
An Ecosystem for Verifying Implementations of BFT protocols

Ivana Vukotic
SnT - Interdisciplinary Centre for Security, Reliability

and Trust, University of Luxembourg
ivana.vukotic@uni.lu

Vincent Rahli
SnT - Interdisciplinary Centre for Security, Reliability

and Trust, University of Luxembourg
vincent.rahli@uni.lu

Marcus Völp
SnT - Interdisciplinary Centre for Security, Reliability

and Trust, University of Luxembourg
marcus.voelp@uni.lu

Paulo Esteves-Veríssimo
SnT - Interdisciplinary Centre for Security, Reliability

and Trust, University of Luxembourg
paulo.verissimo@uni.lu

1 Research Context

Human society strongly depends on critical information in-
frastructures such as electrical grids, autonomous vehicles,
blockchain applications, etc. Because of the complexity of
these systems, proving that they operate in a correct and
timely fashion is very hard to achieve. If we add on top
of that an increasing number of sophisticated attacks (e.g.
Stuxnet), securing correct behavior of these systems is even
harder. Byzantine fault-tolerance state machine replication
(BFT-SMR) is a technique that enables correct functioning
of a system even when some parts of the system are not
working correctly. BFT-SMR achieves this by masking the
behavior of possibly faulty replicas behind the behavior of
enough healthy replicas. Classical BFT protocols require
3f + 1 replicas to mask the behavior of a minority of up to
f faulty replicas. One major issue with these protocols is
that they are very complex and therefore hard to get right.
Another issue is that most of these protocols come without
a formal specification, and some of them even without an
implementation [18].

2 Research Goals and Achievements

To overcome these issues, we are developing an ecosystem
of formal tools for verifying implementations of BFT proto-
cols. In addition, this ecosystem will allow us to formally
explore the breadth of possibilities for designing such pro-
tocols. As part of that endeavor, we have already built a
generalized and extensible framework called Velisarios [29]
for implementing and reasoning about the safety of BFT
protocols. Our framework provides, among other things, a
model that captures the idea of arbitrary/Byzantine faults; a
collection of standard assumptions to reason about systems
with faulty components; proof tactics that capture common
reasoning patterns; as well as a general library of distributed
knowledge. All these parts can be reused to reason about
any BFT protocol. For example, most BFT protocols share
the same high-level structure (they essentially disseminate
knowledge and vote on the knowledge they gathered), which
we capture in our knowledge theory. As a case study, we ver-
ified the agreement property of PBFT [12, 11], the reference
protocol in the area. We chose PBFT because a significant
number of protocols are based on it such as [21, 32, 8, 7, 19],
to cite only a few. Therefore, a bug found in PBFT would
probably result in the existence of bugs in some of those
protocols. Verifying the correctness of PBFT is especially
important because many variants of that protocol are now

being developed and adopted in blockchain technology [16,
22, 6, 5, 27, 26, 3, 2, 1, 4]. Besides the normal-case op-
eration, our PBFT implementation also includes reasoning
about garbage collection, view changes and request batch-
ing, which are extremely important from a practical point
of view. We extracted our verified PBFT implementation to
OCaml, and showed that it performs well enough compared
to the state of the art BFT-SMaRt [8] library.1

Velisarios extends the Logic of Events (LoE), as used in
our previous EventML framework [9, 10, 28], in order to
reason not only about crash faults, but also about arbitrary
faults. In LoE, an event is an abstract entity that corre-
sponds either (1) to the handling of a received message, or
(2) to some arbitrary activity about which no information
is provided. To prove properties about distributed systems,
one only reasons about processes that have a correct behav-
ior, i.e., about events that were triggered by some message.
Processes react to the messages that triggered the events
happening at their locations one at a time, by transition-
ing through their states and creating messages to send out,
which in turn might trigger other events. When proving a
property about a distributed system, one has to reason about
its possible runs, which are sometimes modeled as execution
traces [30], and which are captured in LoE using event or-

derings. An event ordering is an abstract representation of
a run of a distributed system; it provides a formal definition
of a message sequence diagram as used by system designers.
As opposed to [30], a trace here is not just one sequence of
events but instead can be seen as a collection of local traces
(one local trace per sequential process), where a local trace is
a collection of events all happening at the same location and
ordered in time, and such that some events of different local
traces are causally ordered. Some runs/event orderings are
not possible and therefore excluded through our assumptions
(see [29] for more details). For example, one of our assump-
tions excludes event orderings where more than f out of n

nodes could be faulty.
Because many distributed systems work by exchanging

messages to gain knowledge about the state of other par-
ticipants in order to make progress consensually, our frame-
work includes a library for reasoning about the way partic-
ipants learn and disseminate information. In the presence

