Vectorization Past Dependent
Branches Through Speculation

Majedul Haque Sujon
R. Clint Whaley
Center for Computation & Technology(CCT),
Louisiana State University (LSU).
University of Texas at San Antonio (UTSA)*
&
Qing Yi
Department of Computer Science,
University of Colorado - Colorado Springs (UCCS).

*part of the research work had been done when the authors were there

Outline

e Motivation

e Speculative Vectorization

e Integration within Our Framework
e Experimental Results

e Related Work

e Conclusions

Motivation

e SIMD vectorization is required to attain high
performance on modern computers

e Many loops cannot be vectorized by existing
techniques

- Only 18-30% loops from two benchmarks can be
auto-vectorized - Maleki et al.[PACT’11]

- A key inhibiting factor is control hazard

—+We introduce a new technique for

vectorization past dependent branches --—- a
major source where existing techniques fail

Example: SSQ Loop

for(i=1;

{

ax
ax
if
{

}

i<=N; i++)
= X[1];

= ABS & ax;
(ax > scal)

t0 = scal/ax;
t0 = t0*t0;
ssq = 1.0+t1;
scal = ax;

else

{

t0 = ax/scal;
ssq += t0*t0;

SSQ Loop (NRM2)

September 12, 2013

(

ax
ax
if

= X[1i];

= ABS & ax;
(ax > scal)
GOTO L2;

/i;Z:

t0 = scal/ax;
t0 = t0*t0;
ssq = 1.0+t1;
scal = ax;

AU

to

U

- _/
Path-2 / \ Path-1
D (@ 2

ax/scal;

ssq += t0*t0;

4

PACT'2013

Variable Analysis (1)
)

[
el scal : Recurrent variable
if (ax > scal) [unvectorizable pattern]
GOTO L2;
- J ssq : Recurrent variable
Path- Path- [unvectorizable pattern]

Statements that
operate on scal

are not
vectorizable

scal: scal: used before
defined defined

September 12, 2013 PACT'2013

Variable Analysis (2)
)

[
el scal : Recurrent variable
if (ax > scal) [unvectorizable pattern]
GOTO L2;
\ J ssq : Recurrent variable
Path-2 Path-1 [unvectorizable pattern]

considering both
paths, statements

ssq: reduction but that operate on
defined in
the other path =l ar_e hot
vectorizable

ssq is defined again

September 12, 2013 PACT'2013 6

Analysis of Path-1

4)

ax = X[i]; scal : Invariant
ax = ABS & ax; ssq : Reduction
if (ax > scal)
GOTO L2; .
’ ABS: Invarian
\ Y, S ariant

t0, ax: private variable

Path-

ssq:
reduction variable

(vectorizable) Path-1:

Vectorizable

September 12, 2013 PACT'2013

Speculative Vectorization

Vectorize past branches using speculation:

1. Vectorize a chosen path —-—-- speculate it
will be taken in consecutive loop
iterations (e.g. vector length iterations).

2. When speculation fails, re-evaluate mis-
vectorized iterations using scalar
operations [Scalar Restart].

Vectorized Loop Structure

Scalar Restart

vector-prologue
(initialization)

vector-backup
(if needed)

v

vector-body

l Vector Pat

vector-loop-
update

vector-epilogue

i Scalar Restart i
i i (Reduction)

September 12, 2013 PACT'2013

Vectorized Loop Structure

Scalar Restart

vector-prologue
(initialization)

vector-restore

(if needed)

{

vector-backup
(if needed)

vector-to-scalar

v

(reduction)

v

vector-body

scalar loop of
vector-length #

l Vector Pat

of iterations

v
|
scalar-to-vector

update

vector-epilogue
(Reduction)

September 12, 2013 PACT'2013

10

Example Vectorized Code (SSQ)

SCALAR_RESTART :

/* wvector-prologue */

/* wector-to-scalar */
ssqg = sum(Vssqg[0:3]);

/* scalar-to-vector */
Vssg=[ssq,0.0,0.0,0.017;
Vscal=[scal,scal,scal,scall];

Vssq = [ssq,0.0,0.0,0.017;
Vscal= [scal,scal,scal,scal]
VABS = [ABS,ABS,ABS,ABS];

.
4

LOOP:

/* wvector-loop-update */
i+=4;

