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1 INTRODUCTION
While modern applications are often multithreaded, the manual
implementation of concurrent programs is inconvenient and error-
prone. One way to ease the implementation of such programs is to
specify them as a set of tasks in data- or workflow graphs. These
graphs describe the individual tasks, causal dependencies and data
dependencies between them. Once all dependencies of one task
are satisfied, it can be executed. Thereby, the order of execution is
decoupled from the implementation of the program, which enables
the underlying scheduler to exploit parallelism more efficiently.

For its execution, a program relies on services offered by the op-
erating system like, e.g., memory management, thread management
or I/O. In order to utilize these services, applications use system
calls. These transfer control from user space (application) to kernel
space (operating system). Traditionally, these system calls are exe-
cuted synchronously on the CPU core, where the system call was
invoked by the application. This execution model comes with two
major drawbacks: (a) The invoking task is blocked while the system
call is executed and (b) Due to the execution of different types of
system calls on the same CPU core, caches are overwritten when
switching between them. Modern microkernels like Fiasco [1] and
MyThOS [2] use message passing as a communication method be-
tween different kernel instances running on different CPU cores or
even different nodes in a data center. Therefore, they are able to sup-
port system call forwarding, which solves the problems mentioned
before and works as follows: When an application uses a system
call, the local CPU core jumps to kernel mode and executed the
respective system call handler. This handler function forwards the
system call to another suitable OS instance running on a different
CPU core and returns control to the application. Thereby, blocking
is avoided as much as possible. Afterwards, the result of the system
call can be fetched by the application asynchronously. By routing
all system calls of a specific type to one or few dedicated CPU cores,
the caches on these cores stay populated with related data, which
even helps to speed up the execution of the system calls themselves.

However, it is currently unclear which cores should process
which system calls and thereby offer a specific service. Services like
memory management can be executed by a single core or, in the
case of distributed shared memory, by a central node in the clus-
ter. This strategy may lead to high load on that core and therefore
high waiting times for the system call’s result depending on the
behavior of the application and the size of the computing cluster.
This can be solved by replication of the respective service, which
in turn leads to communication overhead due to synchronization
and consistency overhead between the service instances. There-
fore, the operating system requires a service placement system to
determine the optimal placement and replication strategy for the
service instances for each system call. It should be able to determine
a mapping of service instances (processing a specific system call)

to CPU cores. This decision should build upon information made
available from the application and collected during its execution.

2 APPROACH
In this PhD thesis both a task mapping infrastructure (task sched-
uler) and a system for OS service placement (service scheduler)
are developed. Due to different coherency levels (e.g. shared cache,
shared memory, different nodes) and heterogeneous hardware (e.g.
CPU, GPU), a hierarchical task scheduler was selected, where the
hierarchy levels correspond to different coherency levels of the
computing infrastructure, i.e., cluster, node, shared memory, shared
cache. This task scheduler assigns tasks from an application’s flow
graph to computational resources depending on (a) location of the
input data, (b) its availability, (c) the expected runtime of the task
and (d) the location of required operating system services.

To determine whether a task is ready for execution, its data de-
pendencies have to be evaluated. From the application’s perspective
this is a difficult task, since the location of data is not transparent
to the application. Therefore, the task scheduler developed in this
thesis will be integrated into the operating system. It therefore
can more efficiently check dependencies, since data mapping and
memory layout are available.

The dependencies of tasks upon specific operating system ser-
vices (i.e. the information weather they may be called) are defined
explicitly in the task description and can be extracted by the com-
piler. This information is used by the task scheduler for its initial
placement decision.

In many fields, e.g. HPC, tasks are executed iteratively. In the
majority of iterations, they exhibit similar behavior, e.g. a task
may always reserve memory in the beginning and release it before
terminating. Therefore, the calls of tasks to OS services can be
predicted in terms of patterns. In order to identify these patterns
all system calls have to be monitored. For this purpose, each task
is assigned an ID either by the developer or the compiler. If two
tasks have the same ID, they will execute the same function. This
ID is used by each service instance to record the number of accesses
per task ID over a given time frame. Using this information, the
service scheduler can then determine affinities between services
and task IDs. These are then used to place new tasks close to the
services they will frequently use or replicate services to be more
locally available to such tasks. In this work, tasks are considered
to behave similarly across many executions. Therefore, system call
patterns do not change rapidly, but they can be better approximated
by observing additional executions.

If the response time of a service instance is too high, it may be
either overloaded or located too far from the tasks using it. In this
case the service scheduler has to consider different options. While
the replication of this service adds synchronization and consistency
overhead, the migration of the instance closer to the tasks using



it may avoid this overhead. However, depending on the behav-
ior of the application’s tasks, replication may improve the overall
performance of the system. The costs of both decisions, including
reconfiguration cost, are evaluated by the service scheduler in order
to find an optimal solution.

3 CHALLENGES
Although, many tasks, e.g. in HPC, exhibit similar runtime over mul-
tiple invocations it may vary between iterations or change entirely
based on input data. On the other hand, the task scheduler requires
information about the workload of a task to be able to schedule
successive tasks accordingly. Therefore, a suitable estimation of
a task’s runtime has to be found. This could be, e.g., exponential
smoothing of previous runtimes. Based on input data tasks may
exhibit entirely different behavior. However, this effect is expected
to be negligible, since it often occurs at loop borders, which only
make up a small fraction of the invocations.

Similar considerations have to be taken for the system call be-
havior of tasks. The frequency of system calls may evolve over time
and change rapidly in some invocations. This is again compensated
by exponential smoothing.

One major challenge is the mutual dependency of the two sched-
ulers. Given an operating system configuration with fixed service
instances, the task scheduler can determine an optimal task sched-
ule based on this OS configuration. In turn, the service scheduler
can determine an optimal service placement, depending on a fixed
task distribution. However, when simultaneously scheduling tasks
and services, the schedulers interact with each other and influence
each others’ decisions. These effects will be studied and quanti-
fied within this thesis and the schedulers will be designed to avoid
unstable behavior.

4 CONCLUSION
In this thesis, scheduling strategies for both application tasks (de-
pending on data location and availability) and operating system
services will be developed. The cost of reconfiguration in both task
and service placement will be evaluated and will serve as a metric
for the scheduler. Thereby, local and global performance of the
system should be optimized.
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