ECOLE POLYTECH INIQUE

FEDERALE DE LAUSANNE

Wren: Nonblocking Reads in a
Partitioned Transactional Causally
Consistent Data Store

Kristina Spirovska Advisor: Willy Zwaenepoel
Diego Didona

Research area:
Causal Consistency in Distributed Data Stores

PhD Stage: Finisher

EuroDW’18, April 23, Porto, Portugal

Existing geo-replicated, causally consistent data stores are
sub-optimal (performance, scalability, resource efficiency)

Performance, scalability and resource efficiency
matter in the real world

Novel system design that achieves up to:

* 3.6x Ic?wer latency than state of the art
* 1.4x higher throughput

Trade-off: reading slightly from the past

Causal Consistency

4 Eventual Consistency

@ Causal Consistency
Higher

Performance Linearizability

(Strong Consistency)

- >

Stronger Consistency Guarantees

[Strongest consistency model compatible with availability]

3

Transactional Causal Consistency

Causal + Interactive
Read-Write

consistency
Transactions

Transactional Causal Consistency

Reads from causal
snapshot

ertes are atomic

Challenge under sharding

Wren vs. Cure [ICDCS'16]

Read-heavy workload

-o-Cure -eo=\\ren

20 I I I
| | |
| | |
I I I
—_ | | |
D | | |
Qo LU
£ | : :
© | | |
E 10 |- e N T e
= | | | |
o) | | | |
n I I I I
S | | | |
T E— I T e T Lowdr-and-moreto
0 — | | the tight is better
X | o— | | |
| : | N
O : : :
0 1000 2000 3000 4000 5000

Throughput (TX/sec) 6

N

® Our solution : Wren

*
?
?

Achieves nonblocking reads

* Low latency

Scales horizontally by sharding
* Scalability

Tolerates network partitions between DCs

* Availability

Trade-off:

reading slightly from the past

Atomic writes + Sharding = 2PC

UNCERTAINTY PERIODS

PREPARE

‘ PREPARE

- COMMIT

Cure [ICDCS'16]

READS MUST BLOCK

Our solution:

=,

Wren vs. Cure

Wren — DSN’18

Wren: Nonblocking Reads in a Partitioned
Transactional Causally Consistent Data Store

ch

Kristina Spirovska Diego Didona Willy Zwaenepoel
SPF] EPFL EPFL

lusAI Lon;memy ucc) utmds
msistency model co
Qs trantactions, sud b

Wren on an AWS deployment using U
npnmum sites and 16 pmmom per site. We show hat Wh
delivers up to 1.4x higher throughput and up to 3.6x lower
when compared to the state-of-the-art design. The choice of an
older snapshot increases local update visibility latency by a few
milliseconds. The use of only two timestamps to track causality
increases remote update visibility latency by less than 15%.

1. INTRODUCTION

Many large-scale data platforms rely on geo-replication to
meet strict performance and availability requirements (1], 2],
3], [4], (5]. Geo-replication reduces latencies by keeping a
copy of the data close to the clients, and enables availability

plicating data at geographically distributed data centers

(DCs). To accommodate the ever-growing volumes of data,
today’s large-scale on-line services also partition the data
across multiple servers within a single DC [6], [7].
‘Transactional Causal Consistency (TCC). TCC (8] is an
attractive consistency level for building geo-replicated data-
stores. TCC enforces causal consistency (CC) (9], which is the
strongest consistency model compatible with availability [10],
[11]. Compared to strong consistency [12], CC does not suffer
from high synchronization latencies, limited scalability and
unavailability in the presence of network partitions between
DCs (13}, [14], [15]. Compared to eventual consistency [2],
CC avoids a number of anomalies that plague programming
with weaker models. In addtion, TCC extends CC with inter-
active read-write transactions, that allow applications to read
from a causal snapshot and to perform atomic multi-item
writes.

h 1 pfl.ch

Enforcing CC while offering always-available interactive
multi-partition transactions is a challenging problem [7]. The
main culprit is that in a distributed environment, unavoidably,
partitions do not progress at the same pace. Current TCC
designs either avoid this issue altogether, by not supporting
sharding [16], or block reads to ensure that the proper snapshot
is installed (8]. The former approach sacrifices scalability,
hile the latter incurs additional latencies

provide high resource efficiency and scalabilty, and e
availability.

Wren exposes to clients a snapshot that is slightly in the
past with respect to the one exposed by existing approaches.
We argue that this is a small price to pay for the performance
improvements that Wren offers.

We compare Wren with Cure (8], the state-of-the-art TCC
system, on an AWS deployment with up to 5 DCs with 16
partitions each. Wren achieves up to 1.4x higher throughput
and up to 3.6x lower latencies. The choice of an older snapshot
increases local update visibility latency by a few milliseconds.
‘The use of only two timestamps to track causality increases
remote update visibility latency by less than 15%.

We make the following contributions.

1) We present the design and implementation of Wren, the
first TCC key-value store that achieves nonblocking reads,
efficiently scales horizontally, and tolerates network partitions

Contributions:

ANToR: Client-Assisted
ocking Transactional Reads

* Novel transactional protocol

BDT: Binary Dependency Time

* New dependency tracking protocol

BiST: Binary Stable Time

* New stabilization protocol

12