1f (1<=N4) GOTO LOOP;

/

—

/* wvector-epilogue */

September 12, 2013

ssqg = sum(Vssqg[0:3]);
scal = Vscall[O];
PACT'2013 11

Integration within the iFKO
framework

e iFKO (Iterative Floating Point Kernel
Optimizer)

analysis results

problem
""""" " | params T
Input HIL +flags . Search p Sgec:lal.llzed Optimized—t Timers/
Routine —» Drivers HIL ?g{%) er assembly > Testers |

performance/test results

e Why necessary:
- To find the best path to speculate for SV
- To apply SV only when profitable

Results: SV vs Scalar

AVX: float:8, double: 4
Data: in-L2, random [-0.5,0.5], sin/cos [0, 211]
SV & Scalar : auto tuned

6.81 6.83 mSingle ® Double
5.96

Speedup over scalar

O, N WPNMNUIO NN

BLAS ATLAS-LU Factorization GLIBC
Machine: Intel Xeon CPU E5-2620

September 12, 2013 PACT'2013 13

Results: SV vs Scalar

6.8 x/3.4%
.8 Z ;
< (o5 6.83 mSingle ®Double
8 6 5.96 5.86
“L) > 4.18
34
Q
= 3 08
v 2
8 1 | | | 1.011.08 1.01

A
Yoo
& &

Speedup of AMAX/IAMAX float 6.8x, double

3.4x

September 12, 2013 PACT'2013 14

Results: SV vs Scalar

4.18x /
2.08?(

6.81 6.83 /- Single ® Double
5.96 5.86

Speedup over scalar
O R, N WPMNMNUI O N

0.93.92 0.92
-A\ﬁ+—@—@~—+—+—+—e—gﬁ
¥ ¥ S ¥ ¥ W C
SN SN e S S
AN & &

NRM2: Not vectorlzable by prior methods

4.18x (float), 2.08x (double)

September 12, 2013 PACT'2013 15

Results: SV vs Scalar

6.81 6.83 ®mSingle #Double _

.08

1.011.08 1.01
T T |

Speedup over scalar
O L N WDUIO N

\ ! 0.953).92 \ ! ! . 0.%2
g © & F & T e
N\ NG N
3 \3 \3

September 12, 2013 PACT'2013 16

Results: SV vs Scalar

0.93x / 1.01x/

0.927k 1.08
0. Z,/\
6.81 6.83 mSingle hDoubIe 1

5.96 _ . / \
' /

Speedup over scalar
O L N WDUIO N

v
O L

S & & &
Slowdown up to 8% for ASUM and COS

September 12, 2013 PACT'2013 17

Vectorization Strategies in iFKO

- VMMR (Vectorization after Max/Min
Reduction):

e Eliminating Max/Min conditionals with vmax/vmin
Instruction

- VRC (Vectorization with Redundant
Computation):

e Redundant computation with select/blend
operation

e Only effective if all paths are vectorizable in our
implementation

—SV (Speculative Vectorization):
e at least one path is vectorizable

Comparing Vectorization
Strategies with AMAX

- VMMR: only one branch to find max AVX: float:8, double: 4
- VRC: minimum redundant operation Intel Xeon CPU E5-2620
- SV: strong directionality

(0]

7.08 6.81

646
0.0

®"VMMR ®VRC =SV

Speedup over scalar
O LR N W hH U1 O N
|

Single Double

September 12, 2013 PACT'2013 19

Related Work

e If Conversion : J.R. Allen [POPL’83]
- Control dependence to data dependence

e Bit masking to combine different values from
if-else branches: Bik et al.[int. J. PP’02]

e Formalize predicated execution with select/
blend operation: Shin et al.[CGO’05]

- General approach

Conclusions

e Impressive s(peedup can be achieved when control-flow
is directional.

- Can vectorize some loops effectively when other methods
can’t.

e SSQ (NRM2): 4.18x (float), 2.08x (double)
o AMAX/IAMAX: 6.8x (float), 3.6 (double)

- Complimentary to and can be combined with existing
other vectorization methods (e.g., VRC)

- Specialize hardware is not needed
e Future work
- Investigate combining vectorization strategies
- Try under-speculation as veclen increases
- Speculative vectorization of multiple paths

- Loop specialization: switch to scalar loop when
mispeculation is frequent

