

#### An Empirical Model for Predicting Cross-Core Performance Interference on Multicore Processors

Jiacheng Zhao Institute of Computing Technology, CAS

In Conjunction with Prof. Jingling Xue, UNSW, Australia Sep 11, 2013



How?



ASPLOS'09 by David Meisner+





- Co-located applications
  - > Contention for shared cache, shared IMC, etc.
  - > Negative and unpredictable interference
- > Two types of applications
  - Batch No QoS guarantees
  - Latency Sensitive Attain high QoS
- Co-location is disabled
  - Low server utilization
- Lacking the knowledge of interference



2013/9/11



- Co-located applications
  - > Contention for shared cache, shared IMC, etc.
  - > Negative and unpredictable interference
- > Two types of applications
  - Batch No QoS guarantees
  - Latency Sensitive Attain high QoS
- Co-location is disabled
  - Low server utilization
- Lacking the knowledge of interference





- Co-located applications
  - > Contention for shared cache, shared IMC, etc.
  - > Negative and unpredictable interference
- > Two types of applications
  - Batch No QoS guarantees
  - Latency Sensitive Attain high QoS
- Co-location is disabled
  - Low server utilization
- Lacking the knowledge of interference

#### [Micro'11 by Jason Mars+]



#### Figure: Task placement in datacenters

2013/9/11



- > **Quantitatively** predict the cross-core performance interference
- > Applicable for **arbitrarily** co-locations
- > Identify any "safe" co-locations
- > Deployable for datacenters



### Our Intuition – Mining a model from large training data



|  | Application | Co-Runners    | A' <sub>i</sub> s Performance Degradation |  |
|--|-------------|---------------|-------------------------------------------|--|
|  | $A_1$       | $W_{A_1,1}$   | $PD_{A_1,W_{A_1,1}}$                      |  |
|  |             |               |                                           |  |
|  | $A_1$       | $W_{A_1,Q}$   | $PD_{A_1,W_{A_1,Q}}$                      |  |
|  | $A_2$       | $W_{A_{2},1}$ | $PD_{A_2,W_{A_2,1}}$                      |  |
|  |             |               |                                           |  |
|  | $A_2$       | $W_{A_2,Q}$   | $PD_{A_2,W_{A_2,Q}}$                      |  |
|  |             |               |                                           |  |

✓ Using machine learning approaches







#### Outline

- Introduction
- > Our Key Observations
- Our Approach Two-Phase Approach
- Experimental Results
- Conclusion



> Observation 1: The function depends only on the pressure on shared resources, regardless of individual pressures from one co-runner.

For an application A,  $PD_A = f(P_{cachet}, P_{bw})$ 

 $(P_{cache'}, P_{bw}) = g(A_1, A_2, ..., A_m)$ 



### **Our Key Observations**

> **Observation 2:** 

> The function f is piecewise.





- > Naively, we can create A's prediction model using brute-force approach
- > **BUT,** we can **NOT** apply brute force approach for each application!
  - > Thousands of applications in one datacenter
  - Frequent software updates
  - Different generations of processors
  - > Even steps for one application is expensive
- > Observation 3:
  - > The function **form** is platform-dependent and application independent
  - > Only the coefficients are application-dependent



#### Outline

- Introduction
- > Our Key Observations
- > Our Approach Two-Phase Approach
- Experimental Results
- Conclusion



# **Our Approach - Two-Phase Approach**

#### Phase 1: Get the abstract model

Find a function form best suitable for all applications on a given platform



- Heavy many training workloads
- ➢ Run once for one platform

 $PD = \begin{cases} a_{11}P_{bw} + a_{12}P_{cache} + a_{13}, subdomain1\\ a_{21}P_{bw} + a_{22}P_{cache} + a_{23}, subdomain2\\ a_{31}P_{bw} + a_{32}P_{cache} + a_{33}, subdomain3 \end{cases}$ 

#### Phase 2: Instantiate the abstract model

 Determine the application-specific coefficients (a11, etc.)