1BFT-SMaRt uses MAC vectors while our PBFT implementation uses
digital signatures. Therefore, BFT-SMaRt is about one order of mag-
nitude faster than our implementation. However, our implementation
is only twice as slow as BFT-SMaRt when replacing digital signatures
by MACs, without adapting the rest of the protocol.



EuroWD, April 2018, Porto, Portugal Ivana Vukotic, Vincent Rahli, Marcus Völp, and Paulo Esteves-Veríssimo

of faulty nodes, one has to ensure that this knowledge is
reliable. BFT-SMR protocols provide such guarantees us-
ing certificates, which ensure the existence of at least one
correct node, which has reliable knowledge. Our framework
includes abstractions and general lemmas for tracing back
such reliable information.

As mentioned above, using Velisarios, we verified the agree-
ment property of our implementation of PBFT. To prove
this property, we have to prove that in any event ordering, if
two outputs are sent by correct replicas for the same times-
tamp/client pair, then they have to contain the same reply.
We essentially proved this by induction on the causal order
of events, and by tracing back the two outputs to conflicting
inputs and local states.

As shown in Fig. 1, ours is not the first framework for im-
plementing and reasoning about distributed systems. How-
ever, to the best of our knowledge, Velisarios is the first
theorem prover based framework for verifying the correct-
ness of implementations of asynchronous BFT-SMR proto-
cols. Velisarios is implemented within the Coq theorem
prover [15], because when it comes to proving correctness
of a system, theorem provers provide the highest guarantees
known to mankind today.

3 Lines of Research for my PhD

Hybrid protocols. BFT-SMR is an extremely expensive tech-
nique. To enforce independence of failures between repli-
cas one has to ensure that replicas have different: operating
systems; implementations of the service; and administrators.
On top of that, each replica should be stored in a different lo-
cation. Hybrid protocols, such as MinBFT [32], significantly
reduce these costs by reducing the number of replicas from
3f +1 to 2f +1. This is possible, because hybrid protocols as-
sume the existence of trusted-trustworthy components, i.e.,
components that can only fail by crashing, and which other-
wise always deliver correct results. As future work, we would
like to extend our current framework to reason about sys-
tems where replicas consist of multiple components that can
have different failure assumptions. We would like to formally
study the classes of operations and interfaces between such
trusted-trustworthy components and the main payload sys-
tem to preserve their safety properties. Moreover, as future
work we will study how the trusted-trustworthy components
presented in the literature differ from each other and how
each of them influences the design of distributed protocols.

Rejuvenation. In the core PBFT protocol, when the primary
is suspected to be faulty, a new primary is elected, but the
former primary is kept within the system. This is not prac-
tical because in case the former primary is faulty, it should
be first repaired (i.e., brought back to a pristine state) be-
fore it is allowed to participate again in the system. Castro
showed how to extend PBFT with a proactive recovery mech-
anism [13]. In the future, we plan to add support for reason-
ing about state transfer and rejuvenation to our ecosystem.

4 Further Lines of Research

Liveness/Timeliness. Although, proving safety of a distributed
protocol (such as agreement or linearizability) is important,

it is not enough. It might happen that the protocol does
not run at all. Moreover, in order to apply BFT-SMR pro-
tocols to real-time critical infrastructures, we should show
that such a replicated system will not only eventually reply,
but that it will reply in a timely fashion. We leave reasoning
about liveness/timeliness for future work.

Bridging the gap. As suggested in Fig. 1, there is still a gap
between the verification and distributed systems worlds. On
one hand, the distributed systems community would like to
use mainstream programming languages to specify their pro-
tocols, such as C or Java. On the other hand, each new ver-
ification project tend to come with a new language, which
implies that in order to specify the protocol, one has to first
learn that language. In order to bridge this gap, as part
of our future work, we plan to extend our ecosystem with
transformers to turn C code into Velisarios code, and vice
versa. We believe that such transformers would contribute
to the popularization of formal verification ecosystems such
as ours, as well as to make life easier for both, distributed
systems as well as verification engineers/scientists.

