Starchart®*: GPU Program
Power/Performance Optimization
Using Regression Trees

Wenhao Jia, Princeton University
Kelly A. Shaw, University of Richmond

Margaret Martonosi, Princeton University

*Statistical Tuning via Automatically- and Recursively-Constructed, Hierarchically-Applied Regression Trees

The Problem

[Q1] What if you need to select between multiple GPU platforms?
— Decide which platform offers the best power/performance
— For each platform, find the best parameter settings
— Are there parameter settings that work well across several platforms?

[Q2] What if you need to choose program operating points that
optimize power while hitting certain performance targets?

— Performance targets change dynamically
— Understand how paramater settings affect performance/power

Complex design spaces - Hard to answer
How to automate choices about HW and SW design options?

Design Space Exploration:
Existing Approaches

* Exhaustive experiments

— Time-consuming

— Even if possible, hard to analyze high-dimensional space
* Center-point-based exploration

— Based on human experience and intuition
— Can miss important trends

* Performance/power models

— [JosephO6HPCA][LeeO6ASPLOS][Jial2ISPASS]

— Linear regression doesn’t work well across “performance
cliffs”, sacrificing accuracy when distinct subspaces exist

— Can only find global optimal

This Work: Starchart Design Explorer

e Partition-based approach is powerful and robust
— Handles real-system measurement variance

— Handles “performance cliffs” and “subspaces” common
for GPU systems

— Applicable to multiple metrics and CPUs
— Tree visualizations are intuitive

 For GPU users, tool builders & HW designers
— Optimize designs within or across different platforms
— Reveal power/performance trade-offs
— Measure a program’s input sensitivity
— > 300X speed-up in design space exploration

Motivation: Matrix Transpose

(t x r) threads

per thread block

Al6][8]

consec=0

AT[8](6]

rows /
thread block

1-256

N # threads / 1-16
row

threads
work on
consec : 0/1
consecutive

elements?

-
designs

Motivation: Matrix Transpose

consec=0(—)or1(-)

100

Runtime (ms)

o©
=

0.01

—o=t=] =lt=4

T N < 00 O N <
«—f N O
—
r
t=8 =*t=16

r: #rows / thread block,

256

The whole
design space
70 designs
|
| |
t - 1 — t > 1 —
18 designs 52 designs

mean =5.8 ms

Further partitioning

depends onlyonr

=X) other approaches

mean =0.76 ms

1<t<8 —/—

tTS —

42 designs
mean =0.93 ms

10 designs

mean = 0.10 ms

conselec =0 consec=1
I
21 designs 21 designs
mean=1.1 ms mean =0.79 ms

Handles high-degree interaction
Handles distinct subspaces

t: #threads / row, consec: consecutive?

Starchart Workflow

e Step 1: Sampling

— Uniformly & randomly sample and measure designs
e Step 2: Modeling

— Recursively partition a space using samples

— Based on regression tree theory, statistically sound
— Robust enough to handle real-system experiments

— Automated, comprehensive, and easy-to-visualize
e Step 3: Application

— Solve subspace-based design problems

Example: Breadth-First Search

mm

threads / thread block threads organization 1-1024
n # nodes / thread threads organization 1-64
consec threads process consecutive nodes? coalescing vs. caching 0/1
a store attributes[] in parallel arrays? data layout 0/1
store status[] in parallel arrays? data layout

total designs ~500K
needed samples 200 (0.04%)

Recursive Partitioning

(@)
. @ b (@) 2 — 2
design samples o o?=(P.—P)>=201
@ Og ®
(@)
\
consec<1
\\VS.
consec > 1
@ o
(<) (@)
[5) @
o ® ©

@ @

© + o ®

U4 \ U4 1
V4 \ U 1
U4 \ U4 1
! l k dN \
U Yy U v

n: #nodes/thread, t: #threads/block, consec: consecutive? a & s: parallel arrays?

Algorithm

do
for each current partition C
— for each parameter d.
for each possible value v, of d.

try all
tentative split C into C; and C, based on (d,, v,)
lit
wPIE SSE = Z;(Py; — Py) + Zj(PZj - P,)
— find the smallest SSE,, among all SSE_,
if SSE, > ©

split C using (d,, v,) and add to tree
while at least one partition was split
output the generated partition tree

<€

Decreasing importance (greedy)

Regression Tree for BFS

200 samples
mean = 0.95ms

[

————— consec —]
=1

97 samples
mean =0.67 ms

103 samples
mean =1.22 ms

| d
=|O

44 samples
mean =1.31 ms

|
<34
|

|
>34

53 samples
mean =0.63 ms

47 samples
mean =0.73 ms

n: #nodes/thread, t: #threads/block, consec: consecutive? a & s: parallel arrays?

