
An Empirical Model for Predicting Cross-Core
Performance Interference on Multicore Processors

Jiacheng Zhao

Institute of Computing Technology, CAS

In Conjunction with Prof. Jingling Xue,

UNSW, Australia

Sep 11, 2013

Problem – Resource Utilization in Datacenters

 How?

2013/9/11

ASPLOS’09 by David Meisner+

Problem – Resource Utilization in Datacenters

Applications

Core Core

L1 L1

Co-Runners

Core Core

L1 L1

Shared Cache

Memory Controller

2013/9/11

 Co-located applications

 Contention for shared cache, shared IMC, etc.

 Negative and unpredictable interference

 Two types of applications

 Batch – No QoS guarantees

 Latency Sensitive - Attain high QoS

 Co-location is disabled

 Low server utilization

 Lacking the knowledge of interference

Problem – Resource Utilization in Datacenters

 Co-located applications

 Contention for shared cache, shared IMC, etc.

 Negative and unpredictable interference

 Two types of applications

 Batch – No QoS guarantees

 Latency Sensitive - Attain high QoS

 Co-location is disabled

 Low server utilization

 Lacking the knowledge of interference

2013/9/11

Problem – Resource Utilization in Datacenters

 Co-located applications

 Contention for shared cache, shared IMC, etc.

 Negative and unpredictable interference

 Two types of applications

 Batch – No QoS guarantees

 Latency Sensitive - Attain high QoS

 Co-location is disabled

 Low server utilization

 Lacking the knowledge of interference

2013/9/11

Figure: Task placement in datacenters

[Micro’11 by Jason Mars+]

Our Goals: Predicting the interference

 Quantitatively predict the cross-core performance interference

 Applicable for arbitrarily co-locations

 Identify any “safe” co-locations

 Deployable for datacenters

2013/9/11

Our Intuition – Mining a model from large training data

2013/9/11

 Using machine learning approaches

Training
Set

Motivation example

2013/9/11

𝑃𝐷𝑚𝑐𝑓 =

0.485𝑃𝑏𝑤 + 0.183𝑃𝑐𝑎𝑐ℎ𝑒 − 0.138, 𝑖𝑓 𝑃𝑏𝑤 < 3.2
0.706𝑃𝑏𝑤 + 1.725𝑃𝑐𝑎𝑐ℎ𝑒 − 0.220, 𝑖𝑓 3.2 ≤ 𝑃𝑏𝑤 ≤ 9.6
0.907𝑃𝑏𝑤 + 3.087𝑃𝑐𝑎𝑐ℎ𝑒 − 0.561, 𝑖𝑓 𝑃𝑏𝑤 > 9.6

Outline

 Introduction

 Our Key Observations

 Our Approach – Two-Phase Approach

 Experimental Results

 Conclusion

2013/9/11

Our Key Observations

 Observation 1: The function depends only on the pressure on shared

resources, regardless of individual pressures from one co-runner.

For an application A, PDA = f(Pcache, Pbw)

(Pcache, Pbw) = g(A1,A2,…,Am)

2013/9/11

Our Key Observations

 Observation 2:

 The function f is piecewise.

2013/9/11

Our Key Observations

 Naively, we can create A’s prediction model using brute-force approach

 BUT, we can NOT apply brute force approach for each application!

 Thousands of applications in one datacenter

 Frequent software updates

 Different generations of processors

 Even steps for one application is expensive

 Observation 3:

 The function form is platform-dependent and application independent

 Only the coefficients are application-dependent

2013/9/11

Outline

 Introduction

 Our Key Observations

 Our Approach - Two-Phase Approach

 Experimental Results

 Conclusion

2013/9/11

Our Approach - Two-Phase Approach

2013/9/11

Phase 1: Get the abstract model

 Find a function form best suitable for
all applications on a given platform

Phase 2: Instantiate the abstract model

 Determine the application-specific
coefficients (a11, etc.)

Training
Applications

Co-running
Trainer

 Heavy – many training workloads

 Run once for one platform

𝑃D =

𝑎11𝑃𝑏𝑤 + 𝑎12𝑃𝑐𝑎𝑐ℎ𝑒 + 𝑎13, 𝑠𝑢𝑏𝑑𝑜𝑚𝑎𝑖𝑛1
𝑎21𝑃𝑏𝑤 + 𝑎22𝑃𝑐𝑎𝑐ℎ𝑒 + 𝑎23, 𝑠𝑢𝑏𝑑𝑜𝑚𝑎𝑖𝑛2
𝑎31𝑃𝑏𝑤 + 𝑎32𝑃𝑐𝑎𝑐ℎ𝑒 + 𝑎33, 𝑠𝑢𝑏𝑑𝑜𝑚𝑎𝑖𝑛3

One
Application

Co-running
Trainer

 Light-weighted, with a small number of
trainings

 Run once for one application

𝑃𝐷𝑚𝑐𝑓 =

0.49𝑃𝑏𝑤 + 0.18𝑃𝑐𝑎𝑐ℎ𝑒 − 0.13, 𝑃𝑏𝑤 < 3.2
0.71𝑃𝑏𝑤 + 1.73𝑃𝑐𝑎𝑐ℎ𝑒 − 0.22, 𝑜𝑡ℎ𝑒𝑟𝑠

0.91𝑃𝑏𝑤 + 3.09𝑃𝑐𝑎𝑐ℎ𝑒 − 0.56, 𝑃𝑏𝑤 > 9.6

Our Approach - Two-Phase Approach

2013/9/11

Our Approach - Two-Phase Approach

2013/9/11

Q1: What are
selected as

application features

Q2: How?