Acknowledgments

This work is partially supported by the University of Luxem-
bourg - SnT and by the Fonds National de la Recherche Lux-
embourg (FNR) through PEARL grant FNR/P14/8149128.

References

[1] url: https://blog.cosmos.network/consensus-compare-caspe
r-vs-tendermint-6df154ad56ae.

[2] url: https://github.com/ethereum/cbc-casper/wiki/FAQ.
[3] url: https://github.com/hyperledger-archives/fabric/wiki/C

onsensus.
[4] url: https://steemit.com/cryptocurrency/@basiccrypto/almo

st-everything-you-wanted-to-know-about-neo-part-1-of-2.
[5] Ittai Abraham, Dahli Malkhi, Kartik Nayak, Ling Ren, and

Alexander Spiegelman. “Solida: A Blockchain Protocol Based
on Reconfigurable Byzantine Consensus”. 2018.

[6] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren,
and Alexander Spiegelman. “Solidus: An Incentive-compatible
Cryptocurrency Based on Permissionless Byzantine Consen-
sus”. In: CoRR abs/1612.02916 (2016). arXiv: 1612.02916.

[7] Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien Quéma.
“RBFT: Redundant Byzantine Fault Tolerance”. In: ICDCS

2013. IEEE Computer Society, 2013, pp. 297–306.

[8] Alysson Neves Bessani, João Sousa, and Eduardo Adílio
Pelinson Alchieri. “State Machine Replication for the Masses
with BFT-SMART”. In: DSN 2014. IEEE, 2014, pp. 355–
362.

[9] Mark Bickford. “Component Specification Using Event Classes”.
In: CBSE 2009. Vol. 5582. LNCS. Springer, 2009, pp. 140–
155.

[10] Mark Bickford, Robert L. Constable, and Vincent Rahli.
“Logic of Events, a framework to reason about distributed
systems”. In: Languages for Distributed Algorithms Work-

shop. 2012.
[11] Miguel Castro. “Practical Byzantine Fault Tolerance”. Also

as Technical Report MIT-LCS-TR-817. Ph.D. MIT, Jan.
2001.

[12] Miguel Castro and Barbara Liskov. “Practical Byzantine
Fault Tolerance”. In: OSDI 1999. USENIX Association, 1999,
pp. 173–186.

https://blog.cosmos.network/consensus-compare-casper-vs-tendermint-6df154ad56ae
https://blog.cosmos.network/consensus-compare-casper-vs-tendermint-6df154ad56ae
https://github.com/ethereum/cbc-casper/wiki/FAQ
https://github.com/hyperledger-archives/fabric/wiki/Consensus
https://github.com/hyperledger-archives/fabric/wiki/Consensus
https://steemit.com/cryptocurrency/@basiccrypto/almost-everything-you-wanted-to-know-about-neo-part-1-of-2
https://steemit.com/cryptocurrency/@basiccrypto/almost-everything-you-wanted-to-know-about-neo-part-1-of-2
http://arxiv.org/abs/1612.02916


An Ecosystem for Verifying Implementations of BFT protocols EuroWD, April 2018, Porto, Portugal

Running code Byz. (synch.) Byz. (asynch.)

IronFleet [20]; EventML [28]; Verdi [33]; PSync [17] ✓ ✗ ✗

HO-model [14]; PVS [31] ✗ ✓ ✗

Event-B [24] ✓/✗ ✓ ✗

IOA [11]; TLA+ [25]; ByMC [23] ✗ ✓ ✓

Velisarios [29] ✓ ✓ ✓

Figure 1. Comparison with related work

[13] Miguel Castro and Barbara Liskov. “Practical byzantine
fault tolerance and proactive recovery”. In: ACM Trans.

Comput. Syst. 20.4 (2002), pp. 398–461.
[14] Bernadette Charron-Bost, Henri Debrat, and Stephan Merz.

“Formal Verification of Consensus Algorithms Tolerating
Malicious Faults”. In: SSS 2011. Vol. 6976. LNCS. Springer,
2011, pp. 120–134.

[15] The Coq Proof Assistant. url: http://coq.inria.fr/.
[16] Christian Decker, Jochen Seidel, and Roger Wattenhofer.

“Bitcoin meets strong consistency”. In: ICDCN 2016. ACM,
2016, 13:1–13:10.