59 samples
mean =1.14 ms

Runtime (ms)

1.0 12 14

0.8

0.6

Results Validation

consec=1,a=0

+
. -+

+ 4 +H +x
+ =+ X
:E:O—X&—O—%_x_.__._

X
consec=1,a=1

consec=0,a=0

consec=0,a=1

X K% XX
+:ﬁ_ X>§< %33 xx R
=‘= X
T
XXX ©°
o~ © 82 géo Sk
fRap A
o @O0 Og&gﬁ%ﬁ%ﬁl N
€an 28
T T T T T T T
0 10 20 30 40 50 60

n

consec and a together divide the
designs into several fairly disjoint
sets

Runtime (ms)

08 10 12 14

0.6

t does not appear in the tree,
and hence runtime does not
have a strong dependence on t

n: #nodes/thread, t: #threads/block, consec: consecutive? a & s: parallel arrays?

<€

Decreasing importance (greedy)

Regression Tree for BFS

|
<34
|

|
>34

53 samples
mean =0.63 ms

47 samples
mean =0.73 ms

n: #nodes/thread, t: #threads/block, consec: consecutive? a & s: parallel arrays?

Query design:
200 samples consec =1,
mean = 0.95ms a=1,..
I
————— consec —
= O = 1
I |
97 samples 103 samples
mean =0.67 ms mean=1.22 ms
I
l d |
=0 =1
| |
44 samples 59 samples
mean =1.31 ms mean =1.14 ms

How to Use Regression Trees

* With enough leaf nodes (~50 for our design
spaces), a regression tree approaches a fairly
accurate description of the design space

— Can be used to predict the performance/power of
any design by

— Can be used to look for the best design/subspace

— Can be used to do subspace-based design
exploration (4 case studies in the paper)

Starchart Design Questions

* When to stop splitting a partition
— Stop when ASSE < 0: clear meaning, more levels
— Stop when ASSE < &6: fewer leaves, faster training

e What statistical model to use in each node

— Arithmetic mean: simple, robust, more levels
— Linear regression models: fewer levels

Real-System Measurement

Parameter Value

GPUs NVIDIA Tesla C2070 AMD Radeon HD 7970

Software environment CUDA OpenCL

bfs, hotspot, kmeans, streamcluster (Rodinia)

Benchmarks matrix, nbody (NVIDIA SDK)

: erformance (i.e. runtime
Evaluated metrics P ()

power
Design space sizes 66K—millions of designs
200-3200
Training samples (of design space sizes,

l.e. productivity improvement)

Median relative prediction error (%)

Accuracy vs. Training Set Size

50 == hfs/AMD
45 * & * bfs/NVIDIA
40 ==hotspot/AMD
35 * *k * hotspot/NVIDIA
30 =®=kmeans/AMD
25 *®°kmeans/NVIDIA
20 =¢=matrix/AMD
15 * ¢ » matrix/NVIDIA
10 ==nbody/AMD
5 * - nbody/NVIDIA
0 . . . : , , , - ==streamcluster/AMD

20 50 100 200 400 800 1600 3200 °°*&-streamcluster/NVIDIA
Number of training samples

Use prediction accuracy on 200 validation samples to incrementally select
training set size
200 samples for most programs, less than 0.3% of all design spaces

Revisiting Motivation Questions

[Q1] What if you need to select between multiple GPU platforms
— Decide which platform offers the best power/performance
— For each platform, find the best parameter settings
— Are there parameter settings that work well across several platforms?

[Q2] What if you need to choose program operating points that
optimize power while hitting certain performance targets?

— Understand how parameter settings affect performance/power
— Performance targets change dynamically

Complex design spaces - Hard to answer
How to choices about H/W and S/W design options?

Case Study: Cross-Platform Optimization

P nvidia —|>7

200 samples 200 samples
mean = 0.5 <
I \
X - |
<5 I >5
15 samples 185 Samples
mean = 1.5 ms mean = ns
& e
<3 >5 <7 | 1 >7
1 nples 184 samples 28 samples 157samples
nean mean = 0.77 ms mean =Q.44 ms
|
i X] v i
<15l >15 <5 I 55
m mplplv 12 samples 7 samples 150 samples
mean = 1.1 ms mean = 0.41 ms
x <15,y <5 for AMD, 6.3x faster x>7,y>5 for NVIDIA, 1.3x faster

e Define “use NVIDIA GPU” as a binary design parameter
e Support many different cross-platform optimization scenarios (see paper)

Case Study: Power/Performance Co-design

S
A A 1<tpp<=3, use-I11=1
a O 3<tpp<=8, use-I1=1
+ others
S _|

Power (W)
|

150
|
4
L
-

130
|

Performance target Runtime (ms)

» Sliding performance targets disable or enable different parts
of the design space
* Can look for Pareto optimal designs easily

Conclusion

e Starchart: an automated partitioning-based
design space explorer

— Handles real-system variance and high nonlinearity
— > 300X exploration time speedup
— Can be applied to CPU programs as well
* Subspace-based approaches useful for many real-
world power/performance tuning problems
— Cross-platform optimization: 6.3X faster than default

— Power/performance trade-off: save 47W out of 180W
with < 10% performance loss

Tool release: http://www.princeton.edu/~wijia/starchart

THANK YOU!

