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The Problem

[Q1] What if you need to select between multiple GPU platforms?
— Decide which platform offers the best power/performance
— For each platform, find the best parameter settings
— Are there parameter settings that work well across several platforms?

[Q2] What if you need to choose program operating points that
optimize power while hitting certain performance targets?

— Performance targets change dynamically
— Understand how paramater settings affect performance/power

Complex design spaces - Hard to answer
How to automate choices about HW and SW design options?



Design Space Exploration:
Existing Approaches

* Exhaustive experiments

— Time-consuming

— Even if possible, hard to analyze high-dimensional space
* Center-point-based exploration

— Based on human experience and intuition
— Can miss important trends

* Performance/power models

— [JosephO6HPCA][LeeO6ASPLOS][Jial2ISPASS]

— Linear regression doesn’t work well across “performance
cliffs”, sacrificing accuracy when distinct subspaces exist

— Can only find global optimal



This Work: Starchart Design Explorer

e Partition-based approach is powerful and robust
— Handles real-system measurement variance

— Handles “performance cliffs” and “subspaces” common
for GPU systems

— Applicable to multiple metrics and CPUs
— Tree visualizations are intuitive

 For GPU users, tool builders & HW designers
— Optimize designs within or across different platforms
— Reveal power/performance trade-offs
— Measure a program’s input sensitivity
— > 300X speed-up in design space exploration



Motivation: Matrix Transpose
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Motivation: Matrix Transpose

consec=0(—)or1(-)

100

Runtime (ms)

o©
=

0.01

—o=t=] =lt=4

T N < 00 O N <
«—f N O
—
r
t=8 =*t=16

r: #rows / thread block,

256

The whole
design space
70 designs
|
| |
t - 1 — t > 1 —
18 designs 52 designs

mean =5.8 ms

Further partitioning

depends onlyonr

=X ) other approaches

mean =0.76 ms

1<t<8 —/—

tTS —

42 designs
mean =0.93 ms

10 designs

mean = 0.10 ms

conselec =0 consec=1
I
21 designs 21 designs
mean=1.1 ms mean =0.79 ms

Handles high-degree interaction
Handles distinct subspaces

t: #threads / row, consec: consecutive?




Starchart Workflow

e Step 1: Sampling

— Uniformly & randomly sample and measure designs
e Step 2: Modeling

— Recursively partition a space using samples

— Based on regression tree theory, statistically sound
— Robust enough to handle real-system experiments

— Automated, comprehensive, and easy-to-visualize
e Step 3: Application

— Solve subspace-based design problems



Example: Breadth-First Search

mm

# threads / thread block threads organization 1-1024
n # nodes / thread threads organization 1-64
consec threads process consecutive nodes?  coalescing vs. caching 0/1
a store attributes[] in parallel arrays? data layout 0/1
store status[] in parallel arrays? data layout

# total designs ~500K
# needed samples 200 (0.04%)



Recursive Partitioning
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n: #nodes/thread, t: #threads/block, consec: consecutive? a & s: parallel arrays?



Algorithm

do
for each current partition C
— for each parameter d.
for each possible value v, of d.

try all
tentative split C into C; and C, based on (d,, v,)
lit
wPIE SSE = Z;(Py; — Py) + Zj(PZj - P,)
— find the smallest SSE,, among all SSE_,
if SSE, > ©

split C using (d,, v,) and add to tree
while at least one partition was split
output the generated partition tree
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Regression Tree for BFS
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Results Validation
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consec and a together divide the
designs into several fairly disjoint
sets
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t does not appear in the tree,
and hence runtime does not
have a strong dependence on t

n: #nodes/thread, t: #threads/block, consec: consecutive? a & s: parallel arrays?
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How to Use Regression Trees

* With enough leaf nodes (~50 for our design
spaces), a regression tree approaches a fairly
accurate description of the design space

— Can be used to predict the performance/power of
any design by

— Can be used to look for the best design/subspace

— Can be used to do subspace-based design
exploration (4 case studies in the paper)



Starchart Design Questions

* When to stop splitting a partition
— Stop when ASSE < 0: clear meaning, more levels
— Stop when ASSE < &6: fewer leaves, faster training

e What statistical model to use in each node

— Arithmetic mean: simple, robust, more levels
— Linear regression models: fewer levels



Real-System Measurement

Parameter Value

GPUs NVIDIA Tesla C2070 AMD Radeon HD 7970

Software environment CUDA OpenCL

bfs, hotspot, kmeans, streamcluster (Rodinia)

Benchmarks matrix, nbody (NVIDIA SDK)

: erformance (i.e. runtime
Evaluated metrics P ( )

power
Design space sizes 66K—millions of designs
200-3200
Training samples ( of design space sizes,

l.e. productivity improvement)



Median relative prediction error (%)

Accuracy vs. Training Set Size

50 == hfs/AMD
45 * & * bfs/NVIDIA
40 ==hotspot/AMD
35 * *k * hotspot/NVIDIA
30 =®=kmeans/AMD
25 *®°kmeans/NVIDIA
20 =¢=matrix/AMD
15 * ¢ » matrix/NVIDIA
10 ==nbody/AMD
5 * - nbody/NVIDIA
0 . . . : , , , - ==streamcluster/AMD

20 50 100 200 400 800 1600 3200  °°*&-streamcluster/NVIDIA
Number of training samples

Use prediction accuracy on 200 validation samples to incrementally select
training set size
200 samples for most programs, less than 0.3% of all design spaces



Revisiting Motivation Questions

[Q1] What if you need to select between multiple GPU platforms
— Decide which platform offers the best power/performance
— For each platform, find the best parameter settings
— Are there parameter settings that work well across several platforms?

[Q2] What if you need to choose program operating points that
optimize power while hitting certain performance targets?

— Understand how parameter settings affect performance/power
— Performance targets change dynamically

Complex design spaces - Hard to answer
How to choices about H/W and S/W design options?



Case Study: Cross-Platform Optimization
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e Define “use NVIDIA GPU” as a binary design parameter
e Support many different cross-platform optimization scenarios (see paper)



Case Study: Power/Performance Co-design
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» Sliding performance targets disable or enable different parts
of the design space
* Can look for Pareto optimal designs easily



Conclusion

e Starchart: an automated partitioning-based
design space explorer

— Handles real-system variance and high nonlinearity
— > 300X exploration time speedup
— Can be applied to CPU programs as well
* Subspace-based approaches useful for many real-
world power/performance tuning problems
— Cross-platform optimization: 6.3X faster than default

— Power/performance trade-off: save 47W out of 180W
with < 10% performance loss



Tool release: http://www.princeton.edu/~wijia/starchart

THANK YOU!