[17] Cezara Dragoi, Thomas A. Henzinger, and Damien Zuf-
ferey. “PSync: a partially synchronous language for fault-
tolerant distributed algorithms”. In: POPL 2016. ACM,
2016, pp. 400–415.

[18] Cezara Dragoi, Thomas A. Henzinger, and Damien Zuf-
ferey. “The Need for Language Support for Fault-Tolerant
Distributed Systems”. In: SNAPL 2015. Vol. 32. LIPIcs.

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015,
pp. 90–102.

[19] Rachid Guerraoui, Nikola Knezevic, Vivien Quéma, and
Marko Vukolic. “The next 700 BFT protocols”. In: Eu-

ropean Conference on Computer Systems, Proceedings of

the 5th European conference on Computer systems, Eu-

roSys 2010, Paris, France, April 13-16, 2010. ACM, 2010,

pp. 363–376.
[20] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R.

Lorch, Bryan Parno, Michael L. Roberts, Srinath T. V.
Setty, and Brian Zill. “IronFleet: proving practical distributed

systems correct”. In: SOSP 2015. ACM, 2015, pp. 1–17.
[21] Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias

Distler, Simon Kuhnle, Seyed Vahid Mohammadi, Wolf-
gang Schröder-Preikschat, and Klaus Stengel. “CheapBFT:
resource-efficient byzantine fault tolerance”. In: EuroSys

’12. ACM, 2012, pp. 295–308.
[22] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly,

Ismail Khoffi, Linus Gasser, and Bryan Ford. “Enhancing
Bitcoin Security and Performance with Strong Consistency
via Collective Signing”. In: USENIX Security Symposium.
USENIX Association, 2016, pp. 279–296.

[23] Igor V. Konnov, Marijana Lazic, Helmut Veith, and Josef
Widder. “A short counterexample property for safety and
liveness verification of fault-tolerant distributed algorithms”.

In: POPL 2017. ACM, 2017, pp. 719–734.
[24] Roman Krenický and Mattias Ulbrich. Deductive Verifica-

tion of a Byzantine Agreement Protocol. Tech. rep. 2010-
7. Karlsruhe Institute of Technology, Department of Com-

puter Science, 2010.
[25] Leslie Lamport. “Byzantizing Paxos by Refinement”. In:

DISC 2011. Vol. 6950. LNCS. Springer, 2011, pp. 211–224.

[26] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja,
Seth Gilbert, and Prateek Saxena. “A Secure Sharding Pro-
tocol For Open Blockchains”. In: CCS 2016. ACM, 2016,
pp. 17–30.

[27] Rafael Pass and Elaine Shi. “Hybrid Consensus: Efficient
Consensus in the Permissionless Model”. In: DISC 2017.
Vol. 91. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2017, 39:1–39:16.

[28] Vincent Rahli, David Guaspari, Mark Bickford, and Robert
L. Constable. “EventML: Specification, Verification, and
Implementation of Crash-Tolerant State Machine Replica-
tion Systems”. In: SCP (2017).

[29] Vincent Rahli, Ivana Vukotic, Marcus Volp, and Paulo Veris-
siomo. “Velisarios: Byzantine Fault-Tolerant Protocols Pow-
ered by Coq”. ESOP. 2018.

[30] A. W. Roscoe, C. A. R. Hoare, and Richard Bird. The The-

ory and Practice of Concurrency. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 1997.

[31] Ulrich Schmid, Bettina Weiss, and John M. Rushby. “For-
mally Verified Byzantine Agreement in Presence of Link
Faults”. In: ICDCS. 2002, pp. 608–616.

[32] Giuliana Santos Veronese, Miguel Correia, Alysson Neves

Bessani, Lau Cheuk Lung, and Paulo Veríssimo. “Efficient
Byzantine Fault-Tolerance”. In: IEEE Trans. Computers

62.1 (2013), pp. 16–30.
[33] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary

Tatlock, Xi Wang, Michael D. Ernst, and Thomas E. An-
derson. “Verdi: a framework for implementing and formally
verifying distributed systems”. In: PLDI 2015. ACM, 2015,

pp. 357–368.

http://coq.inria.fr/

	1 Research Context
	2 Research Goals and Achievements
	3 Lines of Research for my PhD
	4 Further Lines of Research

