
The Geo-aware State Deployment Problem for Mobile
Distributed Applications

Diogo Lima
LaSIGE, Faculdade de Ciências,

Universidade de Lisboa
Lisbon, Portugal

dlima@lasige.di.fc.ul.pt

ABSTRACT
The geographical barrier between mobile devices and mobile ap-
plication servers (typically hosted in cloud datacenters) imposes
an unavoidable latency and jitter that negatively impacts the per-
formance of modern mobile systems. Fog Computing architectures
can mitigate this impact, but such architectures directly depend
on a middleware service able to correctly partition and deploy the
state of an application at optimal locations. Geo-aware state deploy-
ment is challenging as it must consider the mobility of the devices
and the dependencies arising when multiple devices concurrently
manipulate the same application state.

In this work we start by proposing our system model based
on the Fog Computing paradigm. Then, our research focuses on
geographically aware state deployment strategies able to benefit
from the proposed system model to avoid latency and increase
quality-of-experience, by having most of traffic handled by servers
located in close proximity to users. Finally, we plan to investigate
the real impact and role of the Oracle component of our system
model, responsible for managing the state deployment decisions
and coordinating the multiple servers of the system.

CCS CONCEPTS
•Computingmethodologies; •Distributed computingmethod-
ologies; • Distributed algorithms; • Self-organization;

KEYWORDS
Mobile Distributed Applications, Fog Computing, Geographically-
aware State Deployment

1 INTRODUCTION
The evolution of wireless networking technologies is leading to an
increasing number of large scale distributed mobile applications
over wireless networks in domains such as smart cities, augmented
reality games (e.g. Ingress, Pokemon Go) and social networks (e.g.
Foursquare). Distributed mobile applications are characterized by
concurrently connecting a large number of users that retrieve, pub-
lish and manipulate significant amounts of application state. The
current trend tends to concentrate consistency and concurrency
control in a supporting infrastructure hosted in Cloud datacenters.
However, this model creates a geographical barrier between the end
users and the application’s state managers. The latency and jitter
that unavoidably results from this distance negatively impacts the
application performance.

The Fog Computing approach [2] proposes to overcome this
geographical barrier by deploying surrogate servers at the edge

of the network, in particular on access networks. Although this
approach has the potential to mitigate jitter and latency, its perfor-
mance strongly depends of the ability of a middleware service to
partition application state and deploy each of its components at its
most convenient location. A problem referred as geo-aware state
deployment.

A good geo-aware state deployment must be aligned with the
distributed access pattern of each state component. This is chal-
lenging as it must consider the application semantic, the mobility
of the devices and the dependencies established between multiple
devices concurrently manipulating application state.

2 PROBLEM STATEMENT
We assume a wide scale distributed application that is supported
by servers deployed at distinct locations at the edge of the network,
hereafter named surrogates. Surrogates serve as access points to
clients connecting to the application, storing state and providing
computing power, and are placed at a neighbourhood level in stores,
restaurants or public services. Expectations are that, similar to
the benefits of providing free wifi access to their costumers, the
increasing offer of storing and computing power will allow stores
to attract more costumers and for longer periods of stay. Surrogates
also connect to other surrogates and to cloud datacenter(s) by a high
speed wired network. End users devices include desktop computers,
mobile devices and sensors using wired or wireless networks.

Figure 1 graphically depicts the implementation of our model.
The geo-aware state deployment is managed by a service that con-
ceptually acts as an oracle (1), becoming eventually aware of the
source of all accesses to state items. The oracle decides at run-time
the most suitable location of each state item and coordinates its
transfer between surrogates. The oracle collects transaction logs,
delivered in the background by the surrogates (2,3).

We assume that application state is composed of three sorts of
data: (i) data that is unique to each user or device (personal state), (ii)
collaborative data relevant to a specific geographical location (geo-
aware state), and (iii) general application logic data (global state).
Personal and geo-aware state items are location dependent, i.e.,
they are associated with one or more surrogates. In the particular
case of personal state, these surrogates change over time, as users
move.

Expectations are that, to avoid latency and increase quality-of-
experience, most of the traffic produced by clients is handled at
surrogates. To address these expectations, the system must imple-
ment a geo-aware state deployment strategy, allowing surrogates to
store each state item at a location most likely to reduce latency and
long-distance accesses. However, application operations (hereafter



Figure 1: System model.

referred as transactions) may affect more than one state item, possi-
bly hosted at more than one surrogate. Depending on the number
of sites involved, transactions can be either local or global. Local
transactions are those that access data stored at a single site, while
global transactions involve multiple sites.

