
Haopeng Liu, Shan Lu
Understanding and Detecting Timing Bugs in Cloud Systems

1. Timing bugs in distributed systems:

Fault-aware logical time model

Evaluation

Background & Motivation

[1]. T. Leesatapornwongsa, J. Lukman, S. Lu, and H. Gunawi. TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in Datacenter Distributed Systems. In ASPLOS, 2016
[2]. Zhenyu Guo, Sean McDirmid, Mao Yang, Li Zhuang, Pu Zhang, Yingwei Luo,Tom Bergan, Peter Bodik, Madan Musuvathi, Zheng Zhang, and Lidong Zhou.Failure recovery: When the cure is worse than the disease. In HotOS, 2013
[3]. V. Raychev, M. Vechev, and M. Sridharan. Effective Race Detection for Event-Driven Programs. In OOPSLA, 2013

Challenge: Complex manual specifications
Q1: Can we judge what are timing bugs
without manual specifications?

2. State of the art – Model checking

1. What is new data flow introduced by timing of faults?

2. How about data flow between recovery and crash nodes?

More	details:	http://fcatch.cs.uchicago.edu/

obj.wait(long timeout); //R

//Recovery node
if (f.valid()) { //R1: sanity check
dt = f.read(); //R2: read

}

Ncrash

Nrecovery

Challenge: Many fault injection runs
Q2: Can we predict time-of-fault bugs based
on just one fault injection, instead of many?

2. State of the art – Random fault injection

A new model of TOF bug
q Predict data flow changes caused by TOF changes

q Consider both synch. and fault-tolerance ops

A new fault-aware logical time model
q Conflicting accesses on shared states (heap, file, ...)

q From a crash node and non-crash nodes

q Data dependency changes with TOF change

Ncrash

Nrecovery

Ncrash Nregular Ncrash Nregular

TA1 AM

TA2

TA1 AM

TA2

hang

Boolean CanCommit(taID) {
...
T.commitID = taID;

}

Boolean CanCommit(taID) {
if (T.commitID) {
return T.commitID == taID;

}
}

TA1

TA2

w R

wa wa

Rw

R

w1

w2

w3 R

w1

w2

w3

Key insights

Data flow is totally determined by TOF!

q Fault timing: before W

q Fault-tolerance: timeout

Crash-regular TOF bug

q Fault timing: after W

q Fault-tolerance: sanity check

Crash-recovery TOF bug

Logical time model for Distributed Systems

StandardizedCustomized

Socket

RPC

ZooKeeper
service

Distributed	
while-loop

Distributed	HB	Rules

StandardizedCustomized

Event-related

Thread	fork/join

n/a

While-loop

Local	HB	Rules

• Rule-Mrpc: Crt(r, n1)àBegin(r, n2)
• Rule-Mrpc: End(r, n2)àJoin(r, n1)

• Rule-Msoc: Send(m, n1)àRecv(m, n2)

• Rule-Mpush: Update(s, n1)àPush(s, n2)

• Rule-Mpull: Update(s, n1)àPull(s, n2)

• Rule-Tfork: Create (t)àBegin (t)
• Rule-Tjoin: End (t)àJoin (t)

• Rule-Eenq: Create(e)àBegin(e)
• Rule-Eserial: End (e1)àBegin(e2) if…

• Rule-Tpull: Update (f)àPulled (f)

As
yn
ch
ro
no

us
Sy
nc
hr
on

ou
s

Sy
nc
hr
on

ou
s

As
yn
ch
ro
no

us

FCatch: predict TOF bugs

Tracing crt runs

Conflicting ops

Intolerant ops

Q. Only fault-free correct run is enough?

Crash-regular TOF bugs:
• Analyze fault-free run trace
• W & R are from different nodes
• W & R have HB relation

Crash-recovery TOF bugs:
• Analyze fault-free &faulty traces
• W is from Ncrash in the fault-free
• R is from Nrecovery in the faulty

Crash-regular TOF bugs:
• Timeout (statically check R)

Crash-recovery TOF bugs:
• Sanity check + impact analysis

DCatch: predict TOE bugs

1. Runtime Tracing [S, C, A]
• Heap accesses related to dist. computation/communication
• Happens-before related operations following HB model

2. HB Analysis [S, C, A]
• HB graph construction following the HB model above
• Data race detection from HB graph[3]

3. Static Pruning [S, A]
• Statically estimate distributed & local impact of each race
• Prune out races unlikely to cause failures

q Fault timing: after W

q Fault-tolerance: sanity check

Crash-recovery TOF bug

q Fault timing: before W

q Fault-tolerance: timeout

Crash-regular TOF bug

Overview: a. Customized for distributed systems and TOE bugs;
b. Aims Scalability, Coverage, and Accuracy.

• Unexpected timing among dist. events:
-- Message: time-of-execution bugs
-- Fault: time-of-fault bugs

Node BNode A Node C

MR-3274

Node BNode A NodeC

//UnReg thread
void cancel(jID){
jMap.remove(jID);
....

}

//RPC thread
Task getTask(jID){

...
rt jMap.get(jID);

}

Key insights: opportunities
• Distributed timing causes conflicting accesses on one machine
à Can we apply local concurrency bug detection techniques?

• What’s the Happens-Before model?
• How to handle the huge # of accesses?

Key insights: challenges to detect TOE bugs

ASPLOS-2018ASPLOS-2017

• How to manipulate distributed timing?
• How to estimate distributed impact?

MR-5476

DCatch CA HB-1 HB-2 MR-1 MR-2 ZK-1 ZK-2 Total

Detected? ✔ ✔ ✔ ✔ ✔ ✔ ✔

#. Harmful bugs 3 3 4 2 1 5 6 20
#. Benign bugs 0 0 1 0 2 1 2 5
#. False positives 0 1 0 4 4 1 0 7

FCacth CA1&2 HB-1 HB-2 MR-1 MR-2 ZK Total

#. Bench (harmful) 2 + / 1 + / / + 1 / + 1 / + 2 / + 1 3 + 5
#. Unknown (harmful) 1 + 0 0 + 0 2 + 2 1 + 1 1 + 1 0 + 0 4 + 4
#. False positives 0 + 2 3 + 6 2 + 0 0 + 0 0 + 0 0 + 2 5 + 10

Include	8		
new	bugs

Evaluation

Time of execution (TOE) bugs Time of fault (TOF) bugs

• Common in dist. systems [1, 2]
• Difficult to avoid and tackle
• Little tool support