Q3: What’s the
cost of the
training?

Our Approach – Some Key Points

2013/9/11

Q1: What are selected as application features?

Runtime profiles

Shared cache consumption

Bandwidth consumption

Our Approach – Some Key Points

2013/9/11

Q2: How to create the abstract model?

 Regression analysis

 Configurable

 Each configuration

binding to a function form

 Searching for the best function form for all applications in the training set

Our Approach – Some Key Points

2013/9/11

Q3: What’s the cost of the training when instantiation

 Cover all sub-domains of the piecewise function, say S

 Constant points for each sub-domain, say C

 The constant depends on the form of abstraction model

 C*S training runs in total

 Usually C and S are small, our experience: C=4, S=3

Outline

 Introduction

 Our Key Observations

 Our Approach - Two-Phase Approach

 Experimental Results

 Conclusion

2013/9/11

Experimental Results

2013/9/11

 Accuracy of our two-phase regression approach

 Prediction precision

 Error analysis

 Deployment in a datacenter

 Utilization gained

 QoS enforced and violated

Experimental Results

2013/9/11

 Benchmarks:

 SPEC2006

 Nine real-world datacenter applications

 Nlp-mt, openssl, openclas, MR-iindex, etc.

 Platforms:

 Intel quad-core Xeon E5506 (main)

 Datacenter:

 300 quad-core Xeon E5506

Some Predictor Function

2013/9/11

Prediction precision for SPEC Benchmarks

2013/9/11

 Prediction Error: Average 0.2%, from 0.0% to 8.6%.

Prediction precision for datacenter applications

 15 workloads for each datacenter applications

2013/9/11

 Prediction Error: Average 0.3%, from 0.0% to 5%.

Error Distribution

2013/9/11

-4.00%

-3.00%

-2.00%

-1.00%

0.00%

1.00%

2.00%

3.00%

4.00%

Error Distribution

Prediction Efficiency

 Precision

 Two-Phase:

0.0~11.7%, Average: 0.40%

 Brute-Force

0.0~10.1%, Average: 0.23%

 Efficiency

 co-running: ~200 12

2013/9/11

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
P

e
rf

o
rm

an
ce

 D
e

gr
ad

at
io

n
Workload ID

Real Two-Phase Brute-Force

Benefits of piecewise predictor functions

2013/9/11

Benefits of piecewise predictor functions

2013/9/11

Deployment in a datacenter

2013/9/11

 300 quad-core Xeon
 1200 tasks when fully occupied

 Applications
 Latency sensitive: Nlp-mt

 machine translation

 600 dedicated cores, 2/chip

 Batch job

 600 tasks, kmeans, MR

 Our Purpose
 QoS policy

 Issue batch jobs to idle cores

Cross-platform applicability

 Six-core Intel Xeon

2013/9/11

0%

20%

40%

60%

80%

1 6 11 16 21 26 AVG

P
er

fo
rm

an
ce

 D
eg

ra
d

at
io

n

Workload ID

Real Predicted

 Prediction Error: Average 0.1%, range from 0.0% to 10.2%

Cross-platform applicability

 Quad-core AMD

2013/9/11

 Prediction Error: Average 0.3%, range from 0.0% to 5.1%

0%

10%

20%

30%

40%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 AVG

P
er

fo
rm

an
ce

 D
eg

ra
d

at
io

n

Workload ID

Real Predicted

Outline

 Introduction

 Our Key Observations

 Our Approach - Two-Phase Approach

 Experimental Results

 Conclusion

2013/9/11

Conclusion

 An empirical model, based on our key observations

 Using aggregated resource consumptions to create the predictor function, thus

working for arbitrarily co-locations

 Piecewise is reasonable and effective

 Breaking the model creation into two phases, for efficiency

2013/9/11

2013/9/11

Backup slides

2013/9/11

How to make the training set representative?

 Partition the space into grids

 Sample for each grid

Backup slides

2013/9/11

How to do domain partitioning?

Specified in configuration file

Syntax: (shared resourcei, conditioni), e.g. (Pbw, equal(4))

Empirical knowledge to perform this task

#Aggregation
#Pre-Processing: none, exp(2), log(2), pow(2)
#mode: add, mul

#Domain Partitioning: {((Pbw), equal(4)), ((Pcache), equal(4)), ((Pcache, Pbw), equal(4, 4))},
#Function: linear, polynomial(2)

Backup slides

 Two sources of error:

 Estimation for shared resources

consumption

 L2 LinesIn

 Phase behavior of applications

2013/9/11