The complexity and latency of coordinating global transactions
motivate the oracle to keep commonly accessed state components
at the same site. Each migration decision must consider the cost of
the migration itself, the benefits of increasing the number of local
transactions and the cost of future global transactions. We consider
three metrics to evaluate the performance of a geo-aware state
deployment strategy: (i) the number of remote accesses represent
the operations over state items stored in other surrogates, (ii) the
number of state item migrations from one surrogate to another at
the end of each state deployment evaluation, and (iii) the number of
enclosed transactions in a single surrogate. A good strategy should
maximize the last metric (privileging transactions involving a single
surrogate), while minimizing the first and second. However, remote
accesses are considered the highest latency inducing operation
hence its minimization must be priority.

3 GRAPH-BASED GEO-AWARE STRATEGIES
Preliminary results [8] have shown that geo-aware policies can
positively impact system performance in comparison with off-the-
shelf approaches that either always or never migrate objects from
one region to another.

So far, we have been researching geographically aware state
deployment strategies based on graphs. Originally proposed to par-
tition database items across storage nodes [3], graph partitioning is
an interesting approach to distribute state components across dif-
ferent locations so that most of the transactions only need to access
one. Geo-aware state deployment extends the graph partitioning
problem with the additional requirement that the accessed location
should be preferably in proximity of the transaction initiator.

One natural application of graph partitioning to geo-aware state
deployment consists in mapping both application state items and
surrogate locations to vertices, and add two sort of weighted edges [9]:
(i) transaction edges connect pairs of state items used in the same
transaction ; (ii) location edges link a location and a state item if

this state item is used in a least one transaction initiated at this
location.

The fundamental idea consists in periodically executing a graph
partitioning algorithm on a graph capturing the relationship be-
tween data items and surrogates. State items are then proactively
relocated to surrogate servers according to the outcome of the
partitioning algorithm. In its basic form, the graph used for the
partitioning contains all state items and all surrogates as vertices.
The graph then records weighted edges between pairs of items used
in the same transaction (counting the number of such transactions),
and between a surrogate and the items contained in a transaction
initiated at this surrogate (again counting such occurrences).

Unfortunately, in this approach, the graph partitioning approach
is oblivious to the number of vertexes that change partition on
each iteration. Spurious migrations penalize the application per-
formance by increasing network traffic, load at the surrogates and
consequently, transaction latency [9].

In an effort to reduce the number of state item migrations while
still avoiding awareness of the application semantics by the graph
partition approach, we are investigating the contribution and mod-
eling of historical data to enrich this basic graph, and thus influence
the partitioning algorithm. Historical data can be used i) to intro-
duce some inertia on the graph partitioning algorithm, encouraging
it to maintain the previous deployment; and ii) to select the subset
of state items used as input to the graph partitioning algorithm.
The goal is to understand if this information, which can be triv-
ially extracted from transaction logs, can contribute to reduce the
number of remote accesses and possibly the amount of state item
migrations while increasing the number of local transactions, i.e.
those that use exclusively state items hosted at the surrogate that
is closer to the transaction initiator.

4 THE ROLE OF THE ORACLE IN GLOBAL
TRANSACTIONS

A second research question to be answered focuses on determin-
ing the real impact and role of the Oracle in our system model,
especially in face of global transactions. Expectations are that bet-
ter state deployment strategies able to store personal state at the
most convenient surrogate servers will benefit latency by maxi-
mizing the amount of local transactions obtained. However, it is
also clear that a perfect state deployment may be unachievable and
the system will inevitably have to deal with global transactions
having either geo-aware or global state. This means that a trade-off
needs to be established between involving and coordinating more
surrogate servers in proximity to validate transactions, or instead
relying on the Oracle (expected to be located in a distant datacenter
in background) to solely validate and commit global transactions,
while paying the negative latency overhead imposed by the physical
distance to the surrogate servers.

5 RELATEDWORK
The geo-aware state deployment problem shares with Content
Delivery Networks (e.g. Akamai1) the goal of deploying data close
to the clients. However, CDN deploys read-only replicas of the data
and its biggest challenges are to cope with the limited bandwidth
1https://www.akamai.com/

2



between the replicas and the storage space. In contrast, geo-aware
state deployment aims to define the ideal location of a single copy
of the data, knowing that clients can edit and create new content.
Therefore, the development of efficient geo-aware state deployment
strategies leveraged on previous research results on different fields,
namely database partitioning and on geo-replicated cloud storage.

5.1 Data Partitioning
Data partitioning was originally proposed to address scalability and
performance requirements of database management systems. Hori-
zontal and vertical partitioning were some of the earliest strategies
to emerge [5]. In horizontal partitioning, the rows of each table
are evenly distributed by the partitions. Vertical partitioning fol-
lows the same approach but distributes columns by partitions. The
rationale behind these approaches is to make the amount of data
more manageable while aggregating related data (sets of columns
or rows) in the same node.