- Light-weighted, with a small number of trainings
- Run once for one application

$$PD_{mcf} = \begin{cases} 0.49P_{bw} + 0.18P_{cache} - 0.13, P_{bw} < 3.2\\ 0.71P_{bw} + 1.73P_{cache} - 0.22, others\\ 0.91P_{bw} + 3.09P_{cache} - 0.56, P_{bw} > 9.6 \end{cases}$$



### **Our Approach - Two-Phase Approach**







# **Our Approach – Some Key Points**

- > Q1: What are selected as application features?
  - ➢ Runtime profiles
    - Shared cache consumption
    - Bandwidth consumption





# **Our Approach – Some Key Points**

#### > Q2: How to create the abstract model?

- Regression analysis
- Configurable
  - Each configuration
    - binding to a function form

| Application Co-Runner |               | A' <sub>i</sub> s Performance Degradation |  |  |  |
|-----------------------|---------------|-------------------------------------------|--|--|--|
| $A_1$                 | $W_{A_1,1}$   | $PD_{A_1,W_{A_1,1}}$                      |  |  |  |
|                       |               |                                           |  |  |  |
| $A_1$                 | $W_{A_1,Q}$   | $PD_{A_1,W_{A_1,Q}}$                      |  |  |  |
| $A_2$                 | $W_{A_{2},1}$ | $PD_{A_2,W_{A_2,1}}$                      |  |  |  |
|                       |               |                                           |  |  |  |
| $A_2$                 | $W_{A_2,Q}$   | $PD_{A_2,W_{A_2,Q}}$                      |  |  |  |
|                       |               |                                           |  |  |  |

> Searching for the best function form for all applications in the training set

| #Aggregation                                                                            |  |  |  |  |
|-----------------------------------------------------------------------------------------|--|--|--|--|
| <pre>#Pre-Processing: none/exp(p)/log(p)/pow(p)</pre>                                   |  |  |  |  |
| #Mode: add/mul                                                                          |  |  |  |  |
| <b>#Domain Partitioning</b> : (shared-resource <sub>1</sub> , condition <sub>1</sub> ), |  |  |  |  |
| #Function: linear/polynomial(p)/user-defined                                            |  |  |  |  |



# **Our Approach – Some Key Points**

> Q3: What's the cost of the training when instantiation

- Cover all sub-domains of the piecewise function, say S
- > Constant points for each sub-domain, say C
  - > The constant depends on the form of abstraction model
- C\*S training runs in total

➤ Usually C and S are small, our experience: C=4, S=3



### Outline

- Introduction
- > Our Key Observations
- > Our Approach Two-Phase Approach
- > Experimental Results
- Conclusion

## **Experimental Results**



Accuracy of our two-phase regression approach

- Prediction precision
- ➢ Error analysis
- Deployment in a datacenter
  - Utilization gained
  - > QoS enforced and violated



### **Experimental Results**

> Benchmarks:

➢ SPEC2006

- Nine real-world datacenter applications
  - > Nlp-mt, openssl, openclas, MR-iindex, etc.
- > Platforms:
  - Intel quad-core Xeon E5506 (main)
- Datacenter:
  - ➢ 300 quad-core Xeon E5506



