1988, to
expand the size of directories.

OpenAFS Directory Objects 5 of 21

Tradeoffs

Pro

• Avoid fileserver load for frequent lookups

• Processing moved to the client for faster lookups

• Better performance for many general workloads

Con

• Hard limits on number of entries per directory

• Difficult to extend (again) in a backward compatible way

• Worse performance for some specific workloads

OpenAFS Directory Objects 6 of 21

Pages

• Each directory object consists of 1 to 1023 pages, 2048
bytes per page

• Each page consists of 64 records, 32 bytes per record

• The first record of each page contains a page header which
indicates which records in the page are in use (bitmap)

• The 2nd to 12th records of the first page contains a
directory header, which contains a hash by name table.

OpenAFS Directory Objects 7 of 21

Records

Each directory entry requires at least one record, with a header
followed by the entry name.

• flags - 0x01 the first byte of the entry

• reserved - no longer used

• next - hash chain for lookups by name

• vnode - the AFS FID vnode number for this entry

• uniquifier - the AFS FID uniquifier for this entry

• name - the first 20 bytes of the entry name

OpenAFS Directory Objects 8 of 21

Extensions

• Extent records for names too long to fit in one record

• Extents must be contiguous and may not span pages

• Extents do not have headers – the name just spills over

• An extent is allocated if the name is more than 15 bytes
(nul excluded)

• Each additional 32 bytes requires another extent record

Note

The maximum entry name size is 256 bytes, excluding the nul.

OpenAFS Directory Objects 9 of 21

Records Needed

Records needed for directory entries by bytes (excluding nul).

records entry size

------- ----------

1 1 .. 15 (not 19)

2 16 .. 47

3 48 .. 79

4 80 .. 111

5 112 .. 143

6 144 .. 175

7 176 .. 207

8 208 .. 239

9 240 .. 256 (not 272)

OpenAFS Directory Objects 10 of 21

Records

OpenAFS Directory Objects 11 of 21

Records

OpenAFS Directory Objects 12 of 21

Holes and Fragmentation

• Holes are created in the directory object when entries are
removed

• A hole may be one to 63 records long (54 on the first page)

• Since entries require contiguous records, fragmentation
reduces the number of directory entries supported per
directory

OpenAFS Directory Objects 13 of 21

Maximum Entries per Directory

• The theoretical maximum number of directory entries per
directory is 64436

• This max can only be reached only if all the entries are less
than 16 bytes long

• In practice, the number of entries is about 25,000,
depending on the sizes of the directory entries and the
amount of record fragmentation

Note

Users will see a ’File too large error’ if a hole cannot be found to
create the directory entry.

OpenAFS Directory Objects 14 of 21

Dir Defrag Project

• Code developed by Tom Keiser

• A small project to provide the means to defragment
directory objects, allowing for more directory entries

• Determine directory usage statistics to show if a directory
needs to be defragmented

• Defrag directories by packing largest to smallest entries, to
a copy (not in place)

• Currently unit testing stats and defrag

• Defrag may be part of the salvage process

OpenAFS Directory Objects 15 of 21

Usage Stats

Example full directory with no holes

$ ls -a | wc -l -c

12767 1657542

$ touch hello

touch: cannot touch ‘hello’: File too large

dtest -y /vicepa/AFSIDat/7/7+++U/+/+/F++++ouP1

npages: 1023

nfree: 0

nholes: 0

hole_len_avg: 0.000000

OpenAFS Directory Objects 16 of 21

Usage Stats

After 100 files removed

$ ls -a | wc -l -c

12667 1644769

dtest -y /vicepa/AFSIDat/7/7+++U/+/+/F++++ouP1

npages: 1023

nfree: 499

nholes: 100

hole_len_avg: 4.990000

OpenAFS Directory Objects 17 of 21

Defrag Example

Pathological case: every other record free

npages: 1023

nfree: 32217

nholes: 32217

hole_len_avg: 1.000000

$ touch 1234567890123456

touch: cannot touch ‘1234567890123456’: File too large

OpenAFS Directory Objects 18 of 21

Defrag Example

After the defrag operation:

npages: 512

nfree: 24

nholes: 1

hole_len_avg: 24.000000

OpenAFS Directory Objects 19 of 21

Discussion

• When should the defrag be run?

• Is there a way to capture ’File too large’ errors?

• Could this be done automatically during a demand salvage?

• How can the directory usage stats be reported to admins?

OpenAFS Directory Objects 20 of 21

Thank You

• Michael Meffie

• mmeffie@sinenomine.net

OpenAFS Directory Objects 21 of 21