Graph partitioning algorithms are a particular approach as they
consider the implicit association created between state items by
transactions. The objective of the graph-based approach reported
in [3] is to partition database items across storage nodes so that
most transactions only need to access one node thus centralizing
locking and consistency. The approach is very similar to the one
used in this paper. It represents data items as vertexes and edges to
associated those sharing at least one transaction. Vertex weight is
used to represent the absolute access frequency of an item, while
edge weight represents the number of transactions that accessed
both state items. Mapping of state items in nodes is performed by a
graph partitioning algorithm such as k-way min/cut [7].The graph
modeling approach and the partitioning algorithm show that the
focus of [3] is to improve load-balancing. This is in contrast with
our model as we assume that partition imbalances are expected to
reduce latency, as long as they represent the effective utilization
patterns of the data.

Other mechanisms have been proposed for example in [4, 10, 11].
These share our goal of minimizing the number of distributed trans-
actions. However, they assume that all partitions are geographically
collocated, thus ignoring the negative impact of distance on latency.

5.2 Geo-replicated Cloud Storage
In contrast with the geo-oblivious approaches pursued by the
databases community, cloud storages bring the notion of physi-
cal distance to data partitioning. Solutions at different scales have
been proposed. At a server-level scale, geo-replicated cloud storages
aim to reduce latency and improve load balancing. At a datacen-
ter scale, the goal is to provide fault-tolerance for datacenter level
outages.

5.2.1 Server-level Scale. AdaptCache [1] proposes a cooperative
and integrated cache framework for web enterprise systems where
application servers cooperatively share their caches. Similar to
our approach, AdaptCache also has an “oracle” which dynamically
evaluates and manages state items placement. However, it goes a
step further and distributes requests across servers to achieve load
balancing and simplify consistency management. Request manage-
ment is facilitated by the collocation of servers, which is in contrast
with our system model.

SPANStore [13] is a geo-replicated key-value store that unifies
in a single framework storage at multiple datacenters. The goal
is to reduce the operation cost, by taking advantage of pricing
discrepancies. SPANStore ignores the location of the clients or the
correlation of the data items.

The introduction of geographical constraints in graph partition-
ing algorithms by using special “surrogate” vertexes was originally
proposed by the authors in [9]. Although promising, the advan-
tages of such approach could only been observed in the limited
number of scenarios where the large number of state items migra-
tions would not contribute for an increase in latency and traffic at
the surrogates.

5.2.2 Datacenter Scale. Apossible approach to handle datacenter-
level outages is using distributed transactional SQL databases. In
CockroachDB2. Replica location is decided automatically, based
on user configured criteria such as the types of failures to tolerate
and distinct locations. Unfortunately, CockroachDB cannot encom-
pass any concerns related with client access latency neither the
dynamism associated to mobile applications.

Regardless of the data partitioning strategy used, multi partition
transactions are by themselves a complex subject. These tend to
negatively impact system performance and several solutions try
to mitigate their effect in the system. The goal of DS-SMR [6]
is to design a dynamic and scalable replicated state machine to
exploit workload locality. Like in our approach, data partitioning
is managed by an oracle. State reconfiguration follows a simple
approach that transfers all required data items to a single partition
prior to initiating the transaction. However, it neglects the optimal
deployment of the data, introducing non-negligible latency with
state item migrations during transaction execution.

Workload analysis and location manipulation can also be found
in the geo-replicated storage system SDUR [12]. Considering that
local transactions take less latency to be validated and committed
than distributed transactions, this paper claims that latency may
be hampered in the presence of mixed workloads where a local
transaction delivered after a global transaction will experience a
longer delay. The paper focuses on strategies to improve system
performance by reordering transaction to give priority to trans-
actions using a single partition and deferring global transactions.
On the contrary, we aim at reducing the overall number of global
transactions.

ACKNOWLEDGMENT
Work described in this paper was partially supported by Fundação
para a Ciência e Tecnologia, Portugal, under the Individual Doctoral
Grant SFRH/BD/120631/2016.

REFERENCES
[1] Omar Asad and Bettina Kemme. 2016. AdaptCache: Adaptive Data Partitioning

and Migration for Distributed Object Caches. In Procs. of the 17th Int’l Middleware
Conf. (Middleware ’16). ACM, Article 7, 13 pages. https://doi.org/10.1145/2988336.
2988343

[2] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. 2014. Fog
Computing: A Platform for Internet of Things and Analytics. Springer International
Publishing, 169–186.