### **Some Predictor Function**

| 400.perlbench | $\begin{array}{l} 0.108 ^{*}P_{bw} \! + \! 0.484 ^{*}P_{cache} \! + \! 0.003 \\ 0.115 ^{*}P_{bw} \! + \! 0.460 ^{*}P_{cache} \! + \! 0.001 \end{array}$ | $(P_{bw} < 3.2)$<br>(3.2 <= $P_{bw}$ <= 9.6) |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|               | 0.176*P <sub>bw</sub> +0.336*P <sub>cache</sub> -0.026                                                                                                  | $(P_{bw} > 9.6)$                             |
| 401.bzip2     | $0.422*P_{bw}+1.337*P_{cache}-0.007$                                                                                                                    | $(P_{bw} < 3.2)$                             |
|               | 0.438*P <sub>bw</sub> +0.714*P <sub>cache</sub> +0.018                                                                                                  | $(3.2 \le P_{bw} \le 9.6)$                   |
|               | $0.445^*P_{bw}{+}1.240^*P_{cache}{-}0.046$                                                                                                              | $(P_{bw} > 9.6)$                             |
| 433.milc      |                                                                                                                                                         | $(P_{bw} < 3.2)$                             |
|               | $0.403 * P_{bw} + 0.752 * P_{cache} - 0.154$                                                                                                            | $(3.2 \le P_{bw} \le 9.6)$                   |
|               | $0.935 P_{bw} + 1.124 P_{cache} - 0.719$                                                                                                                | $(P_{bw} > 9.6)$                             |
| 10.5          | $0.093 P_{bw} + 0.430 P_{cache} - 0.015$                                                                                                                | $(P_{bw} < 3.2)$                             |
| 435.gromacs   | 0.129*Pbw+0.405*Pcache-0.028                                                                                                                            | $(3.2 \le P_{bw} \le 9.6)$                   |
|               | $0.154 P_{bw} + 0.297 P_{cache} - 0.033$                                                                                                                | $(P_{bw} > 9.6)$                             |
| 471.omnetpp   | $0.355 P_{bw} + 2.044 P_{cache} - 0.080$                                                                                                                | $(P_{bw} < 3.2)$                             |
|               | $0.648*P_{bw}+1.280*P_{cache}-0.126$                                                                                                                    | $(3.2 \le P_{bw} \le 9.6)$                   |
|               | $0.843 P_{bw} + 1.012 P_{cache} - 0.222$                                                                                                                | $(P_{bw} > 9.6)$                             |



### Prediction precision for SPEC Benchmarks



▶ Prediction Error: Average **0.2%**, from 0.0% to 8.6%.

2013/9/11



## Prediction precision for datacenter applications

> 15 workloads for each datacenter applications



▶ Prediction Error: Average **0.3%**, from 0.0% to 5%.



### **Error Distribution**





## **Prediction Efficiency**

Real Two-Phase Brute-Force > Precision 80% **Performance Degradation** 70% > Two-Phase: 60% 0.0~11.7%, Average: 0.40% 50% 40% > Brute-Force 30% 20% 0.0~10.1%, Average: 0.23% 10% 0% Efficiency 11 12 13 14 15 16 17 18 19 20 8 10 1 2 3 5 6 7 9 Δ Workload ID > co-running: ~200 → 12



### Benefits of piecewise predictor functions





# Benefits of piecewise predictor functions





# Deployment in a datacenter

- > 300 quad-core Xeon
  - > 1200 tasks when fully occupied
- > Applications
  - Latency sensitive: Nlp-mt
    - machine translation
    - ➢ 600 dedicated cores, 2/chip
  - Batch job
    - ➢ 600 tasks, kmeans, MR
- > Our Purpose
  - > QoS policy
  - > Issue batch jobs to idle cores





## Cross-platform applicability



> Six-core Intel Xeon



Prediction Error: Average 0.1%, range from 0.0% to 10.2%

2013/9/11

## Cross-platform applicability



> Quad-core AMD



> Prediction Error: Average **0.3%**, range from 0.0% to 5.1%

2013/9/11



### Outline

- > Introduction
- > Our Key Observations
- > Our Approach Two-Phase Approach
- > Experimental Results
- > Conclusion



- > An empirical model, based on our key observations
- Using aggregated resource consumptions to create the predictor function, thus working for **arbitrarily** co-locations
- Piecewise is reasonable and effective
- > Breaking the model creation into two phases, for efficiency





2013/9/11



## **Backup slides**

> How to make the training set representative?

- > Partition the space into grids
- > Sample for each grid





## **Backup slides**

> How to do domain partitioning?

- Specified in configuration file
- > Syntax: (shared resource<sub>i</sub>, condition<sub>i</sub>), e.g. ( $P_{bw}$ , equal(4))

> Empirical knowledge to perform this task

#Aggregation #Pre-Processing: none, exp(2), log(2), pow(2) #mode: add, mul #Domain Partitioning: {((Pbw), equal(4)), ((Pcache), equal(4)), ((Pcache, Pbw), equal(4, 4))}, #Function: linear, polynomial(2)



### Backup slides

- > Two sources of error:
  - Estimation for shared resources
    consumption
    - L2 LinesIn
  - > Phase behavior of applications