2https://www.cockroachlabs.com/

3

https://doi.org/10.1145/2988336.2988343
https://doi.org/10.1145/2988336.2988343


[3] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. 2010. Schism: A
Workload-driven Approach to Database Replication and Partitioning. Proc. VLDB
Endow. 3, 1-2 (Sept. 2010), 48–57. https://doi.org/10.14778/1920841.1920853

[4] Sameh Elnikety, Steven Dropsho, and Willy Zwaenepoel. 2007. Tashkent+:
Memory-aware Load Balancing and Update Filtering in Replicated Databases. In
Procs. of the 2nd ACM SIGOPS/EuroSys European Conf. on Computer Systems 2007
(EuroSys ’07). ACM, 399–412. https://doi.org/10.1145/1272996.1273037

[5] L. Gruenwald and M. H. Eich. 1990. Choosing the best storage technique for a
main memory database system. In Procs. of the 5th Jerusalem Conf. on Next Decade
in Information Technology. 1–10. https://doi.org/10.1109/JCIT.1990.128263

[6] L. L. Hoang, C. E. Bezerra, and F. Pedone. 2016. Dynamic Scalable State Machine
Replication. In 46th IEEE/IFIP Int’l Conf. on Dependable Systems and Networks
(DSN).

[7] George Karypis and Vipin Kumar. 1998. Multilevelk-way Partitioning Scheme
for Irregular Graphs. J. Parallel Distrib. Comput. 48, 1 (Jan. 1998), 96–129. https:
//doi.org/10.1006/jpdc.1997.1404

[8] Diogo Lima, HugoMiranda, and François Taïani. 2016. Partial Replication Policies
for Dynamic Distributed Transactional Memory in Edge Clouds. In Proceedings
of the 1st Workshop on Middleware for Edge Clouds & Cloudlets (MECC ’16). ACM,
New York, NY, USA, Article 2, 6 pages. https://doi.org/10.1145/3017116.3022872

[9] Diogo Lima, Hugo Miranda, and François Taïani. 2017. Can Graphs Solve the
Geo-aware State Deployment Problem?. In INFORUM 2017 - Atas do 9 Simpósio
de Informática, João Paulo Barraca, Helena Rodrigues, António Teixeira, and
José Maria Fernandes (Eds.). UA Editora, 221–232.

[10] Vivek S. Pai, Mohit Aron, Gaurov Banga, Michael Svendsen, Peter Druschel,
Willy Zwaenepoel, and Erich Nahum. 1998. Locality-aware Request Distribution
in Cluster-based Network Servers. In Procs. of the 8th Int’l Conf. on Architectural
Support for Programming Languages and Operating Systems (ASPLOS VIII). ACM,
205–216. https://doi.org/10.1145/291069.291048

[11] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. 2012. Skew-aware Automatic
Database Partitioning in Shared-nothing, Parallel OLTP Systems. In Procs. of
the 2012 ACM SIGMOD Int’l Conf. on Management of Data (SIGMOD ’12). ACM,
61–72. https://doi.org/10.1145/2213836.2213844

[12] Daniele Sciascia and Fernando Pedone. 2014. Geo-Replicated Storage with Scal-
able Deferred Update Replication. In Procs. of the 2014 IEEE 33rd Int’l Symposium
on Reliable Distributed Systems Workshops (SRDSW ’14). IEEE Computer Society,
26–29. https://doi.org/10.1109/SRDSW.2014.21

[13] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett, and Harsha V.
Madhyastha. 2013. SPANStore: Cost-effective Geo-replicated Storage Spanning
Multiple Cloud Services. In Procs. of the 24th ACM Symposium on Operating
Systems Principles (SOSP ’13). ACM, 292–308. https://doi.org/10.1145/2517349.
2522730

4

https://doi.org/10.14778/1920841.1920853
https://doi.org/10.1145/1272996.1273037
https://doi.org/10.1109/JCIT.1990.128263
https://doi.org/10.1006/jpdc.1997.1404
https://doi.org/10.1006/jpdc.1997.1404
https://doi.org/10.1145/3017116.3022872
https://doi.org/10.1145/291069.291048
https://doi.org/10.1145/2213836.2213844
https://doi.org/10.1109/SRDSW.2014.21
https://doi.org/10.1145/2517349.2522730
https://doi.org/10.1145/2517349.2522730

	Abstract
	1 Introduction
	2 Problem Statement
	3 Graph-based Geo-aware Strategies
	4 The role of the Oracle in global transactions
	5 Related Work
	5.1 Data Partitioning
	5.2 Geo-replicated Cloud Storage

	References

